Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Processing
2.3. Flow Cytometry
2.4. Multiplex Analysis of Cardiovascular Biomarkers
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Biochemical Assays
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Metabolic Parameters
3.3. Monocytes Subsets
3.4. Expression of Activation Markers on Monocytes Subsets
3.5. Expression of Tie2 on Monocyte Subsets in CAD Patients
3.6. Circulating Endothelial and Endothelial Progenitor Cells
3.7. Biomarkers of Inflammation and Endothelial Dysfunction
3.8. Association of CECs with Monocyte Subsets
3.9. Factors Influencing the Severity of Atherosclerosis in CAD and CAD+T2DM Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. ESC Scientific Document Group. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD). Evidence-Based European Recommendations for the Dietary Management of Diabetes. Diabetologia 2023, 66, 965–998. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Ye, J.; Li, L.; Wang, M.; Ma, Q.; Tian, Y.; Zhang, Q.; Liu, J.; Li, B.; Zhang, B.; Liu, H.; et al. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front. Immunol. 2022, 13, 900254. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Howard, C.P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T. Effects of Interleukin-1β Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen: A Phase IIb Randomized, Placebo-Controlled Trial. Circulation 2012, 126, 2739–2748. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Mack, C.D.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Nature versus Number: Monocytes in Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 9119. [Google Scholar] [CrossRef]
- Reijrink, M.; van Ark, J.; Lexis, C.P.H.; Visser, L.M.; Lodewijk, M.E.; van der Horst, I.C.C.; Zeebregts, C.J.; van Goor, H.; de Jager, S.C.A.; Pasterkamp, G.; et al. Increased Frequency of Proangiogenic Tunica Intima Endothelial Kinase 2 (Tie2) Expressing Monocytes in Individuals with Type 2 Diabetes Mellitus. Cardiovasc. Diabetol. 2022, 21, 72. [Google Scholar] [CrossRef]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of Monocytes and Dendritic Cells in Blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef]
- Oh, E.S.; Na, M.; Rogers, C.J. The Association Between Monocyte Subsets and Cardiometabolic Disorders/Cardiovascular Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 640124. [Google Scholar] [CrossRef]
- Ngcobo, S.R.; Nkambule, B.B.; Nyambuya, T.M.; Mokgalaboni, K.; Ntsethe, A.; Mxinwa, V.; Ziqubu, K.; Ntamo, Y.; Nyawo, T.A.; Dludla, P.V. Activated Monocytes as a Therapeutic Target to Attenuate Vascular Inflammation and Lower Cardiovascular Disease-Risk in Patients with Type 2 Diabetes: A Systematic Review of Preclinical and Clinical Studies. Biomed. Pharmacother. 2022, 146, 112579. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, G.E.; Iruela-Arispe, M.L. The Many Flavors of Monocyte/Macrophage-Endothelial Cell Interactions. Curr. Opin. Hematol. 2020, 27, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, T.; Liu, J.; Chen, X.; Zhang, L.; Pi, J.; Sun, H.; Li, L.; Bauer, R.; Wang, H.; Yu, Z.; et al. Endothelial Foxp1 Suppresses Atherosclerosis via Modulation of Nlrp3 Inflammasome Activation. Circ. Res. 2019, 125, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Mussbacher, M.; Schossleitner, K.; Kral-Pointner, J.B.; Salzmann, M.; Schrammel, A.; Schmid, J.A. More than Just a Monolayer: The Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr. Atheroscler. Rep. 2022, 24, 483–492. [Google Scholar] [CrossRef]
- Varga, J.; Lafyatis, R. Etiology and Pathogenesis of Systemic Sclerosis. In Rheumatology, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 2, pp. 1177–1189. [Google Scholar]
- Fabbri-Arrigoni, F.I.; Clarke, L.; Wang, G.; Charakida, M.; Ellins, E.; Halliday, N.; Brogan, P.A.; Deanfield, J.E.; Halcox, J.P.; Klein, N. Levels of circulating endothelial cells and Colony-Forming Units Are Influenced by Age and Dyslipidemia. Pediatr. Res. 2012, 72, 299–304. [Google Scholar] [CrossRef]
- Lombardo, M.F.; Iacopino, P.; Cuzzola, M.; Spiniello, E.; Garreffa, C.; Ferrelli, F.; Coppola, A.; Saccardi, R.; Piaggesi, A.; Piro, R.; et al. Type 2 Diabetes Mellitus Impairs the Maturation of Endothelial Progenitor Cells and Increases the Number of Circulating Endothelial Cells in Peripheral Blood. Cytometry A 2012, 81, 856–864. [Google Scholar] [CrossRef]
- Radecke, C.E.; Warrick, A.E.; Singh, G.D.; Rogers, J.H.; Simon, S.I.; Armstrong, E.J. Coronary Artery Endothelial Cells and Microparticles Increase Expression of VCAM-1 in Myocardial Infarction. Thromb. Haemost. 2015, 113, 605–616. [Google Scholar] [CrossRef]
- Gensini, G.G. A More Meaningful Scoring System for Determining the Severity of Coronary Heart Disease. Am. J. Cardiol. 1983, 51, 606. [Google Scholar] [CrossRef]
- Jin, J.L.; Cao, Y.X.; Wu, L.G.; You, X.D.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Gao, Y.; Dong, Q.T.; Zhang, H.W.; et al. Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. J. Thorac. Dis. 2018, 10, 6137–6146. [Google Scholar] [CrossRef]
- Gren, S.T.; Rasmussen, T.B.; Janciauskiene, S.; Håkansson, K.; Gerwien, J.G.; Grip, O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE 2015, 10, e0144351. [Google Scholar] [CrossRef]
- Veenhuis, R.T.; Williams, D.W.; Shirk, E.N.; Abreu, C.M.; Ferreira, E.A.; Coughlin, J.M.; Brown, T.T.; Maki, P.M.; Anastos, K.; Berman, J.W.; et al. Higher Circulating Intermediate Monocytes Are Associated with Cognitive Function in Women with HIV. JCI Insight 2021, 6, e146215. [Google Scholar] [CrossRef]
- Gupta, R.M.; Lee-Kim, V.S.; Libby, P. The March of Monocytes in Atherosclerosis: One Cell at a Time. Circ. Res. 2020, 126, 1324–1326. [Google Scholar] [CrossRef]
- Eligini, S.; Cosentino, N.; Fiorelli, S.; Fabbiocchi, F.; Niccoli, G.; Refaat, H.; Camera, M.; Calligaris, G.; De Martini, S.; Bonomi, A.; et al. Biological Profile of Monocyte-Derived Macrophages in Coronary Heart Disease Patients: Implications for Plaque Morphology. Sci. Rep. 2019, 9, 8680. [Google Scholar] [CrossRef]
- Shirai, T.; Nazarewicz, R.R.; Wallis, B.B.; Yanes, R.E.; Watanabe, R.; Hilhorst, M.; Tian, L.; Harrison, D.G.; Giacomini, J.C.; Assimes, T.L.; et al. The Glycolytic Enzyme PKM2 Bridges Metabolic and Inflammatory Dysfunction in Coronary Artery Disease. J. Exp. Med. 2016, 213, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Han, Y.; Xu, D.; Zhu, G.; Singh, S.; Chen, L.; Zhu, M.; Chen, W.; Xu, Y.; Li, X. Comparison of Circulating Dendritic Cell and Monocyte Subsets at Different Stages of Atherosclerosis: Insights from Optical Coherence Tomography. BMC Cardiovasc. Disord. 2017, 17, 270. [Google Scholar] [CrossRef] [PubMed]
- SahBandar, I.N.; Ndhlovu, L.C.; Saiki, K.; Kohorn, L.B.; Peterson, M.M.; D’Antoni, M.L.; Shiramizu, B.; Shikuma, C.M.; Chow, D.C. Relationship between Circulating Inflammatory Monocytes and Cardiovascular Disease Measures of Carotid Intimal Thickness. J. Atheroscler. Thromb. 2020, 27, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Kastl, S.P.; Hofbauer, S.L.; Wonnerth, A.; Goliasch, G.; Ozsvar-Kozma, M.; Katsaros, K.M.; Maurer, G.; Huber, K.; Dostal, E.; et al. Monocyte Subset Distribution in Patients with Stable Atherosclerosis and Elevated Levels of Lipoprotein(a). J. Clin. Lipidol. 2015, 9, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Imanishi, T.; Taruya, A.; Aoki, H.; Masuno, T.; Shiono, Y.; Komukai, K.; Tanimoto, T.; Kitabata, H.; Akasaka, T. Circulating CD14 + CD16 + Monocyte Subsets as Biomarkers of the Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Circ. J. 2012, 76, 2412–2418. [Google Scholar] [CrossRef]
- De Palma, M.; Naldini, L. Tie2-expressing Monocytes (TEMs): Novel Targets and Vehicles of Anticancer Therapy? Biochim. Biophys. Acta. 2009, 1796, 5–10. [Google Scholar] [CrossRef]
- Venneri, M.A.; Barbagallo, F.; Fiore, D.; De Gaetano, R.; Giannetta, E.; Sbardella, E.; Pozza, C.; Campolo, F.; Naro, F.; Lenzi, A.; et al. PDE5 Inhibition Stimulates Tie2-Expressing Monocytes and Angiopoietin-1 Restoring Angiogenic Homeostasis in Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 2623–2636. [Google Scholar] [CrossRef]
- Patel, A.S.; Smith, A.; Nucera, S.; Biziato, D.; Saha, P.; Attia, R.Q.; Humphries, J.; Mattock, K.; Grover, S.P.; Lyons, O.T.; et al. TIE2-Expressing Monocytes/Macrophages Regulate Revascularization of the Ischemic Limb. EMBO Mol. Med. 2013, 5, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Kanter, J.E.; Hsu, C.C.; Bornfeldt, K.E. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front. Cardiovasc. Med. 2020, 7, 10. [Google Scholar] [CrossRef]
- Schubert, S.Y.; Benarroch, A.; Monter-Solans, J.; Edelman, E.R. Monocyte Activation State Regulates Monocyte-Induced Endothelial Proliferation through Met Signaling. Blood 2010, 115, 3407–3412. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schubert, S.Y.; Benarroch, A.; Monter-Solans, J.; Edelman, E.R. Primary Monocytes Regulate Endothelial Cell Survival through Secretion of Angiopoietin-1 and Activation of Endothelial Tie2. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial Function and Dysfunction: Testing and Clinical Relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, K.; Boon, R.A. Endothelial Cell Metabolism in Atherosclerosis. Front. Cell Dev. Biol. 2018, 6, 82. [Google Scholar] [CrossRef]
- Botts, S.R.; Fish, J.E.; Howe, K.L. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights into Pathogenesis and Treatment. Front. Pharmacol. 2021, 12, 787541. [Google Scholar] [CrossRef] [PubMed]
- Njock, M.-S.; Cheng, H.S.; Dang, L.T.; Nazari-Jahantigh, M.; Lau, A.C.; Boudreau, E.; Roufaiel, M.; Cybulsky, M.I.; Schober, A.; Fish, J.E. Endothelial Cells Suppress Monocyte Activation through Secretion of Extracellular Vesicles Containing Antiinflammatory microRNAs. Blood 2015, 125, 3202–3212. [Google Scholar] [CrossRef]
- He, S.; Wu, C.; Xiao, J.; Li, D.; Sun, Z.; Li, M. Endothelial Extracellular Vesicles Modulate the Macrophage Phenotype: Potential Implications in Atherosclerosis. Scand. J. Immunol. 2018, 87, e12648. [Google Scholar] [CrossRef]
- Aharon, A.; Tamari, T.; Brenner, B. Monocyte-derived Microparticles and Exosomes Induce Procoagulant and Apoptotic Effects on Endothelial Cells. Thromb. Haemost. 2008, 100, 878–885. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Wang, X.; Zheng, J.; Peng, L.; Zhou, Y.; Song, Y.; Lu, Z. Extracellular-vesicle Containing miRNA-503-5p Released by Macrophages Contributes to Atherosclerosis. Aging 2021, 13, 12239–12257. [Google Scholar] [CrossRef]
- Chen, P.Y.; Qin, L.; Li, G.; Wang, Z.; Dahlman, J.E.; Malagon-Lopez, J.; Gujja, S.; Cilfone, N.A.; Kauffman, K.J.; Sun, L.; et al. Endothelial TGF-β Signalling Drives Vascular Inflammation and Atherosclerosis. Nat. Metab. 2019, 1, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Hagensen, M.K.; Shim, J.; Thim, T.; Falk, E.; Bentzon, J.F. Circulating Endothelial Progenitor Cells Do Not Contribute to Plaque Endothelium in Murine Atherosclerosis. Circulation 2010, 121, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, F.; Zimarino, M.; De Luca, G.; Viceconte, N.; Tanzilli, G.; De Caterina, R. Endothelial Progenitor Cells in Coronary Artery Disease: From Bench to Bedside. Stem Cells Transl. Med. 2022, 11, 451–460. [Google Scholar] [CrossRef]
- Zhang, J. Biomarkers of Endothelial Activation and Dysfunction in Cardiovascular Diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, L.; Yu, X.H.; Hu, M.; Zhang, Y.K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan—The New Endothelial Activation Marker Independently Associated with Soluble Endothelial Adhesion Molecules in Uraemic Patients with Cardiovascular Disease. Clin. Biochem. 2015, 48, 425–430. [Google Scholar] [CrossRef]
- Zhao, T.; Kecheng, Y.; Zhao, X.; Hu, X.; Zhu, J.; Wang, Y.; Ni, J. The Higher Serum Endocan Levels May Be a Risk Factor for the Onset of Cardiovascular Disease: A Meta-Analysis. Medicine 2018, 97, e13407. [Google Scholar] [CrossRef] [PubMed]
- Arman, Y.; Akpinar, T.S.; Kose, M.; Emet, S.; Yuruyen, G.; Akarsu, M.; Ozcan, M.; Yegit, O.; Cakmak, R.; Altun, O.; et al. Effect of Glycemic Regulation on Endocan Levels in Patients with Diabetes: A Preliminary Study. Angiology 2016, 67, 239–244. [Google Scholar] [CrossRef]
- Tunçez, A.; Altunkeser, B.B.; Öztürk, B.; Ateş, M.S.; Tezcan, H.; Aydoğan, C.; Kırık, E.C.; Yalçın, U.; Aygül, N.; Demir, K.; et al. Comparative Effects of Atorvastatin 80 mg and Rosuvastatin 40 mg on the Levels of Serum Endocan, Chemerin, and Galectin-3 in Patients with Acute Myocardial Infarction. Anatol. J. Cardiol. 2019, 22, 240–249. [Google Scholar] [CrossRef]
- Thum, T.; Hoeber, S.; Froese, S.; Klink, I.; Stichtenoth, D.O.; Galuppo, P.; Jakob, M.; Tsikas, D.; Anker, S.D.; Poole-Wilson, P.A.; et al. Age-Dependent Impairment of Endothelial Progenitor Cells Is Corrected by Growth-Hormone-Mediated Increase of Insulin-Like Growth-Factor-1. Circ. Res. 2007, 100, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.T.; Mo, L.H.; Wu, R.; Liu, J.Q.; Zhang, H.P.; Liu, Z.; Liu, Z.; Yang, P.C. Insulin-Like Growth Factor-1 Endues Monocytes with Immune Suppressive Ability to Inhibit Inflammation in the Intestine. Sci. Rep. 2015, 5, 7735. [Google Scholar] [CrossRef]
- Jin, R.; Hao, J.; Yi, Y.; Sauter, E.; Li, B. Regulation of Macrophage Functions by FABP-Mediated Inflammatory and Metabolic Pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158964. [Google Scholar] [CrossRef]
- Kobayashi, S.; Phung, H.T.; Tayama, S.; Kagawa, Y.; Miyazaki, H.; Yamamoto, Y.; Maruyama, T.; Ishii, N.; Owada, Y. Fatty Acid-Binding Protein 3 Regulates Differentiation of IgM-Producing Plasma Cells. FEBS J. 2021, 288, 1130–1141. [Google Scholar] [CrossRef]
- Rolph, M.S.; Young, T.R.; Shum, B.O.; Gorgun, C.Z.; Schmitz-Peiffer, C.; Ramshaw, I.A.; Hotamisligil, G.S.; Mackay, C.R. Regulation of Dendritic Cell Function and T Cell Priming by the Fatty Acid-Binding Protein AP2. J. Immunology 2006, 177, 7794–7801. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Bu, S.; Nikfarjam, S.; Rasheed, B.; Michels, D.C.R.; Singh, A.; Singh, S.; Marszal, C.; McGuire, J.J.; Feng, Q.; et al. Loss of Fatty Acid Binding Protein 3 Ameliorates Lipopolysaccharide-Induced Inflammation and Endothelial Dysfunction. J. Biol. Chem. 2023, 299, 102921. [Google Scholar] [CrossRef]
- Tan, L.; Lu, J.; Liu, L.; Li, L. Fatty acid binding protein 3 Deficiency Limits Atherosclerosis Development via Macrophage Foam Cell Formation Inhibition. Exp. Cell Res. 2021, 407, 112768. [Google Scholar] [CrossRef] [PubMed]
- Rundblad, A.; Sandoval, V.; Holven, K.B.; Ordovás, J.M.; Ulven, S.M. Omega-3 Fatty Acids and Individual Variability in Plasma Triglyceride Response: A Mini-Review. Redox Biol. 2023, 63, 102730. [Google Scholar] [CrossRef]
- Bekkering, S.; Stiekema, L.C.A.; Bernelot Moens, S.; Verweij, S.L.; Novakovic, B.; Prange, K.; Versloot, M.; Roeters van Lennep, J.E.; Stunnenberg, H.; de Winther, M.; et al. Treatment with Statins Does Not Revert Trained Immunity in Patients with Familial Hypercholesterolemia. Cell Metab. 2019, 30, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Maga, P.; Mikolajczyk, T.P.; Partyka, L.; Siedlinski, M.; Maga, M.; Krzanowski, M.; Malinowski, K.; Luc, K.; Nizankowski, R.; Bhatt, D.L.; et al. Involvement of CD8+ T Cell Subsets in Early Response to Vascular Injury in Patients with Peripheral Artery Disease in vivo. Clin. Immunol. 2018, 194, 26–33. [Google Scholar] [CrossRef]
Parameters | Group 1: Patients with CAD (n = 40) | Group 2: Patients with CAD+T2DM (n = 22) | p |
---|---|---|---|
Gender (m/f) | 28/12 | 8/14 | p = 0.015 |
Age, years | 64.0 (57.5; 66.0) | 65.5 (62.0; 68.0) | p = 0.067 |
History of myocardial infarction, n (%) | 12 (30.8) | 10 (47.6) | p = 0.272 |
Arterial hypertension, n (%) | 37 (94.8) | 22 (100) | p = 0.546 |
Duration of diabetes, years | - | 10.0 (3.0; 12.0) | - |
Duration of coronary artery disease, years | 2.5 (1.0; 8.0) | 5.0 (3.0; 9.0) | p = 0.075 |
Systolic blood pressure, mm Hg | 124.0 (116.0; 135.0) | 134.5 (115.0; 140.0) | p = 0.229 |
Diastolic blood pressure, mm Hg | 74.0 (65.9; 80.0) | 70.0 (65.0; 78.0) | p = 0.196 |
Smoking, n (%) | 18 (46.2) | 4 (18.2) | p = 0.052 |
Body Mass Index, kg/m2 | 29.0 (26.2; 31.9) | 31.2 (28.4; 34.6) | p = 0.051 |
Waist circumference, cm | 100.0 (96.0; 111.0) | 106.0 (99.0; 115.0) | p = 0.195 |
Stenosis > 50%, n (%) | 31 (77.5) | 18 (81.8) | p = 0.756 |
Stenosis > 70%, n (%) | 25 (62.5) | 17 (77.3) | p = 0.270 |
Gensini Score, points | 32.8 (9.0; 59.5) | 26.0 (15.0; 53.0) | p = 0.845 |
Oral hypoglycemic drugs, n (%) | 2 (5.1) | 20 (90.9) | p < 0.001 |
Insulin, n (%) | 0 | 6 (27.3) | p = 0.001 |
RAAS inhibitors, n (%) | 31 (79.5) | 20 (95.2) | p = 0.300 |
Calcium channels antagonists, n (%) | 21 (53.9) | 12 (57.2) | p = 0.999 |
Beta-blockers, n (%) | 30 (76.9) | 17 (81.0) | p = 0.999 |
Diuretics, n (%) | 12 (30.8) | 9 (42.3) | p = 0.413 |
Statins, n (%) | 34 (85.0) | 19 (90.5) | p = 0.999 |
Parameters | Group 1: Patients with CAD (n = 40) | Group 2: Patients with CAD+T2DM (n = 22) | p |
---|---|---|---|
Fasting glucose, mM | 5.3 (5.0; 5.8) | 7.1 (6.0; 7.9) | p < 0.001 |
Postprandial glucose, mM | 6.0 (5.4; 7.0) | 9.3 (8.5; 14.1) | p < 0.001 |
Glycated hemoglobin, % | 6.0 (5.7; 6.5) | 7.4 (6.5; 8.4) | p < 0.001 |
Fasting insulin, µIU/mL | 5.7 (2.4; 8.8) | 4.3 (3.3; 7.7) | p = 0.901 |
Fasting C-peptide, ng/mL | 2.8 (2.1; 3.3) | 2.6 (2.0; 3.2) | p = 0.625 |
Total cholesterol, mM | 4.1 (3.3; 5.2) | 3.6 (2.9; 5.0) | p = 0.407 |
Triglycerides, mM | 1.4 (1.1; 2.1) | 1.8 (1.2; 2.2) | p = 0.391 |
HDL cholesterol, mM | 1.1 (0.9; 1.2) | 1.0 (0.9; 1.3) | p = 0.972 |
LDL cholesterol, mM | 2.4 (1.8; 3.1) | 2.0 (1.3; 2.9) | p = 0.224 |
TyG | 3.8 (3.6; 4.0) | 4.0 (3.9; 4.1) | p = 0.010 |
PCSK9, ng/mL | 257.9 (199.3; 274.7) | 176.0 (150.9; 235.1) | p = 0.021 |
Parameters | Group 1: Patients with CAD (n = 39) | Group 2: Patients with CAD+T2DM (n = 21) | p |
---|---|---|---|
CD14++CD16–, % | 85.5 (79.5; 90.7) | 85.8 (82.4; 88.2) | p = 0.735 |
CD14++CD16+, % | 5.5 (3.5; 7.5) | 6.4 (3.8; 7.9) | p = 0.498 |
CD14+CD16++, % | 8.5 (5.2; 13.1) | 8.6 (5.2; 9.2) | p = 0.432 |
CD14++CD16–, ×109/L | 46.9 (34.9; 56.5) | 48.6 (42.1; 64.0) | p = 0.177 |
CD14++CD16+, ×109/L | 2.9 (1.9; 4.9) | 3.7 (2.4; 5.4) | p = 0.149 |
CD14+CD16++, ×109/L | 4.3 (2.3; 5.8) | 4.7 (3.3; 6.4) | p = 0.484 |
Parameters | Group 1: Patients with CAD (n = 27) | Group 2: Patients with CAD+T2DM (n = 13) | p |
---|---|---|---|
CD14++CD16–HLA-DR+, % | 89.7 (66.1; 93.8) | 75.2 (64.0; 86.7) | p = 0.458 |
CD14++CD16+HLA-DR, % | 97.8 (98.3; 100) | 95.0 (92.2; 100) | p = 0.127 |
CD14+CD16++HLA-DR+, % | 99.6 (98.3; 100) | 100 (99.2; 100) | p = 0.331 |
Parameters | Group 1: Patients with CAD (n = 18) | Group 2: Patients with CAD+T2DM (n = 5) | p |
---|---|---|---|
Endothelial progenitor cells, % of PBMC | 0.004 (0.002; 0.010) | 0.003 (0.001; 0.008) | p = 0.745 |
Endothelial progenitor cells, ×106/L | 0.11 (0.04; 0.21) | 0.06 (0.03; 0.24) | p = 0.857 |
Parameters | Group 1: Patients with CAD (n = 37) | Group 2: Patients with CAD+T2DM (n = 22) | p |
---|---|---|---|
C-reactive protein, mg/mL | 3.42 (2.11; 8.35) | 4.15 (1.29; 6.84) | p = 0.862 |
Endocan-1, pg/mL | 1902.0 (1463.0; 2596.0) | 1985.0 (1887.0; 2546.0) | p = 0.281 |
FABP-3, pg/mL | 2944.0 (2087.0; 3598.0) | 3431.0 (3060.0; 4284) | p = 0.081 |
FABP-4, ng/mL | 20.40 (9.01; 32.94) | 20.61 (15.61; 59.49) | p = 0.328 |
PlGF, pg/mL | 4.05 (1.28; 8.80) | 5.89 (2.62; 7.58) | p = 0.603 |
IL-1β, pg/mL | 0.86 (0.53; 1.22) | 0.75 (0.51; 0.99) | p = 0.254 |
TGF-β, ng/mL | 30.38 (25.27; 36.60) | 33.68 (28.99; 42.38) | p = 0.246 |
IGF, μg/mL | 67.74 (53.76; 104.07) | 76.93 (63.10; 101.85) | p = 0.729 |
Endothelin, fmol/mL | 0.37 (0.33; 0.66) | 0.43 (0.35; 0.83) | p = 0.320 |
Parameters | Estimate | p |
---|---|---|
Intercept | 26.63 | 0.030 |
CD14++CD16+ | −1.337 | 0.047 |
TGF-β | −0.639 | 0.041 |
Gensini Score | ||||
---|---|---|---|---|
Group 1: Patients with CAD | Group 2: Patients with CAD+T2DM | |||
Parameters | rs | p | rs | p |
Fasting glucose | 0.338 | 0.035 | −0.232 | 0.298 |
HDL Cholesterol | −0.394 | 0.013 | −0.305 | 0.168 |
Endocan-1 | 0.529 | 0.010 | 0.489 | 0.089 |
FABP-3 | 0.440 | 0.036 | −0.552 | 0.049 |
PlGF | 0.517 | 0.011 | 0.061 | 0.844 |
IGF | −0.416 | 0.012 | −0.065 | 0.786 |
CD14++CD16+, % | −0.199 | 0.222 | 0.632 | 0.002 |
CD14++CD16+, ×109/L | −0.183 | 0.272 | 0.689 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kologrivova, I.V.; Suslova, T.E.; Koshelskaya, O.A.; Kravchenko, E.S.; Kharitonova, O.A.; Romanova, E.A.; Vyrostkova, A.I.; Boshchenko, A.A. Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. Biomedicines 2023, 11, 2911. https://doi.org/10.3390/biomedicines11112911
Kologrivova IV, Suslova TE, Koshelskaya OA, Kravchenko ES, Kharitonova OA, Romanova EA, Vyrostkova AI, Boshchenko AA. Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. Biomedicines. 2023; 11(11):2911. https://doi.org/10.3390/biomedicines11112911
Chicago/Turabian StyleKologrivova, Irina V., Tatiana E. Suslova, Olga A. Koshelskaya, Elena S. Kravchenko, Olga A. Kharitonova, Ekaterina A. Romanova, Alexandra I. Vyrostkova, and Alla A. Boshchenko. 2023. "Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus" Biomedicines 11, no. 11: 2911. https://doi.org/10.3390/biomedicines11112911
APA StyleKologrivova, I. V., Suslova, T. E., Koshelskaya, O. A., Kravchenko, E. S., Kharitonova, O. A., Romanova, E. A., Vyrostkova, A. I., & Boshchenko, A. A. (2023). Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. Biomedicines, 11(11), 2911. https://doi.org/10.3390/biomedicines11112911