Genetic Attenuation of Paraoxonase 1 Activity Induces Proatherogenic Changes in Plasma Proteomes of Mice and Humans
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Mice and Diet
2.3. Blood Collection
2.4. Genotyping
2.5. PON1 Activity Assays
2.6. Label-Free Mass Spectrometry
2.7. Data Analysis
2.8. Statistics
2.9. Bioinformatics Analysis
3. Results
3.1. Plasma Proteins Affected by Pon1 Genotype in Mice
3.2. Plasma Proteins Affected by PON1-Q192R Polymorphism in Humans
3.3. Overlap between Proteins Affected by PON1 Genotype in Humans and Mice
3.4. Bioinformatics Analysis
3.5. Human PON1-Q192R Polymorphism
3.6. Pon1−/− Mouse Genotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar]
- Mackness, M.; Mackness, B. Paraoxonase 1 and atherosclerosis: Is the gene or the protein more important? Free. Radic. Biol. Med. 2004, 37, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Durrington, P.N.; Mackness, B.; Mackness, M.I. Paraoxonase and Atherosclerosis. Arter. Thromb. Vasc. Biol. 2001, 21, 473480. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Jarvik, G.P.; Furlong, C.E. Functional genomic of the paraoxonase (PON1) polymorphisms: Effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu. Rev. Med. 2003, 54, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Loscalzo, J. Paraoxonase and coronary heart disease risk: Language misleads, linkage misinforms, function clarifies. Circ. Cardiovasc Genet. 2008, 1, 79–80. [Google Scholar] [CrossRef][Green Version]
- Jakubowski, H. Calcium-dependent Human Serum Homocysteine Thiolactone Hydrolase. J. Biol. Chem. 2000, 275, 3957–3962. [Google Scholar] [CrossRef]
- Jakubowski, H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol. Rev. 2019, 99, 555–604. [Google Scholar] [CrossRef]
- Borowczyk, K.; Piechocka, J.; Głowacki, R.; Dhar, I.; Midtun, Ø.; Tell, G.S.; Ueland, P.M.; Nygård, O.; Jakubowski, H. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: The WENBIT trial. J. Intern. Med. 2019, 285, 232–244. [Google Scholar] [CrossRef]
- Perla-Kajan, J.; Borowczyk, K.; Glowacki, R.; Nygard, O.; Jakubowski, H. Paraoxonase 1 Q192R genotype and activity affect homocysteine thiolactone levels in humans. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 6019–6024. [Google Scholar]
- Lacinski, M.; Skorupski, W.; Cieslinski, A.; Sokolowska, J.; Trzeciak, W.H.; Jakubowski, H. Determinants of homocysteine-thiolactonase activity of the paraoxonase-1 (PON1) protein in humans. Cell. Mol. Biol. 2004, 50, 885–893. [Google Scholar]
- Jakubowski, H.; Ambrosius, W.T.; Pratt, J. Genetic determinants of homocysteine thiolactonase activity in humans: Implications for atherosclerosis. FEBS Lett. 2001, 491, 35–39. [Google Scholar] [CrossRef]
- Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015, 567, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.M.; Gu, L.; Xia, Y.-R.; Navab, M.; Li, W.-F.; Hama, S.; Castellani, L.W.; Furlong, C.E.; Costa, L.G.; Fogelman, A.M.; et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nat. Cell Biol. 1998, 394, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.M.; Xia, Y.-R.; Wang, X.-P.; Miller, E.; Castellani, L.W.; Subbanagounder, G.; Cheroutre, H.; Faull, K.F.; Berliner, J.A.; Witztum, J.L.; et al. Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis. J. Biol. Chem. 2000, 275, 17527–17535. [Google Scholar] [CrossRef] [PubMed]
- Tward, A.; Xia, Y.-R.; Wang, X.-P.; Shi, Y.-S.; Park, C.; Castellani, L.W.; Lusis, A.J.; Shih, D.M. Decreased Atherosclerotic Lesion Formation in Human Serum Paraoxonase Transgenic Mice. Circulation 2002, 106, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, T. Relationship of Paraoxonase 1 (PON1) Gene Polymorphisms and Functional Activity with Systemic Oxidative Stress and Cardiovascular Risk. JAMA 2008, 299, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Bakker, S.J.; James, R.W.; Dullaart, R.P. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: The PREVEND study and meta-analysis of prospective population studies. Atheroscler. 2016, 245, 143–154. [Google Scholar] [CrossRef]
- Menini, T.; Gugliucci, A. Paraoxonase 1 in neurological disorders. Redox Rep. 2014, 19, 49–58. [Google Scholar] [CrossRef]
- Li, H.; Wetten, S.; Li, L.; Jean, P.L.S.; Upmanyu, R.; Surh, L.; Hosford, D.; Barnes, M.R.; Briley, J.D.; Borrie, M.; et al. Candidate Single-Nucleotide Polymorphisms from a Genomewide Association Study of Alzheimer Disease. Arch. Neurol. 2008, 65, 45–53. [Google Scholar] [CrossRef]
- Erlich, P.M.; Lunetta, K.L.; Cupples, L.A.; Abraham, C.R.; Green, R.C.; Baldwin, C.T.; Farrer, L.A. Serum paraoxonase activity is associated with variants in the PON gene cluster and risk of Alzheimer disease. Neurobiol. Aging 2012, 33, 1015.e7–1015e23. [Google Scholar] [CrossRef]
- Bednarska-Makaruk, M.; Krzywkowski, T.; Graban, A.; Lipczyńska-Łojkowska, W.; Bochyńska, A.; Rodo, M.; Wehr, H.; Ryglewicz, D.K. Original article Paraoxonase 1 (PON1) gene -108C>T and p.Q192R polymorphisms and arylesterase activity of the enzyme in patients with dementia. Folia Neuropathol. 2013, 2, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Borowczyk, K.; Shih, D.M.; Jakubowski, H. Metabolism and Neurotoxicity of Homocysteine Thiolactone in Mice: Evidence for a Protective Role of Paraoxonase 1. J. Alzheimer’s Dis. 2012, 30, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Humbert, R.; Adler, D.A.; Disteche, C.M.; Hassett, C.; Omiecinski, C.J.; Furlong, C.E. The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 1993, 3, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Perla-Kajan, J.; Jakubowski, H. Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010, 24, 931–936. [Google Scholar] [CrossRef]
- Sikora, M.; Lewandowska, I.; Marczak, Ł.; Bretes, E.; Jakubowski, H. Cystathionine β-synthase deficiency: Different changes in proteomes of thrombosis-resistant Cbs−/− mice and thrombosis-prone CBS−/− humans. Sci. Rep. 2020, 10, 10726. [Google Scholar] [CrossRef]
- Ganfornina, M.D.; Carmo, S.D.; Lora, J.M.; Torres-Schumann, S.; Vogel, M.; Allhorn, M.; Gonzalez, C.; Bastiani, M.J.; Rassart, E.; Sanchez, D. Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 2008, 7, 506–515. [Google Scholar] [CrossRef]
- Elsøe, S.; Ahnström, J.; Christoffersen, C.; Hoofnagle, A.N.; Plomgaard, P.; Heinecke, J.W.; Binder, C.J.; Björkbacka, H.; Dahlbäck, B.; Nielsen, L.B. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 2012, 221, 91–97. [Google Scholar] [CrossRef]
- Birch, N.P.; Browett, P.J.; Coughlin, P.B.; Horvath, A.J.; Van De Water, N.S.; Ockelford, P.A.; Harper, P.L.; Young, L.K. Two missense mutations identified in venous thrombosis patients impair the inhibitory function of the protein Z dependent protease inhibitor. Thromb. Haemost. 2012, 107, 854–863. [Google Scholar] [CrossRef]
- Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komáromi, I.; Katona, É. Factor XIII: A Coagulation Factor with Multiple Plasmatic and Cellular Functions. Physiol. Rev. 2011, 91, 931–972. [Google Scholar] [CrossRef]
- Pruissen, D.M.O.; Slooter, A.J.C.; Rosendaal, F.R.; Van Der Graaf, Y.; Algra, A. Coagulation factor XIII gene variation, oral contraceptives, and risk of ischemic stroke. Blood 2008, 111, 1282–1286. [Google Scholar] [CrossRef][Green Version]
- Tang, W.H.W.; Hartiala, J.; Fan, Y.; Wu, Y.; Stewart, A.F.; Erdmann, J.; Kathiresan, S.; Roberts, R.; McPherson, R.; Allayee, H.; et al. Clinical and Genetic Association of Serum Paraoxonase and Arylesterase Activities with Cardiovascular Risk. Arter. Thromb. Vasc. Biol. 2012, 32, 2803–2812. [Google Scholar] [CrossRef] [PubMed]
- Suchon, P.; Trégouët, D.-A.; Morange, P.-E. Genetics of Venous Thrombosis: Update in 2015. Thromb. Haemost. 2015, 114, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, A.J.; Flora, G.D.; Sasikumar, P.; Bye, A.P.; Sage, T.; Kriek, N.; Crescente, M.; Gibbins, J.M. RXR Ligands Negatively Regulate Thrombosis and Hemostasis. Arter. Thromb. Vasc. Biol. 2017, 37, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Suszyńska-Zajczyk, J.; Sikora, M.; Jakubowski, H. Paraoxonase 1 deficiency and hyperhomocysteinemia alter the expression of mouse kidney proteins involved in renal disease. Mol. Genet. Metab. 2014, 113, 200–206. [Google Scholar] [CrossRef] [PubMed]
Human Paraoxonase 1 | Mouse Paraoxonase 1 | ||||
---|---|---|---|---|---|
Genotype (n) | Activity a | Protein b | Genotype (n) | Activity a | Protein b |
PON1-192RR (19) | 100 | 100 | Pon1+/+ (17) | 100 | 100 |
PON1-192QR (30) | 20.6 | 63.0 | |||
PON1-192QQ (51) | 14.3 | 60.0 | Pon1−/− (8) | 0.0 | 2.0 |
Unique to Mice (n = 41) $ | Unique to Humans (n = 12) $ | Proteins Affected in Mice and Humans (n = 9) # | ||
---|---|---|---|---|
↓Afm | ↓Blvrb | ↓Ldha | ↑GPX3 | |
↓Alb | ↓Bpgm | ↓Lifr | ↓RBP4 | |
↓Aldoa | ↓Ica | ↑Mug1 | ||
Lipoprotein metabolism (n = 3): ↑ApoB, ↓ApoC1, ↑Lcat | Lipoprotein metabolism (n = 3): ↓APOA1↓, ↑APOD↑, ↑APOM↑, ↓PON1↓ | |||
Acute phase response (n = 2): ↑Ambp, ↑Hpx | Acute phase response (n = 1): ↑ITIH3, | Acute phase response (n = 2): ↑HP↓, ↑TTR↓ | ||
Blood coagulation (n = 2): ↑Hrg, ↓Itih1 | Blood coagulation (n = 3): ↓PLG, ↓SERPINA10, ↓VTN | Blood coagulation (n = 1): ↓F13B↓ | ||
Complement/coagulation (n = 7): ↑Al182371, ↑Cfh, ↑Clu, ↑F2, ↓Klkb1, ↓Mbl1; ↓Serpinc1 | Complement/coagulation (n = 2): ↑C9, ↑V2-17 (IGL) | Complement/coagulation (n = 1): ↑FETUB↓ | ||
Immune response (n =18): ↑Igh (n = 9), ↑Igj, ↑Igk (n = 6), ↑Igl (n = 2) | Immune response (n = 5): ↑CFP, ↓N/A, ↑PGLYRP2, ↑V2-6 (IGL), | Immune response (n = 1): ↓IGHG3↑ |
Analysis | Molecules in Network | Score | Focus Molecules | Top Diseases and Functions |
---|---|---|---|---|
PON1-192QQ vs. QR+RR (Figure 5A) | 15-hydroxyeicosatetraenoic acid, 7-ketocholesterol, AMBP, APOA2, ascorbic acid, ↑C9, CD68, ↑CFP, Cu2, Fe2, ↓FETUB, FOS, GHRL, HDL, IL6, Immunoglobulin, ITIH1, ↑ITIH3, ITIH4, L-phenylalanine, LCAT, LDL, lipid peroxide, MSR1, palmitoleic acid, ↑PGLYRP2, ↓PLG, PLTP, ↓PON1, PON3, Rbp, ↓RBP4, TGFB1, ↓TTR, VLDL-cholesterol | 27 | 9 | Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry |
PON1-192QQ vs. QR | 15-hydroxyeicosatetraenoic acid, APCS, ↓APOA1, Apoc1, APOF, APOL1, ↓APOM, bilirubin, ↑C9, ↑CFP, Cxcl9, Fe2, Ferritin, ↓GPX3, Growth hormone, GSTT1, ↓HBB, HBD, HBG1, HBQ1, HDL, hemoglobin, ↓HPR, Immunoglobulin, Insulin, ITIH4, LDL, ↓PON1, PON3, Rbp, ↓RBP4, SAA2, SELENOT, ↓TTR, IGHV1-69, ↑IGLV3-9 | 28 | 11 | Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry |
PON1-192QQ vs. RR | 15-hydroxyeicosatetraenoic acid, AFM, Alpha 1 antitripsin, AMBP, C1QTNF3, CCR2, CD40LG, Cd64, CD68, CXADR, ↓F13B, FCGR2C, Fe2, IFNG, IgG3 kappa, IgG3 lambda, IGHG1, ↑IGHG3, IGHG4, ITIH1, ↑ITIH3, ITIH4, LCAT, lipid peroxide, MSR1, MTRR, palmitoleic acid, ↓PON1, PON3, RAD51AP1, ↓RBP4, ↓SERPINA10, TGFB1, TNFAIP6, VLDL-cholesterol | 18 | 6 | Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry |
PON1-192QR vs. RR (Figure 5B) | ALCAM, Alpha 1 antitrypsin, APOA2, APOA4, ↑APOD, Apolipoprotein, ↑APOM, arginine, C8G, C9, CD40LG, CLCN5, DUX4, F10, FAM20C, glutathione, glycosaminoglycan, GPX1, ↑GPX3, HDL, HMOX1, LCAT, LCN, NFE2L2, NFKBIA, NRG1, POU2F1, SEMA3F, ↓SERPINA10, SERPINC1, SREBF1, sulfatides, TFRC, UBQLN1, ↓VTN | 14 | 5 | Cardiovascular Disease, Neurological Disease, Organismal Injury and Abnormalities |
Analysis | Molecules in Network | Score | Focus Molecules | Top Diseases and Functions |
---|---|---|---|---|
Pon1−/− vs. Pon1+/+Figure 6A | ↓ALB, ↑AMBP, ↓APOA1, ↑APOB, ↓Apoc1, ↑APOD, ↑APOM, ↑CFH, chymotrypsin, ↑CLU, ERK1/2, Ferritin, Fibrinogen, Growth hormone, HDL, HDL-cholesterol, hemoglobin, ↑HP, ↑HPX, ↓ITIH1, Kallikrein, ↓KLKB1, ↑LCAT, ↓Ldh (complex), LDL, LDL-cholesterol, MHC Class II (complex), Nr1h, ↓PON1, PRKAA, Pro-inflammatory Cytokine, ↓SERPINC1, Tcf 1/3/4, ↑TTR, VLDL-cholesterol | 41 | 17 | Lipid Metabolism, Molecular transport, Small Molecule Biochemistry |
Pon1−/− vs. Pon1+/+Figure 6B | ↓AFM, Akt, Ap1, ↓BLVRB, ↓BPGM, cytokine, ERK, F2, GOT, ↓HGFAC, Iga, IgG, IgG1, IgG2a, IgG2b, Igg3, Igh (family), ↑Igha, IGHG1, ↑IGHM, ↑Iglv1, Igm, IL1, Immunoglobulin, Insulin, JCHAIN, ↓LIFR, MAP2K1/2, Mapk, ↓Mbl1, NFkB (complex), P38 MAPK, PI3K (complex), STAT, Tgf beta | 26 | 12 | Humoral Immune Response, Inflammatory Response, Protein Synthesis |
Pon1−/− vs. Pon1+/+Figure 6C | ↓ALDOA, ANGPT2, CASR, CD163, EED, ↓F13B, ↑FETUB, FN1, ↑HP, ↑Hrg, ↑Igha, ↓Ighg3, ↑Ighv3-6, Igkv1-117, Igkv14-111, ↑Igkv17-127, IL4, Jnk, LDH (family), ↓LDHA, LINC01139, lipid peroxide, lysophosphatidylinositol, miR-18a-5p (and other miRNAs w/seed AAGGUGC), MSR1, Mug1/Mug2, Pkc(s), PKD1, PLAGL2, pyruvaldehyde, SBNO2, TGFB1, TLL1, trypsin, Vegf | 26 | 12 | Cell-to-Cell Signaling and Interaction, He- matological System Development and Function, Immune Cell Trafficking |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, M.; Bretes, E.; Perła-Kaján, J.; Lewandowska, I.; Marczak, Ł.; Jakubowski, H. Genetic Attenuation of Paraoxonase 1 Activity Induces Proatherogenic Changes in Plasma Proteomes of Mice and Humans. Antioxidants 2020, 9, 1198. https://doi.org/10.3390/antiox9121198
Sikora M, Bretes E, Perła-Kaján J, Lewandowska I, Marczak Ł, Jakubowski H. Genetic Attenuation of Paraoxonase 1 Activity Induces Proatherogenic Changes in Plasma Proteomes of Mice and Humans. Antioxidants. 2020; 9(12):1198. https://doi.org/10.3390/antiox9121198
Chicago/Turabian StyleSikora, Marta, Ewa Bretes, Joanna Perła-Kaján, Izabela Lewandowska, Łukasz Marczak, and Hieronim Jakubowski. 2020. "Genetic Attenuation of Paraoxonase 1 Activity Induces Proatherogenic Changes in Plasma Proteomes of Mice and Humans" Antioxidants 9, no. 12: 1198. https://doi.org/10.3390/antiox9121198
APA StyleSikora, M., Bretes, E., Perła-Kaján, J., Lewandowska, I., Marczak, Ł., & Jakubowski, H. (2020). Genetic Attenuation of Paraoxonase 1 Activity Induces Proatherogenic Changes in Plasma Proteomes of Mice and Humans. Antioxidants, 9(12), 1198. https://doi.org/10.3390/antiox9121198