Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schoenherr, W.; Jewell, D.E. Nutritional modification of inflammatory diseases. Semin. Vet. Med. Surg. Small Anim. 1997, 12, 212–222. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.S.; Hayek, M.G.; Reinhart, G.A.; Chew, B.P. Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats. Vet. Immunol. Immunopathol. 2011, 141, 301–306. [Google Scholar] [CrossRef]
- Wander, R.; Hall, J.; Gradin, J.L.; Du, S.-H.; Jewell, D.E. The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J. Nutr. 1997, 127, 1198–1205. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Wlosek, A.; Józefiak, D. The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livest. Sci. 2015, 180, 237–246. [Google Scholar] [CrossRef]
- Galli, C.; Calder, P.C. Effects of Fat and Fatty Acid Intake on Inflammatory and Immune Responses: A Critical Review. Ann. Nutr. Metab. 2009, 55, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I.; Jewell, D.E. Docosahexaenoate-enriched fish oil and medium chain triglycerides shape the feline plasma lipidome and synergistically decrease circulating gut microbiome-derived putrefactive postbiotics. PLoS ONE 2020, 15, e0229868. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nat. Cell Biol. 2017, 551, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, Y.; Gao, H.; Zhang, H.; Han, J.; Zhang, D.; Li, Y.; Zhou, J.; Lu, C.; Su, X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE 2017, 12, e0186216. [Google Scholar] [CrossRef]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Mair, R.D.; Sirich, T.L.; Plummer, N.S.; Meyer, T.W. Characteristics of Colon-Derived Uremic Solutes. Clin. J. Am. Soc. Nephrol. 2018, 13, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Poesen, R.; Claes, K.; Evenepoel, P.; De Loor, H.; Augustijns, P.; Kuypers, D.; Meijers, B. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD. J. Am. Soc. Nephrol. 2016, 27, 3479–3487. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Tarng, D.-C. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology 2018, 23, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Li, J.V.; Athanasiou, T.; Ashrafian, H.; Nicholson, J.K. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol. 2011, 19, 349–359. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Bakovic, M. Peculiarities of One-Carbon Metabolism in the Strict Carnivorous Cat and the Role in Feline Hepatic Lipidosis. Nutrients 2013, 5, 2811–2835. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.-K.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Wu, J.; He, C.; Bu, J.; Luo, Y.; Yang, S.; Ye, C.; Yu, S.; He, B.; Yin, Y.; Yang, X. Betaine attenuates LPS-induced downregulation of Occludin and Claudin-1 and restores intestinal barrier function. BMC Vet. Res. 2020, 16, 1–8. [Google Scholar] [CrossRef]
- García-Ródenas, C.L.; E Bergonzelli, G.; Nutten, S.; Schumann, A.; Cherbut, C.; Turini, M.; Ornstein, K.; Rochat, F.; Corthésy-Theulaz, I. Nutritional Approach to Restore Impaired Intestinal Barrier Function and Growth After Neonatal Stress in Rats. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-G.; Xia, Y.; Lu, R.; Sun, J. Inflammation and intestinal leakiness in older HIV+ individuals with fish oil treatment. Genes Dis. 2018, 5, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Abulizi, N.; Quin, C.; Brown, K.; Chan, Y.K.; Gill, S.K.; Gibson, D.L. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Du, J.; Shen, L.; Tan, Z.; Zhang, P.; Zhao, X.; Xu, Y.; Gan, M.; Yang, Q.; Ma, J.; Jiang, A.; et al. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018, 10, 131. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.S. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020, 10, 219. [Google Scholar] [CrossRef]
- Floerchinger, A.M.; Jackson, M.I.; Jewell, D.E.; MacLeay, J.M.; Paetau-Robinson, I.; Hahn, K.A. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in dogs. J. Am. Vet. Med. Assoc. 2015, 247, 375–384. [Google Scholar] [CrossRef]
- Hall, J.; Jewell, D.E. Feeding Healthy Beagles Medium-Chain Triglycerides, Fish Oil, and Carnitine Offsets Age-Related Changes in Serum Fatty Acids and Carnitine Metabolites. PLoS ONE 2012, 7, e49510. [Google Scholar] [CrossRef]
- Bright, J.M.; Sullivan, P.; Melton, S.L.; Schneider, J.F.; McDonald, T.P. The Effects of n-3 Fatty Acid Supplementation on Bleeding Time, Plasma Fatty Acid Composition, and In Vitro Platelet Aggregation in Cats. J. Vet. Intern. Med. 1994, 8, 247–252. [Google Scholar] [CrossRef]
- Hall, J.; Brockman, J.A.; Davidson, S.J.; MacLeay, J.M.; Jewell, D.E. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats. PLoS ONE 2017, 12, e0187133. [Google Scholar] [CrossRef]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atheroscler. 2006, 189, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Ding, E.L.; Willett, W.C.; Rimm, E.B. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J. Nutr. 2012, 142, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Hess, H.A.; Corl, B.A.; Lin, X.; Jacobi, S.K.; Harrell, R.J.; Blikslager, A.; Odle, J. Enrichment of Intestinal Mucosal Phospholipids with Arachidonic and Eicosapentaenoic Acids Fed to Suckling Piglets Is Dose and Time Dependent. J. Nutr. 2008, 138, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Lv, L.; Wu, W.; Li, Y.; Shi, D.; Fang, D.; Guo, F.; Jiang, H.; Yan, R.; Ye, W.; et al. Butyrate Protects Mice Against Methionine–Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Front. Microbiol. 2018, 9, 1967. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Shou, Q.; Lu, Y.; Wang, G.; Qiu, J.; Wang, J.; He, L.; Chen, J.; Jiao, J.; Zhang, Y. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 2715–2726. [Google Scholar] [CrossRef]
- Ramakers, J.D.; Mensink, R.P.; Schaart, G.; Plat, J. Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells. Lipids 2007, 42, 687–698. [Google Scholar] [CrossRef]
- Mödinger, Y.; Schön, C.; Wilhelm, M.; Hals, P.-A. Plasma Kinetics of Choline and Choline Metabolites after A Single Dose of SuperbaBoostTM Krill Oil or Choline Bitartrate in Healthy Volunteers. Nutrients 2019, 11, 2548. [Google Scholar] [CrossRef]
- Piolot, A.; Blache, D.; Boulet, L.; Fortin, L.J.; Dubreuil, D.; Marcoux, C.; Davignon, J.; Lussier-Cacan, S. Effect of fish oil on LDL oxidation and plasma homocysteine concentrations in health. J. Lab. Clin. Med. 2003, 141, 41–49. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Ji, P.; Gao, X.; Sun, L.; Miao, S.; Lei, Y.; Du, X.; Zhang, X. Dietary betaine supplementation promotes growth, n-3 LC-PUFA content and innate immunity in Macrobrachium rosenbergii. Aquaculture. 2020, 525, 735308. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, Z.X.; Cui, H.H.; Wang, S.N.; Luo, Y.; Yu, L.H.; Loor, J.J.; Wang, H. Effects of rumen-protected betaine supplementation on meat quality and the composition of fatty and amino acids in growing lambs. Animals 2020, 14, 435–444. [Google Scholar] [CrossRef]
- Kaur, G. Parenteral Betaine as a Strategy to Prevent Fatty Liver and Improve Docosahexaenoic Acid and Arachidonic Acid Distribution in Parenterally Fed Neonatal Piglets. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, March 2019. [Google Scholar]
- Goldstein, L.; Davis, E.M. Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am. J. Physiol. Integr. Comp. Physiol. 1994, 267, R426–R431. [Google Scholar] [CrossRef] [PubMed]
- Varatharajalu, R.; Garige, M.; Leckey, L.C.; Gong, M.; Lakshman, M.R.; Lakshman, M.R. Betaine Protects Chronic Alcohol and ω-3 PUFA-Mediated Down-Regulations of PON1 Gene, Serum PON1 and Homocysteine Thiolactonase Activities With Restoration of Liver GSH. Alcohol. Clin. Exp. Res. 2010, 34, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.S.; Stephenson, A.; Gramstead, G. Analysis of the chromosome region containing the Drosophila homolog of the jun oncogene. In Proceedings of the 35th Annual Drosophila Research Conference, Chicago, IL, USA, 15 October 1994; p. 304. [Google Scholar]
Ingredient or Analyte | Pre-Trial Food | Control | E&D Food | ARA Food |
---|---|---|---|---|
Rice | 15.9 | 39.6 | 39.6 | 40.2 |
Corn gluten meal | 13.9 | 24.7 | 24.7 | 20.8 |
Poultry by-product meal | 26.1 | 19.7 | 19.7 | 16 |
Corn | 24.6 | 0 | 0 | 0 |
Pork Fat | 13.9 | 9.8 | 8.4 | 9 |
Palatability Enhancer | 1.3 | 1.4 | 1.4 | 1.4 |
Menhaden Fish oil | 0 | 0 | 1.4 | 0 |
Chicken livers, hydrolyzed, dry | 0 | 0 | 0 | 7.5 |
Lactic acid (84% lactic acid) | 1.8 | 1.2 | 1.2 | 1.2 |
Choline Chloride | 0.7 | 0.7 | 0.7 | 0.7 |
Methionine | 0.5 | 0.2 | 0.2 | 0.2 |
Taurine | 0.1 | 0.1 | 0.1 | 0.1 |
Minerals and Vitamins | 1.2 a | 2.6 b | 2.6 c | 2.9 d |
Moisture | 5.77 | 6.55 | 6.56 | 7.04 |
Protein | 31.99 | 34.2 | 33.82 | 33.91 |
Fat | 20.69 | 14.67 | 15.06 | 16.01 |
Atwater Energy € (kcal/kg) | 4121 | 3799 | 3821 | 3880 |
Ash | 5.23 | 4.87 | 4.77 | 4.67 |
Crude Fiber | 0.8 | 1 | 1 | NA |
Calcium | 0.96 | 0.67 | 0.68 | 0.69 |
Phosphorus | 0.82 | 0.67 | 0.63 | 0.64 |
Sodium | 0.34 | 0.31 | 0.29 | 0.31 |
Capric acid [10:0] | 0.02 | 0.01 | 0.01 | 0.01 |
Lauric acid [12:0] | 0.02 | 0.01 | 0.01 | 0.01 |
Myristic acid [14:0] | 0.2 | 0.14 | 0.22 | 0.14 |
Palmitic acid [16:0] | 4.19 | 3.01 | 2.97 | 3.14 |
Palmitoleic acid [16:1] | 0.57 | 0.37 | 0.44 | 0.38 |
Steric acid [18:0] | 2.01 | 1.48 | 1.38 | 1.62 |
Oleic acid [18:1] | 6.87 | 4.80 | 4.55 | 4.90 |
Arachidic acid [20:0] | 0.04 | 0.03 | 0.03 | 0.03 |
LA [18:2 (n-6)] | 3.17 | 2.52 | 2.41 | 2.51 |
aLA [18:3 (n-3)] | 0.13 | 0.12 | 0.13 | 0.11 |
ARA [20:4 (n-6)] | 0.09 | 0.08 | 0.09 | 0.16 |
EPA [20:5 (n-3)] | <0.01 | <0.01 | 0.23 | <0.01 |
DHA [22:6 (n-3)] | 0.01 | 0.01 | 0.13 | 0.02 |
SFA £ | 6.32 | 5.12 | 4.71 | 5.39 |
MUFA ¥ | 7.61 | 5.29 | 5.76 | 5.4 |
PUFA π | 3.39 | 2.87 | 3.23 | 2.96 |
(n-6) FA Ω | 3.43 | 2.72 | 2.62 | 2.8 |
(n-3) FA θ | 0.16 | 0.15 | 0.61 | 0.16 |
(n-6):(n-3) ratio | 21.4 | 18.1 | 4.3 | 17.5 |
Analyte | Control (COF Group) | E&DF Group | ARAF Group | F-test p Value |
---|---|---|---|---|
Body Weight (kg) Initial | 5.21 ± 0.34 | 5.07 ± 0.33 | 4.84 ± 0.33 | 0.74 |
Body Weight (kg) 56 day | 5.00 ± 0.30 | 4.89 ± 0.30 | 4.74 ± 0.29 | 0.83 |
Body Weight (kg) 84 day | 4.94 ± 0.28 | 4.76 ± 0.28 | 4.64 ± 0.27 | 0.74 |
Body Weight (kg) Change | −0.27 ± 0.11 | −0.31 ± 0.11 | -0.20 ± 0.10 | 0.16 |
Albumin (mg/dl) Initial | 3.67 ± 0.05 | 3.74 ± 0.05 | 3.79 ± 0.05 | 0.32 |
Albumin (mg/dl) 56 day | 3.89 ± 0.05 a | 3.93 ± 0.05 a,b | 4.05 ± 0.05 b | 0.08 |
Albumin (mg/dl) 84 day | 3.89 ± 0.06 | 3.92 ± 0.06 | 4.06 ± 0.06 | 0.15 |
Albumin (mg/dl) Change | 0.22 ± 0.05 | 0.16 ± 0.05 | 0.27 ± 0.05 | 0.36 |
Total Protein (mg/dl) Initial | 6.68 ± 0.09 | 6.73 ± 0.08 | 6.79 ± 0.09 | 0.67 |
Total Protein (mg/dl) 56 day | 6.61 ± 0.11 | 6.81 ± 0.11 | 6.80 ± 0.11 | 0.33 |
Total Protein (mg/dl) 84 day | 6.42 ± 0.10 | 6.55 ± 0.10 | 6.57 ± 0.09 | 0.47 |
Total Protein (mg/dl) Change | −0.26 ± 0.07 | −0.22 ± 0.07 | −0.23 ± 0.07 | 0.87 |
Urea Nitrogen (mg/dl) Initial | 20.1 ± 0.8 | 19.2 ± 0.8 | 19.7 ± 0.8 | 0.67 |
Urea Nitrogen (mg/dl) 56 day | 21.5 ± 0.9 | 19.8 ± 0.9 | 19.8 ± 0.8 | 0.32 |
Urea Nitrogen (mg/dl) 84 day | 22.7 ± 1.0 a | 18.9 ± 1.0 b | 19.5 ± 0.9 b | 0.02 |
Urea Nitrogen (mg/dl) Change | 2.5 ± 0.8 a | 0.1 ± 0.8u b | −0.4 ± 0.8 b | 0.03 |
Creatinine (mg/dl) Initial | 1.17 ± 0.05 | 1.11 ± 0.05 | 1.15 ± 0.05 | 0.80 |
Creatinine (mg/dl) 56 day | 1.19 ± 0.05 | 1.20 ± 0.05 | 1.19 ± 0.05 | 0.98 |
Creatinine (mg/dl) 84 day | 1.25 ± 0.05 | 1.13 ± 0.05 | 1.20 ± 0.05 | 0.40 |
Creatinine (mg/dl) Change | 0.08 ± 0.03 | 0.01 ± 0.03 | 0.06 ± 0.03 | 0.28 |
Triglycerides (mg/dl) Initial | 34.6 ± 3.1 | 35.5 ± 3.3 | 35.0 ± 3.3 | 0.98 |
Triglycerides (mg/dl) 56 day | 42.4 ± 9.0 | 50.8 ± 9.0 | 43.6 ± 8.6 | 0.77 |
Triglycerides (mg/dl) 84 day | 37.2 ± 14.1 | 59.5 ± 14.1 | 39.4 ± 13.5 | 0.47 |
Triglycerides (mg/dl) Change | 2.5 ± 13.8 | 22.7 ± 13.8 | 4.3 ± 13.8 | 0.52 |
Cholesterol (mg/dl) Initial | 145.5 ± 7.2 | 140.5 ± 6.9 | 144.3 ± 7.2 | 0.87 |
Cholesterol (mg/dl) 56 day | 152.0 ± 8.5 a,b | 134.4 ± 8.5 a | 169.0 ± 8.1 b | 0.02 |
Cholesterol (mg/dl) 84 day | 153.6 ± 8.7 a,b | 130.9 ± 8.7 a | 161.4 ± 8.4 b | 0.05 |
Cholesterol (mg/dl) Change | 8.2 ± 5.5 a | −9.1 ± 5.5 b | 19.9 ± 5.5 a | <0.01 |
Analyte | Control | E&D Food Group | ARA Food Group | F-test p Value |
---|---|---|---|---|
LA [18:2 (n-6)] Initial | 36.0 ± 2.1 | 35.5 ± 2.0 | 38.2 ± 2.1 | 0.62 |
LA [18:2 (n-6)] 56 day | 45.8 ± 3.5 b | 33.5 ± 3.5 a | 46.1 ± 3.4 b | 0.02 |
LA [18:2 (n-6)] 84 day | 40.8 ± 2.4 b | 30.3 ± 2.4 a | 38.7 ± 2.4 b | 0.01 |
LA [18:2 (n-6)] Change | 4.8 ± 1.8 b | −5.4 ± 1.8 a | 0.5± 1.8 b | <0.01 |
αLA [18:3 (n-3)] Initial | 1.1 ± O.1 | 1.1 ± O.1 | 1.1 ± O.1 | 0.87 |
αLA [18:3 (n-3)] 56 day | 1.3 ± O.1 | 1.0 ± O.1 | 1.1 ± O.1 | 0.14 |
αLA [18:3 (n-3)] 84 day | 1.3 ± O.1 | 1.1 ± O.1 | 1.1 ± O.1 | 0.16 |
αLA [18:3 (n-3)] Change | 0.2 ± O.1 | −0.1 ± O.1 | 0.0 ± O.1 | 0.12 |
ARA [20:4 (n-6)] Initial | 20.0 ± 1.0 | 21.1 ± 0.9 | 22.0 ± 1.0 | 0.32 |
ARA [20:4 (n-6)] 56 day | 20.8 ± 1.5 a | 18.3 ± 1.5 a | 31.4 ± 1.5 b | <0.01 |
ARA [20:4 (n-6)] 84 day | 21.5 ± 1.6 a | 17.1 ± 1.5 a | 31.1 ± 1.5 b | <0.01 |
ARA [20:4 (n-6)] Change | 1.6 ± 1.3 a | −3.8 ± 1.3 b | 9.6 ± 1.3 c | <0.01 |
EPA [20:5 (n-3)] Initial | 0.5 ± 0.03 | 0.5 ± 0.03 | 0.5 ± 0.03 | 0.17 |
EPA [20:5 (n-3)] 56 day | 0.5 ± 0.5 a | 5.7 ± 0.5 b | 0.6 ± 0.5 a | <0.01 |
EPA [20:5 (n-3)] 84 day | 0.6 ± 0.4 a | 5.4 ± 0.4 b | 0.6 ± 0.4 a | <0.01 |
EPA [20:5 (n-3)] Change | 0.1 ± 0.4 a | 4.9 ± 0.4 b | 0.1 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] Initial | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 0.72 |
DHA [22:6 (n-3)] 56 day | 1.9 ± 0.4 a | 6.1 ± 0.4 b | 2.6 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] 84 day | 1.7 ± 0.4 a | 6.0 ± 0.4 b | 2.5 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] Change | 0.0 ± 0.4 a | 4.2 ± 0.4 b | 0.8 ± 0.4 a | <0.01 |
ARA/(EPA+DHA) Initial | 9.2 ± 0.3 | 9.0 ± 0.3 | 9.4 ± 0.3 | 0.52 |
ARA/(EPA+DHA) 56 day | 8.8 ± 0.3 a | 1.7 ± 0.3 b | 9.7 ± 0.3 a | <0.01 |
ARA/(EPA+DHA) 84 day | 9.4 ± 0.3 a | 1.7 ± 0.3 b | 10.0 ± 0.3 a | <0.01 |
ARA/(EPA+DHA) Change | 0.2 ± 0.4 a | −7.3 ± 0.4 b | 0.6 ± 0.4 a | <0.01 |
Sum of n-3 £ Initial | 4.4 ± 0.29 | 4.7 ± 0.2 | 4.6 ± 0.2 | 0.48 |
Sum of n-3 £ 56 day | 4.9 ± 0.8 b | 14.7 ± 0.8 a | 5.9 ± 0.7 b | <0.01 |
Sum of n-3 £ 84 day | 4.7 ± 0.8 b | 14.2 ± 0.8 a | 5.1 ± 0.8 b | <0.01 |
Sum of n-3 £ Change | 0.3 ± 0.8 b | 9.5 ± 0.8 a | 0.9 ± 0.8 b | <0.01 |
Sum of n-6 £ Initial | 61.0 ± 2.7 | 61.6 ± 2.6 | 65.4 ± 2.7 | 0.45 |
Sum of n-6 θ 56 day | 71.8 ± 4.8 a | 55.0 ± 4.8 b | 82.6 ± 4.6 a | <0.01 |
Sum of n-6 θ 84 day | 68.0 ± 4.0 a | 50.7 ± 4.0 b | 75.0 ± 3.8 a | <0.01 |
Sum of n-6 θ Change | 7.0 ± 2.8 a | −10.8 ± 2.8 b | 10.9 ± 2.8 a | <0.01 |
Sum of PUFA ¥ Initial | 65.3 ± 2.8 | 66.3 ± 2.7 | 70.0 ± 2.8 | 0.46 |
Sum of PUFA ¥ 56 day | 76.7 ± 5.1 a,b | 69.7 ± 5.1 a | 88.3 ± 4.9 b | 0.04 |
Sum of PUFA¥ 84 day | 72.7 ± 4.3 a,b | 64.9 ± 4.3 a | 80.4 ± 4.1 b | 0.05 |
Sum of PUFA ¥ Change | 7.4 ± 2.8 b | −1.4 ± 2.8 a | 11.8 ± 2.8 b | <0.01 |
(n-6):(n-3) ratio Initial | 13.9 ± 0.4 | 13.3 ± 0.4 | 14.1 ± 0.4 | 0.32 |
(n-6):(n-3) ratio 56 day | 14.8 ± 0.5 a | 4.0 ± 0.5 b | 14.4 ± 0.5 a | <0.01 |
(n-6):(n-3) ratio 84 day | 14.4 ± 0.4 a | 3.9 ± 0.4 b | 13.8 ± 0.4 a | <0.01 |
(n-6):(n-3) ratio Change | 0.4 ± 0.5 a | −9.5 ± 0.5 b | −0.3 ± 0.5 a | <0.01 |
Analyte | Control | E&D Food Group | ARA Food Group | F-test p Value |
---|---|---|---|---|
Myristic acid [14:0] Initial | 0.51 ± 0.13 | 0.83 ± 0.12 | 0.60 ± 0.13 | 0.17 |
Myristic acid [14:0] 56 day | 0.55 ± 0.08 | 0.44 ± 0.08 | 0.42 ± 0.07 | 0.46 |
Myristic acid [14:0] 84 day | 0.48 ± 0.13 | 0.53 ± 0.13 | 0.64 ± 0.12 | 0.67 |
Myristic acid [14:0] Change | −0.02 ± 0.17 | −0.27 ± 0.17 | 0.26 ± 0.17 | 0.45 |
Palmitic acid [16:0] Initial | 19.7 ± 1.5 | 23.2 ± 1.5 | 22.3 ± 1.6 | 0.28 |
Palmitic acid [16:0] 56 day | 23.6 ± 1.7 a,b | 20.7 ± 1.6 a | 25.6 ± 1.5 b | 0.09 |
Palmitic acid [16:0] 84 day | 22.3 ± 1.8 a,b | 20.9 ± 1.8 a | 26.1 ± 1.7 b | 0.11 |
Palmitic acid [16:0] Change | 2.6 ± 2.0 a,b | −1.9 ± 2.0 a | 4.0 ± 2.0 b | 0.11 |
Stearic acid [18:0] Initial | 38.4 ± 2.1 | 41.7 ± 2.0 | 43.2 ± 2.1 | 0.25 |
Stearic acid [18:0] 56 day | 42.5 ± 2.8 a,b | 40.1 ± 2.8 a | 50.3 ± 2.7 b | 0.04 |
Stearic acid [18:0] 84 day | 43.5 ± 3.1 a,b | 39.8 ± 3.1 a | 51.7 ± 2.9 b | 0.02 |
Stearic acid [18:0] Change | 5.1 ± 2.5 a,b | −1.5 ± 2.5 a | 9.3 ± 2.5 b | 0.01 |
Palmitoleic acid [16:1] Initial | 1.5 ± 0.14 | 1.6 ± 0.13 | 1.4 ± 0.14 | 0.71 |
Palmitoleic acid [16:1] 56 day | 1.6 ± 0.09 a | 1.1 ± 0.09 b | 1.2 ± 0.09 b | 0.01 |
Palmitoleic acid [16:1] 84 day | 1.5 ± 0.11 a | 1.1 ± 0.11 b | 1.3 ± 0.10 a,b | 0.08 |
Palmitoleic acid [16:1] Change | 0.01 ± 0.14 a | −0.4 ± 0.14 b | −0.1 ± 0.14 a,b | 0.06 |
Oleic acid [18:1] Initial | 22.2 ± 1.8 | 23.7 ± 1.7 | 22.5 ± 1.8 | 0.81 |
Oleic acid [18:1] 56 day | 25.8 ± 1.6 a | 18.9 ± 1.6 b | 22.9 ± 1.6 a,b | 0.05 |
Oleic acid [18:1] 84 day | 26.5 ± 1.8 a | 20.2 ± 1.8 b | 25.1 ± 1.8 a,b | 0.05 |
Oleic acid [18:1] Change | 4.3 ± 1.8 a | −3.4 ± 1.8 b | 2.7 ± 1.8 a | 0.01 |
SFA £ Initial | 58.6 ± 3.5 | 65.7 ± 3.4 | 66.1 ± 3.5 | 0.25 |
SFA £ 56 day | 66.7 ± 4.3 a,b | 61.3 ± 4.3 a | 76.3 ± 4.1 b | 0.05 |
SFA £ 84 day | 66.4 ± 4.7 a,b | 61.3 ± 4.7 a | 78.4 ± 4.5 b | 0.03 |
SFA £ Change | 7.8 ± 4.4 a,b | −3.6 ± 4.4 a | 13.4 ± 4.4 b | 0.03 |
MUFA¥ Initial | 23.7 ± 1.9 | 25.3 ± 1.8 | 23.9 ± 1.9 | 0.81 |
MUFA ¥ 56 day | 27.4 ± 1.6 a | 20.0 ± 1.6 b | 24.1 ± 1.6 a,b | 0.02 |
MUFA ¥ 84 day | 28.0 ± 1.8 a | 21.4 ± 1.8 b | 26.4 ± 1.8 a,b | 0.05 |
MUFA ¥ Change | 4.3 ± 2.0 a | −3.8 ± 2.0 b | 2.6 ± 2.0 a | 0.01 |
Biochemical | Change in Control Food (COF) Group | Change in E&D Food (E&DF) Group | Change in ARA Food (ARAF) Group | E&DF to COF Group End of Study | ARAF to COF Groups End of Study | ARAF to E&DF Groups End of Study |
---|---|---|---|---|---|---|
Amino acid metabolites | ||||||
Sarcosine | 0.53 | 0.37 | 0.4 | 0.69 | 0.75 | 1.09 |
Dimethylglycine | 1.03 | 0.95 | 0.88 | 0.81 | 0.78 | 0.96 |
Betaine | 1.44 | 0.89 | 1.02 | 0.56 | 0.69 | 1.23 |
1-methyl-4-imidazoleacetate | 0.85 | 0.76 | 1.16 | 0.73 | 1.32 | 1.82 |
1-ribosyl-imidazoleacetate | 0.55 | 0.52 | 0.65 | 0.77 | 1.39 | 1.8 |
4-imidazoleacetate | 0.62 | 0.61 | 0.88 | 0.65 | 1.2 | 1.84 |
N-acetylhistamine | 1 | 1.34 | 2.65 | 0.64 | 2.32 | 3.66 |
Urea | 1.15 | 1.01 | 0.98 | 0.83 | 0.85 | 1.04 |
N-delta-acetylornithine | 0.38 | 0.35 | 0.4 | 0.67 | 0.99 | 1.47 |
5-oxoproline | 1.07 | 1.09 | 1.02 | 1.16 | 1.01 | 0.87 |
Postbiotics | ||||||
phenol sulfate | 1.11 | 0.78 | 1.48 | 0.51 | 1.24 | 2.42 |
4-methoxyphenol sulfate | 3.89 | 2.4 | 6.03 | 0.27 | 0.96 | 3.52 |
2-hydroxyphenylacetate | 1.04 | 0.87 | 1.51 | 0.81 | 1.28 | 1.58 |
Indoleacetate | 0.91 | 1.13 | 1.49 | 0.64 | 1.33 | 2.08 |
Indolepropionate | 1.03 | 0.88 | 1.38 | 0.69 | 1.31 | 1.9 |
Indoleacetylglutamine | 1.1 | 1.04 | 1.7 | 0.55 | 1.3 | 2.37 |
Phenylacetylglutamate | 1.63 | 1.14 | 1.58 | 0.62 | 0.87 | 1.41 |
Phenylacetylglutamine | 1.73 | 1.14 | 1.62 | 0.51 | 0.87 | 1.72 |
Phenylacetylglycine | 1.45 | 1.16 | 1.16 | 0.59 | 0.71 | 1.21 |
Phenylacetylserine | 1.87 | 1.27 | 1.24 | 0.29 | 0.43 | 1.49 |
3-methyl catechol sulfate | 1.75 | 0.89 | 2.44 | 0.18 | 0.62 | 3.51 |
4-methylcatechol sulfate | 1.16 | 1.44 | 2.01 | 0.60 | 0.88 | 1.47 |
4-ethylphenylsulfate | 1.6 | 0.7 | 1.51 | 0.35 | 0.71 | 2.00 |
4-vinylphenol sulfate | 1.16 | 0.6 | 1.02 | 0.34 | 0.65 | 1.93 |
p-cresol sulfate | 1.34 | 1.23 | 1.4 | 0.50 | 0.75 | 1.49 |
Lipids | ||||||
myristate (14:0) | 1.03 | 1.45 | 1.14 | 1.33 | 1.01 | 0.75 |
heneicosapentaenoate (21:5n3) | 1 | 20.07 | 1.05 | 20.00 | 1.05 | 0.05 |
hexadecadienoate (16:2n6) | 0.86 | 1.83 | 0.9 | 2.22 | 1.03 | 0.46 |
hexadecatrienoate (16:3n3) | 1.63 | 13.64 | 1.47 | 14.29 | 1.03 | 0.07 |
stearidonate (18:4n3) | 0.81 | 21.87 | 1.2 | 25.10 | 1.3 | 0.05 |
eicosapentaenoate (EPA; 20:5n3) | 0.89 | 24.68 | 1.23 | 32.26 | 1.36 | 0.04 |
docosapentaenoate (n3 DPA; 22:5n3) | 0.86 | 3.19 | 1.1 | 4.35 | 1.29 | 0.29 |
docosahexaenoate (DHA; 22:6n3) | 0.77 | 6.26 | 1.41 | 9.09 | 1.73 | 0.19 |
arachidonate (20:4n6) | 1.01 | 1.02 | 1.26 | 1.22 | 1.52 | 1.25 |
adrenate (22:4n6) | 0.99 | 0.9 | 1.41 | 1.14 | 1.31 | 1.15 |
docosapentaenoate (n6 DPA; 22:5n6) | 0.91 | 1.31 | 1.9 | 1.61 | 2.15 | 1.33 |
sebacate (C10-DC) | 1.11 | 2.06 | 1.37 | 1.37 | 1.17 | 0.86 |
myristoylcarnitine (C14) | 1.29 | 1.57 | 1.38 | 1.54 | 1.14 | 0.75 |
arachidonoylcarnitine (C20:4) | 1.26 | 1.06 | 1.74 | 0.97 | 1.64 | 1.69 |
adrenoylcarnitine (C22:4) | 1.33 | 0.89 | 1.73 | 0.78 | 1.58 | 2.01 |
cerotoylcarnitine (C26) | 1.28 | 1.31 | 1.51 | 1.39 | 1.38 | 0.99 |
3-hydroxybutyrate (BHBA) | 1.07 | 1.29 | 1.69 | 1.61 | 1.73 | 1.08 |
1-palmitoyl-2-oleoyl-GPC (16:0/18:1) | 1.08 | 0.98 | 1.06 | 0.90 | 1.01 | 1.11 |
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) | 1.04 | 0.85 | 1.03 | 0.83 | 1.07 | 1.28 |
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) | 1.03 | 0.88 | 1.23 | 0.89 | 1.35 | 1.51 |
1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) | 1.08 | 3.76 | 1.59 | 3.70 | 1.71 | 0.46 |
1-palmitoleoyl-2-linoleoyl-GPC (16:1/18:2) | 1.13 | 0.58 | 0.92 | 0.52 | 0.83 | 1.58 |
1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3) * | 1.3 | 0.54 | 0.92 | 0.45 | 0.72 | 1.62 |
1,2-distearoyl-GPC (18:0/18:0) | 1.13 | 0.7 | 1 | 0.60 | 0.8 | 1.35 |
1-stearoyl-2-oleoyl-GPC (18:0/18:1) | 1.09 | 0.96 | 1.04 | 0.85 | 0.96 | 1.14 |
1-stearoyl-2-linoleoyl-GPC (18:0/18:2) | 1.03 | 0.91 | 0.99 | 0.87 | 1.02 | 1.18 |
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) | 1 | 0.95 | 1.21 | 0.95 | 1.28 | 1.35 |
1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) | 1.13 | 4.13 | 1.65 | 3.70 | 1.71 | 0.46 |
1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) * | 1.24 | 2.38 | 1.21 | 1.92 | 0.89 | 0.47 |
1,2-dilinoleoyl-GPC (18:2/18:2) | 1.1 | 0.56 | 0.86 | 0.51 | 0.78 | 1.54 |
1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) | 1.52 | 0.79 | 1.03 | 0.56 | 0.76 | 1.36 |
1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) * | 1.04 | 0.84 | 1.03 | 0.78 | 1.01 | 1.29 |
1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) | 1.33 | 1.33 | 0.83 | 1.05 | 0.82 | 0.79 |
1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) * | 1.21 | 0.86 | 0.96 | 0.78 | 1.12 | 1.44 |
1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) * | 1.21 | 6.41 | 1.8 | 5.56 | 2.2 | 0.4 |
1-stearoyl-2-linoleoyl-GPE (18:0/18:2) | 1.27 | 1.09 | 0.92 | 0.81 | 0.88 | 1.09 |
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) | 1.08 | 1.08 | 1.19 | 0.94 | 1.43 | 1.51 |
1-oleoyl-2-linoleoyl-GPE (18:1/18:2) * | 1.46 | 0.79 | 0.81 | 0.51 | 0.6 | 1.18 |
1-palmitoyl-2-oleoyl-GPI (16:0/18:1) | 1.24 | 0.94 | 1.12 | 0.67 | 0.84 | 1.25 |
1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) | 1.3 | 1.09 | 1.09 | 0.74 | 0.88 | 1.2 |
1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) * | 1.09 | 1 | 1.22 | 0.85 | 1.29 | 1.5 |
1-stearoyl-2-oleoyl-GPI (18:0/18:1) | 1.2 | 0.93 | 1.08 | 0.70 | 0.75 | 1.06 |
1-stearoyl-2-linoleoyl-GPI (18:0/18:2) | 1.37 | 0.96 | 1.06 | 0.72 | 0.83 | 1.15 |
1-oleoyl-2-linoleoyl-GPI (18:1/18:2) | 1.47 | 0.88 | 1.09 | 0.57 | 0.74 | 1.31 |
1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) | 1.09 | 0.96 | 1.12 | 0.88 | 1.12 | 1.27 |
1-palmitoleoyl-GPC (16:1) * | 1.04 | 0.65 | 0.8 | 0.65 | 0.74 | 1.15 |
1-oleoyl-GPC (18:1) | 1.1 | 0.82 | 0.95 | 0.72 | 0.81 | 1.12 |
1-linoleoyl-GPC (18:2) | 0.98 | 0.72 | 0.89 | 0.72 | 0.88 | 1.21 |
1-linolenoyl-GPC (18:3) | 1.07 | 0.75 | 0.98 | 0.75 | 0.91 | 1.21 |
1-arachidonoyl-GPC (20:4n6) | 1.02 | 0.76 | 1.31 | 0.74 | 1.36 | 1.83 |
1-lignoceroyl-GPC (24:0) | 1.16 | 0.96 | 1.1 | 0.86 | 1.13 | 1.32 |
1-palmitoyl-GPE (16:0) | 1.09 | 2.03 | 1.1 | 1.89 | 1.23 | 0.65 |
1-oleoyl-GPE (18:1) | 1.36 | 0.72 | 1.08 | 0.51 | 0.68 | 1.36 |
1-linoleoyl-GPE (18:2) | 1.2 | 0.6 | 0.95 | 0.53 | 0.83 | 1.55 |
1-arachidonoyl-GPE (20:4n6) | 1.13 | 0.64 | 1.27 | 0.66 | 1.28 | 1.95 |
1-stearoyl-GPG (18:0) | 1.29 | 0.84 | 1.06 | 0.68 | 1.05 | 1.56 |
1-linoleoyl-GPG (18:2) | 1.17 | 0.66 | 1.09 | 0.53 | 0.96 | 1.83 |
1-oleoyl-GPI (18:1) | 1.58 | 1.14 | 1.51 | 0.57 | 0.75 | 1.34 |
1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) * | 0.76 | 0.51 | 0.67 | 0.50 | 0.7 | 1.39 |
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) | 0.58 | 0.38 | 0.52 | 0.46 | 0.67 | 1.45 |
1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) | 0.85 | 0.46 | 0.75 | 0.46 | 0.75 | 1.64 |
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) | 0.91 | 0.67 | 1.08 | 0.67 | 1.16 | 1.72 |
1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) | 0.8 | 0.53 | 0.76 | 0.54 | 0.88 | 1.62 |
1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) | 0.77 | 0.51 | 0.7 | 0.58 | 0.9 | 1.55 |
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) | 0.89 | 0.65 | 1.29 | 0.74 | 1.48 | 2.02 |
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) | 1.04 | 0.53 | 0.87 | 0.47 | 0.8 | 1.68 |
1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) | 0.94 | 0.67 | 1.21 | 0.73 | 1.46 | 2 |
palmitoleoyl-linoleoyl-glycerol (16:1/18:2) | 1.18 | 0.68 | 1.12 | 0.55 | 0.9 | 1.63 |
stearoyl-arachidonoyl-glycerol (18:0/20:4) | 1.29 | 0.86 | 1.32 | 0.71 | 1.16 | 1.63 |
stearoyl-arachidonoyl-glycerol (18:0/20:4) | 1.21 | 0.93 | 1.43 | 0.78 | 1.29 | 1.66 |
oleoyl-arachidonoyl-glycerol (18:1/20:4) | 1.02 | 0.72 | 1.46 | 0.74 | 1.63 | 2.2 |
oleoyl-arachidonoyl-glycerol (18:1/20:4) | 1.14 | 0.88 | 1.62 | 0.81 | 1.58 | 1.95 |
linoleoyl-arachidonoyl-glycerol (18:2/20:4) | 1.1 | 1.97 | 1.86 | 2.00 | 2.09 | 1.04 |
Sphinganine | 0.93 | 0.74 | 1 | 0.8 | 1.03 | 1.3 |
sphinganine-1-phosphate | 1 | 0.65 | 0.86 | 0.67 | 1.04 | 1.54 |
palmitoyl sphingomyelin (d18:1/16:0) | 1.04 | 0.85 | 1.08 | 0.81 | 1 | 1.24 |
stearoyl sphingomyelin (d18:1/18:0) | 1.02 | 1.15 | 1.17 | 1.14 | 1.15 | 1.01 |
behenoyl sphingomyelin (d18:1/22:0) | 1.08 | 0.98 | 1.18 | 0.85 | 0.99 | 1.17 |
tricosanoyl sphingomyelin (d18:1/23:0) | 1.24 | 1.01 | 1.25 | 0.80 | 0.96 | 1.2 |
lignoceroyl sphingomyelin (d18:1/24:0) | 1.26 | 1.06 | 1.19 | 0.83 | 0.92 | 1.11 |
sphingomyelin (d18:2/18:1) | 1.09 | 0.78 | 1 | 0.71 | 0.86 | 1.2 |
sphingomyelin (d17:1/14:0, d16:1/15:0) | 1.18 | 0.89 | 1.05 | 0.66 | 0.71 | 1.08 |
sphingomyelin (d18:1/14:0, d16:1/16:0) | 1.05 | 0.88 | 0.96 | 0.73 | 0.74 | 0.98 |
sphingomyelin (d18:2/14:0, d18:1/14:1) | 1.28 | 0.95 | 1.03 | 0.67 | 0.67 | 1 |
sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) | 1.04 | 0.84 | 1.08 | 0.81 | 0.93 | 1.15 |
sphingomyelin (d17:2/16:0, d18:2/15:0) | 1.27 | 1.04 | 1.27 | 0.76 | 0.91 | 1.19 |
sphingomyelin (d18:2/16:0, d18:1/16:1) | 1.08 | 0.85 | 1.06 | 0.75 | 0.95 | 1.26 |
sphingomyelin (d18:1/18:1, d18:2/18:0) | 1.08 | 0.9 | 1.11 | 0.87 | 1.08 | 1.26 |
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) | 1.1 | 0.87 | 1.05 | 0.76 | 0.82 | 1.08 |
Cholesterol | 1.03 | 0.91 | 1.15 | 0.81 | 1.12 | 1.38 |
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) | 0.94 | 0.84 | 0.79 | 0.76 | 1.1 | 1.45 |
3beta-hydroxy-5-cholestenoate | 0.92 | 0.59 | 0.69 | 0.52 | 1.06 | 2.05 |
4-cholesten-3-one | 1.24 | 1.05 | 1.51 | 0.85 | 1.22 | 1.43 |
Campesterol | 1.13 | 0.97 | 1.3 | 0.78 | 1.07 | 1.37 |
Nucleotides, vitamins | ||||||
Guanine | 0.67 | 0.79 | 0.53 | 1.41 | 0.89 | 0.63 |
5-hydroxymethylcytidine | 1.75 | 1.75 | 1.22 | 1.08 | 0.49 | 0.45 |
N1-Methyl-2-pyridone-5-carboxamide | 1.21 | 1.01 | 1.16 | 0.53 | 1.01 | 1.88 |
alpha-tocopherol | 1.2 | 1.13 | 1.33 | 0.89 | 1.08 | 1.21 |
Pyridoxate | 2.06 | 1.79 | 1.68 | 0.8 | 0.69 | 0.87 |
2-isopropylmalate | 0.66 | 0.83 | 1 | 1.18 | 2.34 | 1.98 |
equol sulfate | 1.22 | 1.35 | 1.79 | 0.84 | 1.72 | 2.04 |
stachydrine | 0.75 | 0.56 | 0.58 | 0.69 | 0.77 | 1.12 |
4-vinylguaiacol sulfate | 1.22 | 0.87 | 1.12 | 0.66 | 0.79 | 1.42 |
2,5-dimethylphenol sulfate | 1.24 | 1.24 | 1.45 | 0.87 | 1.1 | 1.26 |
2,4-dichlorophenol sulfate | 1.64 | 1.27 | 1.85 | 0.75 | 1.55 | 2.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jewell, D.E.; Jackson, M.I. Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals 2020, 10, 2310. https://doi.org/10.3390/ani10122310
Jewell DE, Jackson MI. Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals. 2020; 10(12):2310. https://doi.org/10.3390/ani10122310
Chicago/Turabian StyleJewell, Dennis E., and Matthew I. Jackson. 2020. "Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat" Animals 10, no. 12: 2310. https://doi.org/10.3390/ani10122310
APA StyleJewell, D. E., & Jackson, M. I. (2020). Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals, 10(12), 2310. https://doi.org/10.3390/ani10122310