Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Animals and Whole Genome Sequencing
2.3. Reads Alignment and Variations Calling
2.4. Detection of Selected Loci
2.5. Bioinformatics Analysis of Breed Specific SNVs
3. Results
3.1. Genome Resequencing of Six Donkey Breeds
3.2. Identification of Coding SNVs and Short Insertions/Deletions
3.3. Identification of Selected Loci and Candidate Genes
4. Discussion
4.1. Coat Color
4.2. Body Size
4.3. Motion Capacity and High-Altitude Adaptation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SNVs | single nucleotide variants |
di | unbiased estimates of pairwise fixation index |
ZHp | Z-transformed heterozygosity |
WGS | Whole-genome sequencing |
PCA | principal component analysis |
MAF | minor allelic frequency |
Fst | fixation index |
References
- Diao, S.-Q.; Luo, Y.-Y.; Ma, Y.-L.; Deng, X.; He, Y.-T.; Gao, N.; Zhang, H.; Li, J.-Q.; Chen, Z.-M.; Zhang, Z. Genome-wide detection of selective signatures in a Duroc pig population. J. Integr. Agric. 2018, 17, 2528–2535. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Zhang, K.; Fang, C.; Xie, S.; Du, X.; Li, X.; Ni, D.; Zhao, S. Genomic Analysis To Identify Signatures of Artificial Selection and Loci Associated with Important Economic Traits in Duroc Pigs. G3 (BethesdaMd.) 2018, 8, 3617–3625. [Google Scholar] [CrossRef]
- Rubin, C.-J.; Megens, H.-J.; Martinez Barrio, A.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, Ö.; Jern, P.; Jørgensen, C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [Google Scholar] [CrossRef]
- Rubin, C.-J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef]
- Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Zhang, Y.; Mrode, R.; Mujibi, F.D.N. Signatures of Selection in Admixed Dairy Cattle in Tanzania. Front. Genet. 2018, 9, 607. [Google Scholar] [CrossRef] [PubMed]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Szmatoła, T.; Majewska, A.; Sosin-Bzducha, E.; Bugno-Poniewierska, M. Diversifying selection signatures among divergently selected subpopulations of Polish Red cattle. J. Appl. Genet. 2019, 60, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Bruford, M.W.; Barbato, M.; Orozco-terWengel, P.; Martínez, R.; Sevane, N. Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics. Evol. Appl. 2019, 12, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Ahbara, A.; Bahbahani, H.; Almathen, F.; Al Abri, M.; Agoub, M.O.; Abeba, A.; Kebede, A.; Musa, H.H.; Mastrangelo, S.; Pilla, F.; et al. Genome-Wide Variation, Candidate Regions and Genes Associated With Fat Deposition and Tail Morphology in Ethiopian Indigenous Sheep. Front. Genet. 2018, 9, 699. [Google Scholar] [CrossRef]
- Lv, F.-H.; Agha, S.; Kantanen, J.; Colli, L.; Stucki, S.; Kijas, J.W.; Joost, S.; Li, M.-H.; Ajmone Marsan, P. Adaptations to climate-mediated selective pressures in sheep. Mol. Biol. Evol. 2014, 31, 3324–3343. [Google Scholar] [CrossRef]
- Bertolini, F.; Servin, B.; Talenti, A.; Rochat, E.; Kim, E.S.; Oget, C.; Palhière, I.; Crisà, A.; Catillo, G.; Steri, R.; et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. Gse 2018, 50, 57. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Xie, M.; Arefnezhad, B.; Wang, Z.; Wang, W.; Feng, S.; Huang, G.; Guan, R.; Shen, W.; et al. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genom. 2015, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Oget, C.; Servin, B.; Palhière, I. Genetic diversity analysis of French goat populations reveals selective sweeps involved in their differentiation. Anim. Genet. 2019, 50, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, E.; Ratnakumar, A.; Arendt, M.-L.; Maqbool, K.; Webster, M.T.; Perloski, M.; Liberg, O.; Arnemo, J.M.; Hedhammar, A.; Lindblad-Toh, K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 2013, 495, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Wiener, P.; Pong-Wong, R. A regression-based approach to selection mapping. J. Hered. 2011, 102, 294–305. [Google Scholar] [CrossRef]
- Depaulis, F.; Veuille, M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol. Biol. Evol. 1998, 15, 1788–1790. [Google Scholar] [CrossRef][Green Version]
- Voight, B.F.; Kudaravalli, S.; Wen, X.; Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 2006, 4, e72. [Google Scholar]
- Sambrook, P.N.; Champion, G.D.; Browne, C.D.; Cairns, D.; Cohen, M.L.; Day, R.O.; Graham, S.; Handel, M.; Jaworski, R.; Kempler, S. Corticosteroid injection for osteoarthritis of the knee: Peripatellar compared to intra-articular route. Clin. Exp. Rheumatol. 1989, 7, 609–613. [Google Scholar]
- Huang, J.; Zhao, Y.; Bai, D.; Shiraigol, W.; Li, B.; Yang, L.; Wu, J.; Bao, W.; Ren, X.; Jin, B.; et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci. Rep. 2015, 5, 14106. [Google Scholar] [CrossRef][Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Sun, T.; Shen, J.; Achilli, A.; Chen, N.; Chen, Q.; Dang, R.; Zheng, Z.; Zhang, H.; Zhang, X.; Wang, S.; et al. Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes. GigaScience 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Renaud, G.; Petersen, B.; Seguin-Orlando, A.; Bertelsen, M.F.; Waller, A.; Newton, R.; Paillot, R.; Bryant, N.; Vaudin, M.; Librado, P.; et al. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 2018, 4, eaaq0392. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-J.; Xie, W.-M.; Su, R.; Ge, Q.-L.; Chen, H.; Shen, S.-Y.; Lei, C.-Z. African origin of Chinese domestic donkeys. Yi Chuan Hered. 2008, 30, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Pan, N.; Ishfaq, A.H.; Gemingguli, M.; Baizilaitibei, A.; Gulibaheti, D.; Yaping, F.; Haiyang, W.; Rasool, A.A.; Changyi, X. Detecting the Population Structure and Scanning for Signatures of Selection in Horses (Equus caballus) From Whole-Genome Sequencing Data. Evol. Bioinform. Online 2018, 14, 117693431877510. [Google Scholar]
- Akey, J.M.; Ruhe, A.L.; Akey, D.T.; Wong, A.K.; Connelly, C.F.; Madeoy, J.; Nicholas, T.J.; Neff, M.W. Tracking footprints of artificial selection in the dog genome. Proc. Natl. Acad. Sci. USA 2010, 107, 1160–1165. [Google Scholar] [CrossRef]
- Rieder, S.; Taourit, S.; Mariat, D.; Langlois, B.; Guérin, G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2001, 12, 450–455. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef]
- Bai, D.-Y.; Yang, L.-H.; Unerhu, U.; Zhao, Y.-P.; Zhao, Q.-N.; Hasigaowa, H.; Dugarjaviin, M. Effects of Kit gene on coat depigmentation in white horses. Yi Chuan Hered. 2011, 33, 1171–1178. [Google Scholar] [CrossRef]
- Shi, K.-R.; Wang, A.-G.; Li, N.; Deng, X.-M. Effect study of white locus (I) on coat color inheritance in Chinese native pig breeds. Yi Chuan Xue Bao Acta Genet. Sin. 2005, 32, 275–281. [Google Scholar]
- Abitbol, M.; Legrand, R.; Tiret, L. A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys. Genet. Sel. Evol. Gse 2015, 47, 28. [Google Scholar] [CrossRef]
- Li, B.; He, X.-L.; Zhao, Y.-P.; Wang, X.-J.; Manglai, D.; Zhang, Y.-R. Molecular basis and applicability in equine color genetics. Yi Chuan Hered. 2010, 32, 1133–1140. [Google Scholar]
- Schröder, W.; Klostermann, A.; Stock, K.F.; Distl, O. A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses. Anim. Genet. 2012, 43, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Simonson, T.S.; Yang, Y.; Huff, C.D.; Yun, H.; Qin, G.; Witherspoon, D.J.; Bai, Z.; Lorenzo, F.R.; Xing, J.; Jorde, L.B.; et al. Genetic evidence for high-altitude adaptation in Tibet. Science 2010, 329, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, S.; Jin, L.; Zhou, G.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.L.; Chen, L.; Ma, J.; et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 2013, 45, 1431–1438. [Google Scholar] [CrossRef]
Breed | Raw Data (G) | Clean Data (G) | Reads Number (M) | Reads for Alignment (%) | Sequence Coverage |
---|---|---|---|---|---|
DZD | 33.30 | 33.19 | 214.63 | 214.38(99.88) | 11.23× |
GLD | 31.70 | 31.60 | 210.92 | 210.71(99.90) | 11.15× |
GZD | 37.12 | 36.99 | 246.83 | 246.57(99.89) | 12.88× |
KLD | 33.86 | 33.76 | 225.34 | 225.11(99.90) | 11.81× |
QHD | 32.09 | 31.95 | 213.04 | 212.82(99.90) | 11.18× |
XJD | 34.07 | 33.93 | 205.54 | 205.30(99.88) | 10.74× |
Breed | Number of Animals | SNVs Number | SNVs | Coding SNVs | ||
---|---|---|---|---|---|---|
Homozygote | Heterozygote (%) | Nonsynonymous Mutation (%) | Synonymous Mutation | |||
DZD | 9 | 4,372,377 | 490,631 | 3,881,746(88.78) | 21,996(47.76) | 24,057 |
GLD | 10 | 4,548,452 | 336,032 | 4,212,420(92.61) | 23,036(46.55) | 26,449 |
GZD | 10 | 4,658,120 | 320,497 | 4,337,623(93.12) | 23,446(47.91) | 25,489 |
KLD | 10 | 4,607,547 | 339,569 | 4,267,978(92.63) | 22,821(47.51) | 25,213 |
QHD | 9 | 4,480,050 | 390,000 | 4,090,050(91.29) | 23,589(46.0) | 27,688 |
XJD | 9 | 4,455,917 | 397,306 | 4,058,611(91.08) | 22,963(46.96) | 25,937 |
Candidate Gene | Scaffold | Annotation | ZHp | di |
---|---|---|---|---|
Dezhou donkey | ||||
TBX3 | NW_014638181.1 | T-box 3 | −7.34 | 8.55 |
NCAPG | NW_014637278.1 | non-SMC (spondylo-metaphyseal chondrodysplasia) condensin I complex subunit G | −7.34 | 9.77 |
LCOR | NW_014638419.1 | ligand dependent nuclear receptor corepressor | −7.34 | 9.60 |
ASIP | NW_014638605.1 | agouti signaling protein | −7.20 | 9.50 |
Guola donkey | ||||
BCOR | NW_014638463.1 | B-cell CLL/lymphoma 6 corepressor | −9.90 | 9.89 |
GABPA | NW_014638188.1 | GA binding protein transcription factor subunit alpha | −9.90 | 9.66 |
LCOR | NW_014638419.1 | ligand dependent nuclear receptor corepressor | −9.90 | 9.54 |
Kulun donkey | ||||
BCOR | NW_014638463.1 | B-cell CLL/lymphoma 6 corepressor | −9.98 | 9.95 |
TBX3 | NW_014638181.1 | T-box 3 | −9.98 | 9.89 |
LCOR | NW_014638419.1 | ligand dependent nuclear receptor corepressor | −9.98 | 9.88 |
Qinghai donkey | ||||
GABPA | NW_014638188.1 | GA binding protein transcription factor subunit alpha | −9.60 | 9.86 |
CDKL5 | NW_014638744.1 | cyclin dependent kinase like 5 | −9.60 | 9.85 |
LOC106830211(HBB) | NW_014637421.1 | hemoglobin subunit beta | −9.60 | 9.88 |
BCOR | NW_014638463.1 | B-cell CLL/lymphoma 6 corepressor | −9.60 | 9.98 |
GLDC | NW_014638041.1 | glycine decarboxylase | −9.60 | 9.98 |
Xinjiang donkey | ||||
KITLG | NW_014638016.1 | Receptor tyrosine kinase(KIT) ligand | −9.60 | 9.95 |
LCOR | NW_014638419.1 | ligand dependent nuclear receptor corepressor | −9.60 | 9.88 |
ACSL4 | NW_014638105.1 | acyl-CoA synthetase long chain family member 4 | −9.60 | 9.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Fan, Y.; Wang, G.; Lai, Z.; Gao, Y.; Wu, F.; Lei, C.; Dang, R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals 2020, 10, 1823. https://doi.org/10.3390/ani10101823
Zhou Z, Fan Y, Wang G, Lai Z, Gao Y, Wu F, Lei C, Dang R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals. 2020; 10(10):1823. https://doi.org/10.3390/ani10101823
Chicago/Turabian StyleZhou, Zihui, Yingzhi Fan, Gang Wang, Zhenyu Lai, Yuan Gao, Fei Wu, Chuzhao Lei, and Ruihua Dang. 2020. "Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations" Animals 10, no. 10: 1823. https://doi.org/10.3390/ani10101823
APA StyleZhou, Z., Fan, Y., Wang, G., Lai, Z., Gao, Y., Wu, F., Lei, C., & Dang, R. (2020). Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals, 10(10), 1823. https://doi.org/10.3390/ani10101823