Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Studies Characteristics
3.2. Variables Used in the Models
3.3. Types of ML Models and Their Performance
3.3.1. Accuracy
3.3.2. Precision
3.3.3. Recall
3.3.4. F1 Score
3.3.5. AUC (Area Under the ROC Curve)
3.4. Handling Missing Data
3.5. External Validation, Reproducibility, and Interpretability
4. Discussion
4.1. Choice of Variables for Mortality Predictions ML Models in Sepsis
4.2. ML Techniques
4.2.1. Decision Trees
4.2.2. Support Vector Machines (SVMs)
4.2.3. Neural Networks
4.2.4. Logistic Regression
4.3. Performance of ML Models
4.4. Validity and Reliability of ML Models
4.5. Interpretability of ML Models
4.6. Evaluation of Reproducibility
4.7. Comparison Between ML Models and Conventional Prediction Methods Based on Organ Dysfunction Scores
4.8. Clinical Applicability: Enhancing, Not Replacing, Clinical Decision-Making
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vincent, J.-L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.-R.; Payen, D. Sepsis in European Intensive Care Units: Results of the SOAP Study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Ñamendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.N.; Vincent, J.L. Sepsis in Intensive Care Unit Patients: Worldwide Data from the Intensive Care over Nations Audit. Open Forum Infect. Dis. 2018, 5, ofy313. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M.; Salciccioli, J.D.; Shalhoub, J.; Gordon, A.C.; Marshall, D.C. Multinational Trends in Sepsis Mortality between 1985 and 2019: A Temporal Analysis of the WHO Mortality Database. BMJ Open 2024, 14, e074822. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A WHO Resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef]
- Rodríguez, A.; Mendoza, D.; Ascuntar, J.; Jaimes, F. Supervised Classification Techniques for Prediction of Mortality in Adult Patients with Sepsis. Am. J. Emerg. Med. 2021, 45, 392–397. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The Immunology of Sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Qi, J.; Lei, J.; Li, N.; Huang, D.; Liu, H.; Zhou, K.; Dai, Z.; Sun, C. Machine Learning Models to Predict In-Hospital Mortality in Septic Patients with Diabetes. Front. Endocrinol. 2022, 13, 1034251. [Google Scholar] [CrossRef]
- Mirzakhani, F.; Sadoughi, F.; Hatami, M.; Amirabadizadeh, A. Which Model Is Superior in Predicting ICU Survival: Artificial Intelligence versus Conventional Approaches. BMC Med. Inf. Decis. Mak. 2022, 22, 167. [Google Scholar] [CrossRef]
- Lemeshow, S.; Klar, J.; Teres, D. Outcome Prediction for Individual Intensive Care Patients: Useful, Misused, or Abused? Intensive Care Med. 1995, 21, 770–776. [Google Scholar] [CrossRef]
- van Doorn, W.P.T.M.; Stassen, P.M.; Borggreve, H.F.; Schalkwijk, M.J.; Stoffers, J.; Bekers, O.; Meex, S.J.R. A Comparison of Machine Learning Models versus Clinical Evaluation for Mortality Prediction in Patients with Sepsis. PLoS ONE 2021, 16, e0245157. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Lin, K.; Hu, Y. Using Machine Learning Methods to Predict In-Hospital Mortality of Sepsis Patients in the ICU. BMC Med. Inf. Decis. Mak. 2020, 20, 251. [Google Scholar] [CrossRef] [PubMed]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and QSOFA Score for In-Hospital Mortality Among Adults with Suspected Infection Admitted to the Intensive Care Unit. JAMA 2017, 317, 290. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D.A.; Laupland, K.B.; Fick, G.H.; Sandham, J.D.; Doig, C.J. Neuroanesthesia and Intensive Care Limited Ability of SOFA and MOD Scores to Discriminate Outcome: A Prospective Evaluation in 1,436 Patients. Can. J. Anesth./J. Can. D’anesthésie 2005, 52, 302–308. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, Y. Development of a Novel Score for the Prediction of Hospital Mortality in Patients with Severe Sepsis: The Use of Electronic Healthcare Records with LASSO Regression. Oncotarget 2017, 8, 49637–49645. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus Machine Learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.-C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- He, R.R.; Yue, G.L.; Dong, M.L.; Wang, J.Q.; Cheng, C. Sepsis Biomarkers: Advancements and Clinical Applications—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 9010. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Y.; Yang, C.; Li, X. Review of the Predictive Value of Biomarkers in Sepsis Mortality. Emerg. Med. Int. 2024, 2024, 2715606. [Google Scholar] [CrossRef] [PubMed]
- Wernly, B.; Mamandipoor, B.; Baldia, P.; Jung, C.; Osmani, V. Machine Learning Predicts Mortality in Septic Patients Using Only Routinely Available ABG Variables: A Multi-Centre Evaluation. Int. J. Med. Inf. 2021, 145, 104312. [Google Scholar] [CrossRef] [PubMed]
- Shillan, D.; Sterne, J.A.C.; Champneys, A.; Gibbison, B. Use of Machine Learning to Analyse Routinely Collected Intensive Care Unit Data: A Systematic Review. Crit. Care 2019, 23, 284. [Google Scholar] [CrossRef] [PubMed]
- Desautels, T.; Calvert, J.; Hoffman, J.; Jay, M.; Kerem, Y.; Shieh, L.; Shimabukuro, D.; Chettipally, U.; Feldman, M.D.; Barton, C.; et al. Prediction of Sepsis in the Intensive Care Unit with Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Med. Inf. 2016, 4, e28. [Google Scholar] [CrossRef]
- Andaur Navarro, C.L.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.M.; et al. Completeness of Reporting of Clinical Prediction Models Developed Using Supervised Machine Learning: A Systematic Review. BMC Med. Res. Methodol. 2022, 22, 12. [Google Scholar] [CrossRef]
- Yan, M.Y.; Gustad, L.T.; Nytrø, Ø. Sepsis Prediction, Early Detection, and Identification Using Clinical Text for Machine Learning: A Systematic Review. J. Am. Med. Inform. Assoc. 2022, 29, 559–575. [Google Scholar] [CrossRef]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated Learning in Medicine: Facilitating Multi-Institutional Collaborations without Sharing Patient Data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The Artificial Intelligence Clinician Learns Optimal Treatment Strategies for Sepsis in Intensive Care. Nat. Med. 2018, 24, 1716–1720. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024); Cochrane: London, UK, 2024; Available online: www.training.cochrane.org/handbook (accessed on 28 November 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, X.; Wu, Z.; Zhu, L.; Wu, J.; Zhang, F. Clinical Applications of Machine Learning in the Survival Prediction and Classification of Sepsis: Coagulation and Heparin Usage Matter. J. Transl. Med. 2022, 20, 265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, T.; Xu, F.; Li, S.; Zheng, S.; Lyu, J.; Yin, H. Prediction of Prognosis in Elderly Patients with Sepsis Based on Machine Learning (Random Survival Forest). BMC Emerg. Med. 2022, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Y.; Gao, Y.; Niu, X.; Li, J.; Tang, M.; Fu, C.; Qi, R.; Song, B.; Chen, H.; et al. Machine-Learning Based Prediction of Prognostic Risk Factors in Patients with Invasive Candidiasis Infection and Bacterial Bloodstream Infection: A Singled Centered Retrospective Study. BMC Infect. Dis. 2022, 22, 150. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Deng, F.; Zhao, S. Machine-Learning Models for Prediction of Sepsis Patients Mortality. Med. Intensiv. 2023, 47, 315–325. [Google Scholar] [CrossRef]
- Li, X.; Wu, R.; Zhao, W.; Shi, R.; Zhu, Y.; Wang, Z.; Pan, H.; Wang, D. Machine Learning Algorithm to Predict Mortality in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury. Sci. Rep. 2023, 13, 5223. [Google Scholar] [CrossRef]
- Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Kobylińska, K.; Biecek, P.; Skalec, T.; Tyszko, M.; Gozdzik, W.; Adamik, B. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells 2022, 11, 2433. [Google Scholar] [CrossRef]
- Gultepe, E.; Green, J.P.; Nguyen, H.; Adams, J.; Albertson, T.; Tagkopoulos, I. From Vital Signs to Clinical Outcomes for Patients with Sepsis: A Machine Learning Basis for a Clinical Decision Support System. J. Am. Med. Inform. Assoc. 2014, 21, 315–325. [Google Scholar] [CrossRef]
- Li, K.; Shi, Q.; Liu, S.; Xie, Y.; Liu, J. Predicting In-Hospital Mortality in ICU Patients with Sepsis Using Gradient Boosting Decision Tree. Medicine 2021, 100, E25813. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, L.; Zhao, Q.; Jin, X.; Peng, Z.; Wang, W.; Huang, L.; Xie, Y.; Xu, H.; Tao, L.; et al. Machine Learning for the Prediction of All-Cause Mortality in Patients with Sepsis-Associated Acute Kidney Injury during Hospitalization. Front. Immunol. 2023, 14, 1140755. [Google Scholar] [CrossRef]
- Zhang, G.; Shao, F.; Yuan, W.; Wu, J.; Qi, X.; Gao, J.; Shao, R.; Tang, Z.; Wang, T. Predicting Sepsis In-Hospital Mortality with Machine Learning: A Multi-Center Study Using Clinical and Inflammatory Biomarkers. Eur. J. Med. Res. 2024, 29, 156. [Google Scholar] [CrossRef]
- Vellido, A.; Ribas, V.; Morales, C.; Ruiz Sanmartín, A.; Ruiz Rodríguez, J.C. Machine Learning in Critical Care: State-of-the-Art and a Sepsis Case Study. Biomed. Eng. Online 2018, 17, 135. [Google Scholar] [CrossRef] [PubMed]
- Taneja, I.; Damhorst, G.L.; Lopez-Espina, C.; Zhao, S.D.; Zhu, R.; Khan, S.; White, K.; Kumar, J.; Vincent, A.; Yeh, L.; et al. Diagnostic and Prognostic Capabilities of a Biomarker and EMR-Based Machine Learning Algorithm for Sepsis. Clin. Transl. Sci. 2021, 14, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Suresh, H.; Hunt, N.; Johnson, A.; Celi, L.; Szolovits, P.; Ghassemi, M. Clinical Intervention Prediction and Understanding Using Deep Networks. J. Biomed. Inf. 2017, 68, 93–102. [Google Scholar]
- Powers, D. Evaluation: From Precision, Recall and Fmeasure to Roc, Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On Evaluation Metrics for Medical Applications of Artificial Intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Ghassemi, M.M.; Nemati, S.; Niehaus, K.E.; Clifton, D.; Clifford, G.D. Machine Learning and Decision Support in Critical Care. Proc. IEEE 2016, 104, 444–466. [Google Scholar] [CrossRef]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J. Biomed. Health Inf. 2018, 22, 1589–1604. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Bidart, J.P.M.; Rosa, R.G.; Bessel, M.; Pedrotti, L.G.; Goldani, L.Z. Mortality Predictors in Patients with Suspected Sepsis in the Emergency Department of a Tertiary Care Hospital: A Retrospective Cohort Study. Int. J. Emerg. Med. 2024, 17, 74. [Google Scholar] [CrossRef]
PICOS | Inclusion | Exclusion |
---|---|---|
Population |
|
|
Intervention/Comparator |
|
|
Outcomes and variables of interest |
|
|
Study design |
|
|
Reference | Study Design | Country and Databases | Period | Objective | Sample Size |
---|---|---|---|---|---|
Rodríguez 2021 [6] | Prospective observational, multicenter | Colombia | June 2014–February 2016 |
| 2510 |
Guo, 2022 [32] | Retrospective multicenter | USA MIMIC-III; MIMIC-IV | 2001–2012; 2008–2018 |
| 15,028 |
Zhang, 2022 [33] | Retrospective, single center | USA MIMIC IV | 2008–2019 |
| 6503 |
Li, 2022 [34] | Retrospective, single center | China | January 2013–January 2018 |
| 246 |
Qi, 2022 [8] | Retrospective, multicenter | USA; China MIMIC-IV; eICU-CRD; dtChina | NR |
| 7001 |
Mirzakhani, 2022 [9] | Retrospective, multicenter | Iran | March 2017–September 2019 |
| 840 |
Bao, 2023 [35] | Retrospective, single center | USA MIMIC-IV; eICU-CRD | 2008–2019; 2014–2015 |
| 21,680 |
Vellido, 2018 [42] | Prospective observational, single center | Spain | June 2007–December 2010 |
| 354 |
Wernly, 2021 [22] | Retrospective, multicenter | USA eICU-CRD; MIMIC-III | 2014–2015 2001–2012 |
| 13,634 |
Li, 2023 [36] | Retrospective, single center | USA MIMIC IV | 2008–2019 |
| 8129 |
Taneja, 2021 [43] | Prospective observational, multicenter | USA | February 2018–September 2019 |
| 350 |
van Doorn, 2021 [11] | Retrospective, single center | Netherlands | January 2015–December 2016 |
| 1344 |
Lemańska-Perek, 2022 [37] | Retrospective, single center | Poland | January 2018–December 2019 |
| 122 |
Gultepe, 2014 [38] | Retrospective, single center | USA | January 2010–December 2010 |
| 151 |
Kong, 2020 [12] | Retrospective, single center | USA MIMIC-III | 2001–2012 |
| 16,688 |
Li, 2021 [39] | Retrospective, single center | USA MIMIC-III | 2001–2013 |
| 3937 |
Zhou, 2023 [40] | Retrospective, single center | USA MIMIC-IV | 2008–2019 |
| 16,154 |
Zhang, 2017 [15] | Retrospective, single center | USA MIMIC-III | 2001–2013 |
| 3206 |
Zhang, 2024 [41] | Retrospective, multicenter | USA; Netherlands MIMICIV; eICU-CRD; The Amsterdam University Medical Centers | NR |
| 3535 |
Variable | Frequency (Number of Studies) |
---|---|
Laboratory blood tests | 19 |
Vital signs | 13 |
General information * | 18 |
ABG | 18 |
Comorbidities | 10 |
Treatment interventions | 14 |
SOFA score | 5 |
Ratios calculated ** | 1 |
CRP | 3 |
Procalcitonin | 3 |
Interleukin-6 | 1 |
D-dimers | 1 |
Fibronectin | 1 |
Reference | Model | Accuracy | Precision | Sensitivity | AUC |
---|---|---|---|---|---|
Guo, 2022 [32] | CNN | 0.834 | 0.825 | 0.818 | 0.909 |
DCQMFF | 0.775 | 0.764 | 0.754 | 0.849 | |
RF | - | - | - | 0.533 | |
LR | - | - | - | 0.605 | |
LASSO LR | - | - | - | 0.567 | |
SOFA score | - | - | - | 0.807 | |
Zhang, 2022 [33] | RFS | C index 0.731 | - | - | - |
Li, 2022 [34] | LR | 0.716 | 0.559 | 0.76 | 0.753 |
RF | 0.784 | 0.622 | 0.92 | 0.919 | |
SVM | 0.622 | 0.465 | 0.8 | 0.777 | |
Qi, 2022 [8] | LASSO LR | 0.878 (eICU-CRD) 0.715 (dtChina) | 0.993 (eICU-CRD) 0.790 (dtChina) | 0.883 (eICU-CRD) 0.863(dtChina) | 0.337 * (eICU-CRD) 0.201 * (dtChina) |
Bayes logistic regression | 0.877 (eICU-CRD) 0.745 (dtChina) | 0.983 (eICU-CRD) 0.818 (dtChina) | 0.888 (eICU-CRD) 0.874 (dtChina) | 0.290 * (eICU-CRD) 0.202 * (dtChina) | |
Decision tree | 0.865 (eICU-CRD) 0.763 (dtChina) | 0.885 (eICU-CRD) 0.856 (dtChina) | 0.972 (eICU-CRD) 0.867 (dtChina) | 0.239 * (eICU-CRD) 0.159 * (dtChina) | |
RF | 0.886 (eICU-CRD) 0.760 (dtChina) | 0.893 (eICU-CRD) 0.848 (dtChina) | 0.989 (eICU-CRD) 0.874 (dtChina) | 0.310 * (eICU-CRD) 0.162 * (dtChina) | |
XGBoost | 0.875 (eICU-CRD) 0.699 (dtChina) | 0.875 (eICU-CRD) 0.699 (dtChina) | 0.971 (eICU-CRD) 0.777 (dtChina) | 0.332 * (eICU-CRD) 0.186 * (dtChina) | |
Mirzakhani, 2022 [9] | MLP-NN selected variables | 0.8169 | - | 0.6667 | 0.789 |
CART DT selected variables | 0.5555 | - | 0.8333 | 0.3061 | |
MLP-NN all variables | 0.7843 | - | 0.833 | 0.823 | |
CART DT all variables | 0.7973 | - | 0.711 | 0.756 | |
SOFA score | 0.6952 | - | 0.6667 | 0.76 | |
SAPS II | 0.7095 | - | 0.6726 | 0.771 | |
APACHE II | 0.733 | - | 0.739 | 0.803 | |
APACHE IV | 0.711 | - | 0.736 | 0.785 | |
Rodriguez, 2020 [6] | C4.5 decision tree clinical care variables | 0.838 | - | - | 0.59 |
RF clinical care variables | 0.84 | - | - | 0.61 | |
SVM (ANOVA) clinical care variables | 0.843 | - | - | 0.58 | |
SVM (dot) clinical care variables | 0.845 | - | - | 0.58 | |
ANN clinical care variables | 0.826 | - | - | 0.58 | |
C4.5 decision tree physiological and prognostic variables | 0.639 | - | - | 0.53 | |
RF physiological and prognostic variables | 0.741 | - | - | 0.65 | |
SVM (ANOVA) physiological and prognostic variables | 0.708 | - | - | 0.69 | |
SVM (dot) physiological and prognostic variables | 0.762 | - | - | 0.68 | |
ANN physiological and prognostic variables | 0.706 | - | - | 0.69 | |
Bao, 2023 [35] | SVM | - | - | - | 0.75 |
Decision Tree Classifier | - | - | - | 0.75 | |
RF | - | - | - | ||
GBM | - | - | - | 0.85 | |
MLP | - | - | - | - | |
XGBoost | - | - | - | 0.84 | |
Light Gradients Boosting | - | - | - | 0.85 | |
Vellido, 2018 [42] | LR-FA | - | - | 0.65 | 0.78 |
LR | - | - | 0.64 | 0.75 | |
APACHE II | - | - | 0.82 | 0.7 | |
RVM | - | - | 0.67 | 0.86 | |
SVM-Quotient | - | - | 0.7 | 0.89 | |
SVM-Fisher | - | - | 0.68 | 0.76 | |
SVM-EXP | - | - | 0.7 | 0.75 | |
SVM-INV | - | - | 0.7 | 0.62 | |
SVM-CENT | - | - | 0.7 | 0.75 | |
SVM-GAUSS | - | - | 0.65 | 0.83 | |
SVM-LIN | - | - | 0.62 | 0.62 | |
SVM-POLY | - | - | 0.71 | 0.69 | |
Wernly, 2021 [22] | LSTM (in eICU and MIMIC cohorts) | - | 0.60 0.43 | - | 0.88 0.85 |
LR (in eICU and MIMIC cohorts) | - | 0.48 0.35 | - | 0.82 0.81 | |
SOFA score | - | 0.23 0.24 | - | 0.72 0.76 | |
Li, 2023 [36] | LR | 0.822 | 0.572 | 0.608 | 0.73 |
SVM | 0.826 | 0.556 | 0.562 | 0.68 | |
KNN | 0.793 | 0.429 | 0.367 | 0.601 | |
Decision tree | 0.737 | 0.425 | 0.378 | 0.585 | |
RF | 0.825 | 0.622 | 0.739 | 0.778 | |
XGBoost | 0.832 | 0.66 | 0.793 | 0.794 | |
SOFA score | - | - | - | 0.701 | |
SAPS II | - | - | - | 0.706 | |
Taneja, 2021 [43] | NR | - | - | - | |
van Doorn, 2021 [11] | XGBoost | 0.800 (in subset comparing with physicians, abbMEDS, mREMS, and SOFA) | 0.387 (in subset comparing with physicians, abbMEDS, mREMS, and SOFA) | 0.923 (in subset comparing with physicians, abbMEDS, mREMS, and SOFA) | 0.852 (in subset comparing with physicians, abbMEDS, mREMS, and SOFA) |
LR | 0.826 | - | - | 0.633 | |
RF | 0.868 | - | - | 0.658 | |
MLP | 0.842 | - | - | 0.723 | |
Acute internal medicine physicians | 0.738 | 0.295 | 0.538 | 0.735 | |
abbMEDS | 0.700 | 0.226 | 0.615 | 0.631 | |
mREMS | 0.640 | 0.205 | 0.769 | 0.63 | |
SOFA score | 0.740 | 0.303 | 0.721 | 0.752 | |
Lemanska-Perek, 2022 [37] | RF | 0.79 | 0.76 | 0.92 | 0.85 |
LR | - | - | - | 0.81 | |
GBM | - | - | - | 0.78 | |
Gultepe, 2014 [38] | SVM | 0.728 | - | 0.949 | 0.726 |
Kong, 2020 [12] | LASSO LR | - | - | 0.744 | 0.829 |
RF | - | - | 0.765 | 0.829 | |
GBM | - | - | 0.771 | 0.845 | |
LR | - | - | 0.76 | 0.833 | |
Li, 2021 [39] | GBDT | 0.954 | 0.948 | 0.917 | 0.992 |
LR | 0.821 | 0.723 | 0.776 | 0.876 | |
KNN | 0.819 | 0.806 | 0.624 | 0.877 | |
RF | 0.938 | 0.931 | 0.885 | 0.98 | |
SVM | 0.86 | 0.828 | 0.749 | 0.898 | |
Zhou, 2023 [40] | CatBoost | Internal validation: 0.75 | Internal validation: 0.44 | Internal validation: 0.75 | Internal validation: 0.83, External validation: 0.754 |
GBDT | Internal validation: 0.71 | Internal validation: 0.40 | Internal validation: 0.79 | Internal validation: 0.82, External validation: 0.624 | |
LightGBM | Internal validation: 0.74 | Internal validation: 0.43 | Internal validation: 0.75 | Internal validation: 0.82, External validation: 0.612 | |
AdaBoost | Internal validation: 0.79 | Internal validation: 0.51 | Internal validation: 0.65 | Internal validation: 0.82, External validation: 0.595 | |
RF | Internal validation: 0.78 | Internal validation: 0.48 | Internal validation: 0.66 | Internal validation: 0.82, External validation: 0.631 | |
XGBoost | Internal validation: 0.77 | Internal validation: 0.46 | Internal validation: 0.68 | Internal validation: 0.81, External validation: 0.574 | |
KNN | Internal validation: 0.72 | Internal validation: 0.41 | Internal validation: 0.73 | Internal validation: 0.80, External validation: 0.631 | |
MLP | Internal validation: 0.73 | Internal validation: 0.41 | Internal validation: 0.70 | Internal validation: 0.79, External validation: 0.632 | |
LR | Internal validation: 0.73 | Internal validation: 0.41 | Internal validation: 0.71 | Internal validation: 0.79, External validation: 0.709 | |
Naïve Bayes | Internal validation: 0.68 | Internal validation: 0.37 | Internal validation: 0.74 | Internal validation: 0.76, External validation: 0.602 | |
SVM | Internal validation: 0.74 | Internal validation: 0.43 | Internal validation: 0.69 | Internal validation: 0.76, External validation: 0.679 | |
SOFA score | - | - | - | Internal validation: 0.715 | |
Zhang, 2017 [15] | LASSO score | - | - | - | 0.772 |
SAPS II | - | - | - | 0.741 | |
APS III | - | - | - | 0.737 | |
LODS | - | - | - | 0.707 | |
SOFA score | - | - | - | 0.687 | |
Zhang, 2024 [41] | XGBoost | 0.846 | 0.872 | 0.95 | 0.771 |
SOFA score | 0.844 | 0.854 | 0.91 | 0.702 | |
LR | 0.836 | 0.838 | 0.884 | 0.703 | |
RF | 0.832 | 0.845 | 0.853 | 0.677 | |
KNN | 0.786 | 0.793 | 0.818 | 0.617 | |
Naïve Bayes | 0.828 | 0.834 | 0.867 | 0.69 | |
SVM | 0.83 | 0.825 | 0.858 | 0.658 | |
Decision tree | 0.79 | 0.83 | 0.867 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mușat, F.; Păduraru, D.N.; Bolocan, A.; Palcău, C.A.; Copăceanu, A.-M.; Ion, D.; Jinga, V.; Andronic, O. Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests—A Systematic Review. Biomedicines 2024, 12, 2892. https://doi.org/10.3390/biomedicines12122892
Mușat F, Păduraru DN, Bolocan A, Palcău CA, Copăceanu A-M, Ion D, Jinga V, Andronic O. Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests—A Systematic Review. Biomedicines. 2024; 12(12):2892. https://doi.org/10.3390/biomedicines12122892
Chicago/Turabian StyleMușat, Florentina, Dan Nicolae Păduraru, Alexandra Bolocan, Cosmin Alexandru Palcău, Andreea-Maria Copăceanu, Daniel Ion, Viorel Jinga, and Octavian Andronic. 2024. "Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests—A Systematic Review" Biomedicines 12, no. 12: 2892. https://doi.org/10.3390/biomedicines12122892
APA StyleMușat, F., Păduraru, D. N., Bolocan, A., Palcău, C. A., Copăceanu, A.-M., Ion, D., Jinga, V., & Andronic, O. (2024). Machine Learning Models in Sepsis Outcome Prediction for ICU Patients: Integrating Routine Laboratory Tests—A Systematic Review. Biomedicines, 12(12), 2892. https://doi.org/10.3390/biomedicines12122892