Efficiency Analysis as a Tool for Revealing Best Practices and Innovations: The Case of the Sheep Meat Sector in Europe
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Model of Data Envelopment Analysis—DEA
2.2. Empirical Model of DEA
2.3. Best Observed Practices in Efficient Farms
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Theodoridis, A.; Ragkos, A.; Roustemis, D.; Arsenos, G.; Abas, Z.; Sinapis, E. Technical Indicators of Economic Performance in Dairy Sheep Farming. Animal 2014, 8, 133–140. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Silva, S.; Rodrigues, S. Advances in Sheep and Goat Meat Products Research. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Boston, MA, USA, 2019; Volume 87, pp. 305–370. [Google Scholar]
- Rodríguez-Ortega, T.; Oteros-Rozas, E.; Ripoll-Bosch, R.; Tichit, M.; Martín-López, B.; Bernués, A. Applying the ecosystem services framework to pasture-based livestock farming systems in Europe. Animal 2014, 8, 1361–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliamentary Research. Service the Future of the E’s Sheep and Goat Sector. Rachele Rossi, Members’ Research Service PE 620.242. 2018. Available online: https://www.europarl.europa.eu/RegData/etudes/ATAG/2018/620242/EPRS_ATA(2018)620242_EN.pdf (accessed on 25 October 2021).
- Eurostat. Sheep Population—Annual Data. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_lssheep&lang=en (accessed on 9 August 2021).
- European Parliamentary Research Service. The Sheep and Goat Sector in the EU Main Features, Challenges and Prospects. Rachele Rossi Members’ Research Service PE 608.663. 2017. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2017/608663/EPRS_BRI(2017)608663_EN.pdf (accessed on 25 October 2021).
- Gambelli, D.; Solfanelli, F.; Orsini, S.; Zanoli, R. Measuring the Economic Performance of Small Ruminant Farms Using Balanced Scorecard and Importance-Performance Analysis: A European Case Study. Sustainability 2021, 13, 3321. [Google Scholar] [CrossRef]
- Eurostat. EU Agricultural Production Statistics. Available online: https://ec.europa.eu/eurostat/web/agriculture/data/database (accessed on 24 March 2020).
- European Commission. Market Situation for Sheep & Goat Meats. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/sheep-meat-dashboard_en.pdf (accessed on 24 March 2020).
- Dyrmundsson, O. Sustainability of sheep and goat production in North European countries—From the Arctic to the Alps. Small Rumin. Res. 2006, 62, 151–157. [Google Scholar] [CrossRef]
- Dubeuf, J.P. Science, technology, innovation and governance for the goat sectors. Small Rumin. Res. 2014, 121, 2–6. [Google Scholar] [CrossRef]
- European Parliament. Report on the Current Situation and Future Prospects for the Sheep and Goat Sectors in the EU (2017/2117(INI)). 2018. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2018-0064_EN.pdf (accessed on 10 August 2021).
- Paraskevopoulou, C.; Theodoridis, A.; Johnson, M.; Ragkos, A.; Arguile, L.; Smith, L.; Vlachos, D.; Arsenos, G. Sustainability Assessment of Goat and Sheep Farms: A Comparison between European Countries. Sustainability 2020, 12, 3099. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Martín-Collado, D.; Rose, G.; Yáñez-Ruiz, D.R. A multi-stakeholder participatory study identifies the priorities for the sustainability of the small ruminants farming sector in Europe. Animal 2020, 15, 100131. [Google Scholar] [CrossRef]
- Mandolesi, S.; Naspetti, S.; Arsenos, G.; Caramelle-Holtz, E.; Latvala, T.; Martin-Collado, D.; Orsini, S.; Ozturk, E.; Zanoli, R. Motivations and Barriers for Sheep and Goat Meat Consumption in Europe: A Means–End Chain Study. Animals 2020, 10, 1105. [Google Scholar] [CrossRef]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Martin-Collado, D.; Rose, G.; Diaz, C.; Zaralis, K.; Yañez-Ruiz, D. Priority Innovations for European Sheep and Goat Industry Members. In Proceedings of the 8th Conference on international and Communication Technologies in Agriculture, Food and Environment (HAICTA 2017), Chania, Greece, 21–24 September 2017; Salampasis, M., Theodoridis, A., Bournaris, T., Eds.; CEUR Workshop Proceedings: Chania, Greece, 2017; pp. 652–657. [Google Scholar]
- Koopmans, T.C. Analysis of production as an efficient combination of activities. In Activity Analysis of Production and Allocation; Koopmans, T.C., Ed.; Wiley: London, UK, 1951; pp. 33–97. [Google Scholar]
- Yotopoulos, P.A.; Nugent, J.B. Economics of Development: Empirical Investigations; Harper & Row: New York, NY, USA, 1976; pp. i–xxii+478. [Google Scholar]
- Coelli, T.J.; Prasada Rao, D.S.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005; pp. i–xiv+256. [Google Scholar]
- Pérez, J.P.; Gil, J.M.; Sierra, I. Technical efficiency of meat sheep production systems in Spain. Small Rumin. Res. 2007, 69, 237–241. [Google Scholar] [CrossRef]
- Melfou, K.; Theocharopoulos, A.; Papanagiotou, E. Assessing productivity change with SFA in the sheep sector of Greece. Oper. Res. 2009, 9, 281–292. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; García, A.; Gómez-Castro, A.G.; Acero, R.; Perea, J.; Rodríguez-Estévez, V.; Aguilar, C.; Vera, R. Technical efficiency and viability of organic dairy sheep farming systems in a traditional area for sheep production in Spain. Small Rumin. Res. 2011, 100, 89–95. [Google Scholar] [CrossRef]
- Galanopoulos, K.; Abas, Z.; Laga, V.; Hatziminaoglou, I.; Boyazoglu, J. The technical efficiency of transhumance sheep and goat farms and the effect of EU subsidies: Do small farms benefit more than large farms? Small Rumin. Res. 2011, 100, 1–7. [Google Scholar] [CrossRef]
- Theodoridis, A.; Ragkos, A.; Roustemis, D.; Galanopoulos, Κ.; Abas, Ζ.; Sinapis, E. Assessing Technical Efficiency of Chios Sheep Farms with Data Envelopment Analysis. Small Rumin. Res. 2012, 107, 85–91. [Google Scholar] [CrossRef]
- Sintori, A.; Liontakis, A.; Tzouramani, I. Assessing the Environmental Efficiency of Greek Dairy Sheep Farms: GHG Emissions and Mitigation Potential. Agriculture 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, A.; Ragkos, A.; Theodoridis, A.; Skordos, D.; Parissi, Z.; Abraham, E. Evaluation of the Contribution of Pastures on the Economic Sustainability of Small Ruminant Farms in a Typical Greek Area. Agronomy 2021, 11, 63. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ozcan, Y.A. Health Care Benchmarking and Performance Evaluation. An Assessment Using Data Envelopment Analysis (DEA); International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2008; pp. i–xxvi+217. [Google Scholar]
- Coelli, T.; Lawrence, D. Performance Measurement and Regulation of Network Utilities; Edward Elgar Publishing: Cheltenham, UK, 2006; p. 400. [Google Scholar]
- Kumbhakar, S.C.; Lovell, C. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000; pp. i–x+333. [Google Scholar]
- Coelli, T.J. Recent developments in frontier modeling and efficiency measurement. Aust. J. Agric. Econ. 1995, 39, 219–245. [Google Scholar]
- Cooper, W.W.; Seiford, M.L.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Kluwer Academic Publishers: Boston, MA, USA, 2000. [Google Scholar]
- Theodoridis, A.; Ragkos, A.; Zaralis, K.; Smith, L.; Arsenos, G. Towards a Pan-european typology of sheep and goat farms: A meta-analysis. In Proceedings of the 2nd Joint Seminar of the Subnetworks on Nutrition and on Production Systems of the FAO-CIHEAM Network for Research and Development in Sheep and Goats, Innovation for Sustainability in Sheep and Goats, Vitoria-Gasteiz, Spain, 3–5 October 2017; Ruiz, R., López-Francos, A., López Marco, L., Eds.; CIHEAM (Options Méditerranéennes A): Zaragoza, Spain, 2019; pp. 65–69. [Google Scholar]
- Zhu, J. Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets; Springer: New York, NY, USA, 2009; pp. i–xvii+414. [Google Scholar]
- Cook, W.D.; Zhu, J. Modeling Performance Measurement: Applications and Implementation Issues in DEA; Springer: New York, NY, USA, 2005; pp. i-xiii+408. [Google Scholar]
- Minviel, J.J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Atzori, A.S.; Lunesu, M.F. How can nutrition models increase the production efficiency of sheep and goat operations? Anim. Front. 2019, 9, 33–44. [Google Scholar] [CrossRef]
- Lima, E.; Hopkins, T.; Gurney, E.; Shortall, O.; Lovatt, F.; Davies, P.; Williamson, G.; Kaler, J. Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales. PLoS ONE 2018, 13, e0190489. [Google Scholar] [CrossRef]
- Odintsov Vaintrub, M.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Ruiz, D.; López-Francos, A.; López Marco, L. Innovation for Sustainability in Sheep and Goats. In Proceedings of the 2nd Joint Seminar of the Subnetworks on Nutrition and on Production Systems of the FAO-CIHEAM Network for Research and Development in Sheep and Goats, Vitoria-Gasteiz, Spain, 3–5 October 2017; Ruiz, R., López-Francos, A., López Marco, L., Eds.; CIHEAM (Options Méditerranéennes): Zaragoza, Spain, 2019; pp. 1–494. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Lane, G.A.; Schreurs, N.M.; Fraser, K.; Meagher, L.P. The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep. Aust. J. Agric. Res. 2006, 56, 1331–1337. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Salami, S.A.; Guinguina, A.; Agboola, J.O.; Omede, A.A.; Agbonlahor, E.M.; Tayyab, U. In vivo and postmortem effects of feed antioxidants in livestock: A review of the implications on authorization of antioxidant feed additives. Animal 2016, 10, 1375–1390. [Google Scholar] [CrossRef] [Green Version]
- Montossi, F.; Font-i-Furnols, M.; del Campo, M.; San Julián, R.; Brito, G.; Sañudo, C. Sustainable sheep production and consumer preference trends: Compatibilities, contradictions, and unresolved dilemmas. Meat Sci. 2013, 95, 772–789. [Google Scholar] [CrossRef]
- Martin-Collado, D.; Díaz Martín, C.; Serrano, M.; Carabaño, M.J.; Ramón, M.; Zanoli, R. Sheep dairy and meat products: From urban consumers’ perspective to industry innovations. In Proceedings of the 2nd Joint Seminar of the Subnetworks on Nutrition and on Production Systems of the FAO-CIHEAM Network for Research and Development in Sheep and Goats, Vitoria-Gasteiz, Spain, 3–5 October 2017; Ruiz, R., López-Francos, A., López Marco, L., Eds.; CIHEAM (Options Méditerranéennes): Zaragoza, Spain, 2019; pp. 277–281. [Google Scholar]
- Bernabéu, R.; Tendero, A. Preference structure for lamb meat consumers. A Spanish case study. Meat Sci. 2005, 71, 464–470. [Google Scholar] [CrossRef]
- Font-i Furnols, M.; Realini, C.; Montossi, F.; Sañudo, C.; Campo, M.M.; Oliver, M.A.; Nute, G.R.; Guerrero, L. Consumer’s purchasing intention for lamb meat affected by country of origin, feeding system and meat price: A conjoint study in Spain, France and United Kingdom. Food Qual. Prefer. 2011, 22, 443–451. [Google Scholar] [CrossRef]
- Mofakkarul Islam, M.; Renwick, A.; Lamprinopoulou, C.; Klerkx, L. Innovation in livestock genetic improvement. Eurochoices 2013, 12, 42–47. [Google Scholar] [CrossRef]
- Argyriadou, A.; Gelasakis, A.; Banos, A.; Arsenos, G. Genetic improvement of indigenous Greek sheep and goat breeds. J. Hellenic Vet. Med. Soc. 2020, 71, 2063–2072. [Google Scholar] [CrossRef]
- Bowles, D. Recent advances in understanding the genetic resources of sheep breeds locally-adapted to the UK uplands: Opportunities they offer for sustainable productivity. Front. Genet. 2015, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Martín-Collado, D.; Díaz, C.; Zanoli, R.; Ragkos, A.; Ramon, M.; Yañez-Ruiz, D.; Belache, A.; Emsem, E.; Jones, M.; Whistance, L.; et al. Recommended Best Practice for the Future for Case Study Typologies, iSAGE Project Deliverable 4.5. 2019. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5d05b0b78&appId=PPGMS&fbclid=IwAR3voG4poMgOywK6kT-XzMQSRTvdloEqcwIFjLbhalQw8A3Zrm_6Rlv7Pqs (accessed on 1 November 2021).
- Thorne, J.W.; Murdoch, B.M.; Freking, B.A.; Redden, R.R.; Murphy, T.W.; Taylor, J.B.; Blackburn, H.D. Evolution of the sheep industry and genetic research in the United States: Opportunities for convergence in the twenty-first century. Anim. Genet. 2021, 52, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Raoul, J.; Elsen, J.M. Effect of the rate of artificial insemination and paternity knowledge on the genetic gain for French meat sheep breeding programs. Livest. Sci. 2020, 232, 103932. [Google Scholar] [CrossRef]
- Llonch, P.; King, E.M.; Clarke, K.A.; Downes, J.M.; Green, L.E. A systematic review of animal-based indicators of sheep welfare on farm, at market and during transport, and qualitative appraisal of their validity and feasibility for use in UK abattoirs. Vet. J. 2015, 206, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hani, F.; Braga, F.S.; Stampfli, A.; Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar]
- Meul, M.; Van Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Van Hauwermeiren, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Voulodimos, A.S.; Patrikakis, C.Z.; Sideridis, A.B.; Ntafis, V.A.; Xylouri, E.M. A complete farm management system based on animal identification using RFID technology. Comput. Electron. Agric. 2010, 70, 380–388. [Google Scholar] [CrossRef]
- Vouraki, S.; Skourtis, I.; Psichos, K.; Jones, W.; Davis, C.; Johnson, M.; Rupérez, L.R.; Theodoridis, A.; Arsenos, G. A Decision Support System for Economically Sustainable Sheep and Goat Farming. Animals 2020, 10, 2421. [Google Scholar] [CrossRef] [PubMed]
- Carrer, M.J.; de Souza Filho, H.M.; Batalha, M.O. Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Comput. Electron. Agric. 2017, 138, 11–19. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jimenez, M.; Rentería-Monterrubio, A.L.; Loya-Olguin, J.L.; Carrillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Alarcon-Rojo, A.D. Natural Oregano Essential Oil May Replace Antibiotics in Lamb Diets: Effects on Meat Quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, R.; Gambelli, D.; Solfanelli, F.; Orsini, S.; Johnson, M.; Muellender, S. Report on Participatory Case Study Research on Farmers, iSAGE Project Deliverable 2.1. 2019. Available online: https://www.isage.eu/wp-content/uploads/D2.1_Report-on-participatory-case-study-research-on-farmers.pdf (accessed on 20 June 2021).
Efficiency | French Extensive Farms | French Intensive Farms | Spanish Semi-Intensive Farms | UK Extensive Farms | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΤΕ | ΤΕ | ΤΕ | ΤΕ | |||||||||
No of Farms | % | Mean | No of Farms | % | Mean | No of Farms | % | Mean | No of Farms | % | Mean | |
<0.60 | 66 | 27.38 | 0.496 | 1 | 1.64 | 0.576 | 2 | 5.41 | 0.580 | 18 | 15.1 | 0.528 |
0.60–0.69 | 52 | 21.58 | 0.649 | 7 | 11.48 | 0.655 | 3 | 8.11 | 0.647 | 15 | 12.6 | 0.647 |
0.70–0.79 | 47 | 19.50 | 0.749 | 11 | 18.03 | 0.753 | 3 | 8.11 | 0.744 | 37 | 31.1 | 0.744 |
0.80–0.89 | 41 | 17.02 | 0.844 | 12 | 19.67 | 0.851 | 10 | 27.03 | 0.848 | 19 | 16.0 | 0.837 |
0.90–0.99 | 10 | 4.15 | 0.953 | 8 | 13.11 | 0.951 | 5 | 13.51 | 0.909 | 8 | 6.7 | 0.927 |
1.00 | 25 | 10.37 | 1.000 | 22 | 36.07 | 1.000 | 14 | 37.83 | 1.000 | 22 | 18.5 | 1.000 |
Total | 241 | 100.0 | 0.709 | 61 | 100.0 | 0.873 | 37 | 100.0 | 0.874 | 119 | 100.0 | 0.773 |
Farm Categories | Average Farm | |||
---|---|---|---|---|
Small | Medium | Large | ||
French extensive farm | ||||
No of farms | 80 | 45 | 116 | 241 |
Existing output (Gross revenue in EUR) | 37,751 | 63,741 | 118,818 | 81,624 |
Efficient target (Gross revenue in EUR) | 57,088 | 97,980 | 155,235 | 111,964 |
French intensive farm | ||||
No of farms | 22 | 13 | 26 | 61 |
Existing output (Gross revenue in EUR) | 51,439 | 83,262 | 125,254 | 91,582 |
Efficient target (Gross revenue in EUR) | 55,119 | 102,512 | 138,373 | 104,035 |
Spanish semi-intensive farm | ||||
No of farms | 13 | 13 | 11 | 37 |
Existing output (Gross revenue in EUR) | 80,270 | 97,990 | 219,504 | 127,890 |
Efficient target (Gross revenue in EUR) | 87,343 | 121,109 | 239,840 | 144,543 |
UK extensive farm | ||||
No of farms | 44 | 46 | 29 | 119 |
Existing output (Gross revenue in EUR) | 38,069 | 84,524 | 221,813 | 100,805 |
Efficient target (Gross revenue in EUR) | 50,571 | 115,986 | 269,104 | 129,113 |
Efficiency Groups | Composition of Gross Revenue (EUR/ewe) | ||||||
---|---|---|---|---|---|---|---|
Lambs Sold For Meat | Lambs Sold for Breeding | Cull Animals | Compensations-Subsidies | Wool and Other Products | Total | ||
French Extensive Meat Farm | |||||||
Inefficient (TE 1 = 0.675) | Mean | 101.58 | 12.79 | 6.77 | 27.39 | 4.51 | 153.04 |
% | 66.38 | 8.36 | 4.42 | 17.89 | 2.95 | 100.0 | |
Efficient (TE 1 = 1.000) | Mean | 109.25 | 30.37 | 8.02 | 26.35 | 4.57 | 178.56 |
% | 61.18 | 17.01 | 4.49 | 14.76 | 2.56 | 100.00 | |
Average farm (TE = 0.709) | Mean | 102.64 | 15.22 | 6.94 | 27.25 | 4.52 | 156.57 |
% | 65.56 | 9.72 | 4.43 | 17.4 | 2.89 | 100.0 | |
French Intensive Meat Farm | |||||||
Inefficient (TE 1 = 0.802) | Mean | 125.81 | 9.94 | 10.78 | 25.25 | 5.77 | 177.55 |
% | 70.86 | 5.59 | 6.07 | 14.22 | 3.26 | 100.0 | |
Efficient (TE 1 = 1.000) | Mean | 147.44 | 25.39 | 10.06 | 25.93 | 5.81 | 214.63 |
% | 68.69 | 11.83 | 4.69 | 12.08 | 2.71 | 100.0 | |
Average farm (TE = 0.873) | Mean | 134.01 | 15.79 | 10.50 | 25.51 | 5.79 | 191.6 |
% | 69.94 | 8.24 | 5.48 | 13.32 | 3.02 | 100.0 | |
Spanish Semi-Intensive Meat Farm | |||||||
Inefficient (TE 1 = 0.798) | Mean | 92.75 | 0.69 | 2.19 | 35.47 | 3.91 | 135.01 |
% | 68.69 | 0.52 | 1.62 | 26.28 | 2.89 | 100.0 | |
Efficient (TE 1 = 1.000) | Mean | 100.28 | 2.87 | 2.06 | 43.47 | 8.45 | 157.13 |
% | 63.82 | 1.83 | 1.31 | 27.66 | 5.38 | 100.0 | |
Average farm (TE = 0.874) | Mean | 95.95 | 1.61 | 2.13 | 38.86 | 5.85 | 144.4 |
% | 66.48 | 1.11 | 1.48 | 26.91 | 4.05 | 100.0 | |
UK Extensive Meat Farm | |||||||
Inefficient (TE 1 = 0.722) | Mean | 57.81 | 60.44 | 17.61 | NA | 3.60 | 139.46 |
% | 41.45 | 43.34 | 12.63 | - | 2.58 | 100.0 | |
Efficient (TE 1 = 1.000) | Mean | 42.66 | 63.91 | 30.06 | NA | 5.25 | 141.88 |
% | 30.07 | 45.04 | 21.19 | - | 3.70 | 100.0 | |
Average farm (TE = 0.773) | Mean | 54.24 | 61.26 | 20.55 | NA | 3.99 | 140.04 |
% | 38.74 | 43.74 | 14.67 | - | 2.85 | 100.00 |
Technical and Economic Data | French Meat Extensive | French Meat Intensive | Spanish Semi-Intensive Meat | UK Extensive Meat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Efficiency Groups | AF 1 (TE 2 = 0.709) | Efficiency Groups | AF 1 (TE 2 = 0.873) | Efficiency Groups | AF 1 (TE 2 = 0.874) | Efficiency Groups | AF 1 (TE 2 = 0.773) | |||||
I (TE 2 = 0.675) | E (TE 2 = 1.000) | I (TE 2 = 0.802) | E (TE 2 = 1.000) | I (TE 2 = 0.798) | E (TE 2 = 1.000) | I (TE 2 = 0.722) | E (TE 2 = 1.000) | |||||
Technical | ||||||||||||
Number of farms | 216 | 25 | 241 | 39 | 22 | 61 | 23 | 14 | 37 | 97 | 22 | 119 |
Number of ewes | 501 | 693 | 521 | 464 | 502 | 477 | 829 | 1003 | 894 | 675 | 918 | 720 |
Lambs sold (per farm) | 432 | 621 | 452 | 471 | 588 | 513 | 1278 | 1651 | 1419 | 460 | 428 | 454 |
Lambs sold (per ewe) | 0.86 | 0.90 | 0.87 | 1.01 | 1.17 | 1.07 | 1.54 | 1.65 | 1.58 | 0.68 | 0.48 | 0.63 |
Total labor (ewes/ALU) | 385 | 512 | 399 | 517 | 520 | 518 | 519 | 551 | 532 | 853 | 1246 | 922 |
Feed supplied (Kg DM/ewe) | 390 | 307 | 378 | 486 | 513 | 496 | 308 | 257 | 287 | 93.55 | 62.58 | 86.24 |
Economic | ||||||||||||
Labor cost (EUR/ewe) | 68 | 54 | 66 | 52 | 51 | 51 | 31 | 31 | 31 | 35 | 24 | 32 |
Feed cost (EUR/ewe) | 45 | 40 | 45 | 57 | 63 | 60 | 59 | 60 | 59 | 20 | 15 | 19 |
Purchased feed (EUR/ewe) | 34 | 31 | 34 | 42 | 48 | 45 | 41 | 45 | 42 | 13 | 7 | 12 |
Home-grown feed (EUR/ewe) | 11 | 9 | 11 | 15 | 15 | 15 | 18 | 15 | 17 | 7 | 8 | 7 |
Variable Capital cost 3 (EUR/ewe) | 25 | 30 | 26 | 28 | 26 | 27 | 9 | 7 | 9 | 47 | 45 | 46 |
Fixed Capital cost (EUR/ewe) | 81 | 66 | 78 | 79 | 71 | 76 | 22 | 23 | 23 | 68 | 48 | 64 |
Production cost (EUR/ewe) | 219 | 190 | 215 | 216 | 211 | 214 | 121 | 121 | 121 | 170 | 131 | 161 |
Gross revenue (EUR/ewe) | 153 | 178 | 157 | 178 | 214 | 192 | 135 | 157 | 144 | 140 | 142 | 140 |
Gross margin (EUR/ewe) | 83 | 108 | 86 | 93 | 125 | 105 | 67 | 90 | 77 | 73 | 82 | 75 |
Profit or Loss (EUR/ewe) | −66 | −18 | −58 | −38 | 3 | −22 | 14 | 36 | 23 | −30 | 11 | −21 |
General Category of Practices | Country | Farm Type | No of Eff Farmers that Selected at Least One Practice | Types of Practices |
---|---|---|---|---|
Feeding | France | Extensive | 16/25 | 6 |
France | Intensive | 17/22 | 6 | |
Spain | Semi-intensive | 6/14 | 5 | |
Breeding | France | Extensive | 15/25 | 4 |
France | Intensive | 14/22 | 6 | |
Spain | Semi-intensive | 5/14 | 3 | |
Gadgets and Applications | France | Extensive | 13/25 | 3 |
France | Intensive | 18/22 | 6 | |
Spain | Semi-intensive | 6/14 | 3 | |
Product marketing | France | Extensive | 12/25 | 6 |
France | Intensive | 17/22 | 5 | |
Spain | Semi-intensive | 6/14 | 3 | |
Information and training | France | Extensive | 10/25 | 5 |
France | Intensive | 17/22 | 4 | |
Spain | Semi-intensive | 2/14 | 2 | |
Reproduction | France | Extensive | 12/25 | 3 |
France | Intensive | 13/22 | 3 | |
Spain | Semi-intensive | 6/14 | 2 | |
Human resources organization | France | Extensive meat | 10/25 | 2 |
France | Intensive | 6/22 | 2 | |
Spain | Semi-intensive | 6/14 | 2 | |
Health | France | Extensive | 8/25 | 4 |
France | Intensive | 3/22 | 2 | |
Spain | Semi-intensive | 2/14 | 1 | |
Product processing | France | Extensive | 2/25 | 2 |
France | Intensive | 2/22 | 2 | |
Spain | Semi-intensive | 0/14 | 0 |
General Categories of Practices | Practices | No of Farms |
---|---|---|
Gadgets and Apps | Electronic identification systems | 49/61 |
Feeding | Understanding of matching animal requirements and supply | 42/61 |
Product Marketing | Certification of products | 39/61 |
Breeding | Use of elite flocks | 38/61 |
Breeding | System/criteria to choose best animals for replacement | 37/61 |
Reproduction | Assisted reproduction techniques | 34/61 |
Breeding | Routine data collection (i.e., milk yield/quality) | 33/61 |
Feeding | Increased Forage Quality | 29/61 |
Reproduction | Improved rams and reproduction plans | 27/61 |
Information and Training | Access to abattoir feedback on carcass quality and health | 27/61 |
Feeding | Innovative Grazing Practices | 23/61 |
Feeding | Increased Pasture Quality | 22/61 |
Human resources Organization | Staff training courses/regular meetings to get feedback | 19/61 |
Gadgets and Apps | On-farm data collection linked to animal ID for decision making | 19/61 |
Information and Training | Computer farm management programs | 14/61 |
Breeding | DNA data collection and use in programs | 12/61 |
Human resources Organization | Monitorization of labour costs/efficiency | 12/61 |
Product Marketing | Branding of products for more local and direct markets | 12/61 |
Feeding | Use of by-products to replace conventional feeds | 9/61 |
Health | Scientific proven use of antibiotic alternatives in feeding | 9/61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoridis, A.; Vouraki, S.; Morin, E.; Rupérez, L.R.; Davis, C.; Arsenos, G. Efficiency Analysis as a Tool for Revealing Best Practices and Innovations: The Case of the Sheep Meat Sector in Europe. Animals 2021, 11, 3242. https://doi.org/10.3390/ani11113242
Theodoridis A, Vouraki S, Morin E, Rupérez LR, Davis C, Arsenos G. Efficiency Analysis as a Tool for Revealing Best Practices and Innovations: The Case of the Sheep Meat Sector in Europe. Animals. 2021; 11(11):3242. https://doi.org/10.3390/ani11113242
Chicago/Turabian StyleTheodoridis, Alexandros, Sotiria Vouraki, Emmanuel Morin, Leticia Riaguas Rupérez, Carol Davis, and Georgios Arsenos. 2021. "Efficiency Analysis as a Tool for Revealing Best Practices and Innovations: The Case of the Sheep Meat Sector in Europe" Animals 11, no. 11: 3242. https://doi.org/10.3390/ani11113242
APA StyleTheodoridis, A., Vouraki, S., Morin, E., Rupérez, L. R., Davis, C., & Arsenos, G. (2021). Efficiency Analysis as a Tool for Revealing Best Practices and Innovations: The Case of the Sheep Meat Sector in Europe. Animals, 11(11), 3242. https://doi.org/10.3390/ani11113242