Nitrogen Management in Plant Cultivation

A special issue of Nitrogen (ISSN 2504-3129).

Deadline for manuscript submissions: 31 March 2026 | Viewed by 782

Special Issue Editors


E-Mail Website
Guest Editor
Department of International Agricultural Development, Tokyo University of Agriculture, Tokyo, Japan
Interests: effects of nitrogen on growth; physiology; yield quality of plants

E-Mail Website
Guest Editor
Department of Agronomy, University of Almeria, Carretera de Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
Interests: optical sensors; plant-soil interactions; precision agriculture; N fertilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nitrogen (N) is one of the most critical macronutrients for plant growth and productivity. Its availability, form, and management play a pivotal role in shaping crop yield, quality, and environmental sustainability. However, nitrogen use efficiency (NUE) in modern agriculture remains low, leading to significant nitrogen losses through leaching, volatilization, and denitrification. These losses not only reduce economic returns for farmers but also contribute to environmental issues such as water contamination and greenhouse gas emissions.

This Special Issue, titled “Nitrogen Management in Plant Cultivation”, brings together recent advances and innovative strategies for optimizing nitrogen use in diverse cropping systems. It explores a wide range of topics, including nitrogen uptake and assimilation, soil–nitrogen interactions, biofertilizers, genetic improvement for NUE, and precise nitrogen application technologies. By integrating multidisciplinary approaches, this Special Issue aims to provide a platform for researchers and practitioners to share knowledge and promote sustainable nitrogen management practices that enhance both agricultural productivity and environmental stewardship.

We invite contributions that offer novel insights, practical applications, and policy implications for improving nitrogen efficiency in plant cultivation systems globally.

We look forward to receiving your contributions.

Dr. Nasratullah Habibi
Dr. Francisco Padilla
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nitrogen is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nitrogen use efficiency (NUE)
  • nitrogen cycling
  • nitrogen uptake and assimilation
  • soil–plant nitrogen interactions
  • soil fertility management
  • nitrogen fertilization strategies
  • precision nitrogen management
  • sensor-based nitrogen management
  • variable rate nitrogen fertilization
  • sustainable nitrogen management
  • agroecosystem sustainability
  • greenhouse gas emissions
  • nitrogen-responsive crops
  • biofertilizers and biostimulants
  • genetic improvement for NUE

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2611 KB  
Article
Nitrogen Matters: Assessing the Effects of Nitrogen Fertilization on Maize Growth and Grain Productivity
by Nasratullah Habibi, Zarir Sharaf, Mohammad Yousuf Fakoor, Shafiqullah Aryan, Abdul Basir Mahmoodzada, Amruddin Fakhri and Shah Mahmoud Faqiri
Nitrogen 2025, 6(4), 115; https://doi.org/10.3390/nitrogen6040115 - 16 Dec 2025
Viewed by 220
Abstract
Nitrogen deficiency is a major constraint on maize (Zea mays L.) productivity in Afghanistan, where poor soil fertility limits yields. This study investigated the effect of urea fertilizer on maize growth, physiology, and yield under semi-arid conditions in Balkh Province with a [...] Read more.
Nitrogen deficiency is a major constraint on maize (Zea mays L.) productivity in Afghanistan, where poor soil fertility limits yields. This study investigated the effect of urea fertilizer on maize growth, physiology, and yield under semi-arid conditions in Balkh Province with a Calcisols soil type, focusing on maize cultivated for grain production. A field experiment was conducted in 2019 using a randomized complete block design with three replications and four nitrogen levels: 0 (control), 38.4, 76.8, and 115.2 kg ha−1. The region consists of fertile alluvial plains suitable for crop cultivation, though maize productivity is constrained by soil nutrient limitations, especially nitrogen deficiency. The soil at the experimental site is silty loam in texture, moderately fertile with alkaline pH (8.1), low organic matter (0.5%), and limited available nitrogen (15 mg kg−1). Growth traits (plant height, leaf number, leaf area, SPAD value), physiological parameters (leaf area index, crop growth rate, biomass), and yield components (cob length, cob diameter, seed number, 100-seed weight, biological yield, and Brix content) were recorded. Results showed that nitrogen application significantly improved all traits compared to the control. The highest values for plant height (260.2 cm), cob length (31.67 cm), biological yield (216.6 t ha−1), and Brix content (8.6%) were observed at 115.2 kg ha−1, although 76.8 kg ha−1 produced nearly similar results. Correlation analysis revealed strong positive associations between SPAD values, vegetative traits, and yield. The findings indicate that 115.2 kg ha−1 urea is an efficient and practical nitrogen rate for enhancing maize productivity under Afghan conditions. Full article
(This article belongs to the Special Issue Nitrogen Management in Plant Cultivation)
Show Figures

Figure 1

11 pages, 1231 KB  
Article
Application Effects of Clinker-Tea-Waste Compost on Rice Growth and Nutrient Uptake in a Low-Fertility Paddy Field
by Wataru Shiraishi, Nobuki Morita, Yo Toma and Hideto Ueno
Nitrogen 2025, 6(4), 114; https://doi.org/10.3390/nitrogen6040114 - 12 Dec 2025
Viewed by 142
Abstract
Sustainable recycling of organic residues and industrial byproducts is crucial for soil fertility and environmental sustainability. This study evaluated the effects of clinker-tea-waste compost (CTC) on rice growth, nutrient uptake, and soil chemical properties in a low-fertility paddy field over two years. In [...] Read more.
Sustainable recycling of organic residues and industrial byproducts is crucial for soil fertility and environmental sustainability. This study evaluated the effects of clinker-tea-waste compost (CTC) on rice growth, nutrient uptake, and soil chemical properties in a low-fertility paddy field over two years. In 2017, CTC was applied at 12, 18, and 22 Mg ha−1, while chemical fertilizer (CF) served as control. In 2018, all treatments received equal CF to assess residual effects. The results showed a limited immediate nitrogen supply in 2017, with no significant differences in rice growth, yield, or soil ammonium nitrogen (AN) among treatments. However, significant residual nitrogen effects emerged in 2018, with higher soil AN concentrations, nitrogen uptake indices, and rice yields in plots with higher CTC rates than in 2017. Si availability from clinker ash was evident immediately after application in 2017, correlating positively with rice stover Si content and CTC application rate. However, its residual effect disappeared in 2018 when CTC was discontinued. These findings demonstrate the complementary nutrient supply of CTC, with delayed nitrogen availability from tea residues and short-lived silicon release from clinker ash. This study highlights the potential of CTC for enhancing soil fertility and crop productivity in rice cultivation systems. Full article
(This article belongs to the Special Issue Nitrogen Management in Plant Cultivation)
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 770 KB  
Review
Optimizing Nitrogen Inputs for High-Yielding and Environmentally Sustainable Potato Systems
by Ivana Varga, Marina Bešlić, Manda Antunović, Jurica Jović and Antonela Markulj Kulundžić
Nitrogen 2025, 6(4), 117; https://doi.org/10.3390/nitrogen6040117 - 16 Dec 2025
Viewed by 131
Abstract
For successful potato production, maintaining a proper balance of mineral nutrients is crucial, as high yields cannot be achieved in fields lacking essential elements. The exact amount of fertilizer should be determined based on the expected yield, crop nutrient requirements, soil analysis, cultivation [...] Read more.
For successful potato production, maintaining a proper balance of mineral nutrients is crucial, as high yields cannot be achieved in fields lacking essential elements. The exact amount of fertilizer should be determined based on the expected yield, crop nutrient requirements, soil analysis, cultivation technology, and specific growing conditions. N (N) plays a crucial role in potato tuber growth. It is involved in the synthesis of proteins that are stored in the tubers and helps prolong the lifespan of the leaf canopy. On average, potato crops require a N supply of 80–120 kg/ha. Based on several studies, N fertilization significantly increased potato tuber yield, while dry matter content showed a slight decline. This indicates that higher N rates can enhance yield but potentially decrease tuber quality. To achieve high tuber yields while preserving desirable dry matter and starch content, the optimal N rate is approximately 100–120 kg N/ha. Although higher N inputs (>150 kg N/ha) may temporarily boost vegetative growth, they ultimately delay tuber maturation, reduce dry matter and starch accumulation, and increase production costs due to inefficient fertilizer use. Excessive N fertilization accelerates soil degradation and contributes to environmental pollution (soil acidification, NO3 leaching, NH3 emissions, NO, N2O, and NO2, leading to additional long-term ecological burdens. Therefore, minimizing N losses through sustainable soil management is essential for maintaining both farm profitability and environmental protection. Integrating N fertilization with biofertilizers—such as beneficial bacteria that colonize roots, enhance nutrient uptake, and stimulate root development—can improve yields while reducing reliance on costly synthetic fertilizers. This supports both soil fertility and crop productivity. Full article
(This article belongs to the Special Issue Nitrogen Management in Plant Cultivation)
Show Figures

Figure 1

Back to TopTop