Blockchain is an emerging technology that is being used to create innovative solutions in many areas, including healthcare. Nowadays healthcare systems face challenges, especially with security, trust, and remote data access. As patient records are digitized and medical systems become more interconnected, the risk of sensitive data being exposed to cyber threats has grown. In this evolving time for healthcare, it is important to find a balance between the advantages of new technology and the protection of patient information. The combination of blockchain–InterPlanetary File System technology and conventional electronic health record (EHR) management has the potential to transform the healthcare industry by enhancing data security, interoperability, and transparency. However, a major issue that still exists in traditional healthcare systems is the continuous problem of remote data unavailability. This research examines practical methods for safely accessing patient data from any location at any time, with a special focus on IPFS servers and blockchain technology in addition to group signature encryption. Essential processes like maintaining the confidentiality of medical records and safe data transmission could be made easier by these technologies. Our proposed framework enables secure, remote access to patient data while preserving accessibility, integrity, and confidentiality using Ethereum blockchain, IPFS, and group signature encryption, demonstrating hospital-scale scalability and efficiency. Experiments show predictable throughput reduction with file size (200 → 90 tps), controlled latency growth (90 → 200 ms), and moderate gas increase (85k → 98k), confirming scalability and efficiency under varying healthcare workloads. Unlike prior blockchain–IPFS–encryption frameworks, our system demonstrates hospital-scale feasibility through the practical integration of group signatures, hierarchical key management, and off-chain erasure compliance. This design enables scalable anonymous authentication, immediate blocking of compromised credentials, and efficient key rotation without costly re-encryption.