Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility
Abstract
:1. Introduction
2. Theoretical Prediction Models
3. Experimental Section
3.1. Materials
3.2. Preparation of Multicomponent Crystal Forms
3.3. Virtual Coformer Screening
3.4. Powder X-ray Diffraction (PXRD)
3.5. Thermal Analysis
3.6. Fourier-Transformed Infrared Spectrometer (FTIR)
3.7. NMR Spectroscopy
3.8. Solubility Measurement
4. Results and Discussion
4.1. Virtual Coformer Screening
4.2. Solid-State Characterization
4.2.1. Power X-ray Diffraction (PXRD) Analysis
4.2.2. Thermal Analysis
4.2.3. FTIR Spectroscopy
4.2.4. 1H-NMR Spectroscopy
4.2.5. Intermolecular Interaction Analysis
4.3. Solubility Properties of SHR0302 Multicomponent Crystalline Forms
4.4. Evaluation of COSMO-RS Prediction Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453, 101–125. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef]
- Rajput, L.; Sanphui, P.; Desiraju, G.R. New solid forms of the anti-HIV drug etravirine: Salts, cocrystals, and solubility. Cryst. Growth Des. 2013, 13, 3681–3690. [Google Scholar] [CrossRef]
- Kaplinsky, E. Sacubitril/valsartan in heart failure: Latest evidence and place in therapy. Ther. Adv. Chronic Dis. 2016, 7, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, X.; Wang, H.; He, Z.; Liu, H. Sacubitril-valsartan cocrystal revisited: Role of polymer excipients in the formulation. Expert Opin. Drug Deliv. 2021, 18, 515–526. [Google Scholar] [CrossRef]
- Almansa, C.; Merce, R.; Tesson, N.; Farran, J.; Tomas, J.; Plata-Salaman, C.R. Co-Crystal of Tramadol hydrochloride–Celecoxib (CTC): A novel API–API co-crystal for the treatment of pain. Cryst. Growth Des. 2017, 17, 1884–1892. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef] [Green Version]
- Liongue, C.; Sertori, R.; Ward, A.C. Evolution of cytokine receptor signaling. J. Immunol. 2016, 197, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Stark, G.R.; Darnell, J.E., Jr. The JAK-STAT pathway at twenty. Immunity 2012, 36, 503–514. [Google Scholar] [CrossRef] [Green Version]
- McLornan, D.P.; Pope, J.E.; Gotlib, J.; Harrison, C.N. Current and future status of JAK inhibitors. Lancet 2021, 398, 803–816. [Google Scholar] [CrossRef]
- Wu, H.; Yan, S.; Chen, J.; Luo, X.; Li, P.; Jia, X.; Dai, X.; Wang, C.; Huang, Q.; Liu, L.; et al. JAK1-STAT3 blockade by JAK inhibitor SHR0302 attenuates inflammatory responses of adjuvant-induced arthritis rats and decreases Th17 and total B cells. Jt. Bone Spine 2016, 83, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, L.; Ding, Y.; Tao, X.; Ji, C.; Dong, X.; Lu, J.; Wu, L.; Wang, R.; Lu, Q.; et al. Efficacy and Safety of SHR0302, a Highly Selective Janus Kinase 1 Inhibitor, in Patients with Moderate to Severe Atopic Dermatitis: A Phase II Randomized Clinical Trial. Am. J. Clin. Dermatol. 2021, 22, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, Q.; Yang, J.; Wang, A.; Zhang, F.; Qiu, H.; Zhou, K.; Wang, P.; Ding, X.; Yuan, X.; et al. Preventive and Therapeutic Effects of a Novel JAK Inhibitor SHR0302 in Acute Graft-Versus-Host Disease. Cell Transplant. 2021, 30, 9636897211033778. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008; pp. 61–92. [Google Scholar]
- Marques, M.R.; Choo, Q.; Ashtikar, M.; Rocha, T.C.; Bremer-Hoffmann, S.; Wacker, M.G. Nanomedicines-tiny particles and big challenges. Adv. Drug Deliv. Rev. 2019, 151, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Fernández Casares, A.; Nap, W.M.; Ten Figás, G.; Huizenga, P.; Groot, R.; Hoffmann, M. An evaluation of salt screening methodologies. J. Pharm. Pharmacol. 2015, 67, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, B.; Jia, L.; Wang, Y.; Wang, M.; Yang, H.; Qiao, Y.; Gong, J.; Tang, W. Tuning physicochemical properties of antipsychotic drug aripiprazole with multicomponent crystal strategy based on structure and property relationship. Cryst. Growth Des. 2020, 20, 3747–3761. [Google Scholar] [CrossRef]
- Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601–4610. [Google Scholar] [CrossRef]
- Cruz-Cabeza, A.J. Acid–base crystalline complexes and the p K a rule. CrystEngComm 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm. 2011, 407, 63–71. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS solvation models. WIREs. Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. Computational screening of drug solvates. Pharm. Res. 2016, 33, 2794–2804. [Google Scholar] [CrossRef]
- Abramov, Y.A.; Loschen, C.; Klamt, A. Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation. J. Pharm. Sci. 2012, 101, 3687–3697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Li, J.; Xiao, Y.; Ji, X.; Li, C.; Zhang, B.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; et al. New salts and cocrystals of pymetrozine with improvements on solubility and humidity stability: Experimental and theoretical study. Cryst. Growth Des. 2021, 21, 2371–2388. [Google Scholar] [CrossRef]
- Lin, B.; Liu, Y.; Wang, M.; Wang, Y.; Du, S.; Gong, J.; Wu, S. Intermolecular interactions and solubility behavior of multicomponent crystal forms of orotic acid: Prediction and experiments. Cryst. Growth Des. 2021, 21, 1473–1481. [Google Scholar] [CrossRef]
- Fábián, L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst. Growth Des. 2009, 9, 1436–1443. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. J. Pharm. Pharmacol. 2015, 67, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Gonnella, N.C.; Krawiec, M.; Xin, D.; Aakeröy, C.B. Evaluating the predictive abilities of protocols based on hydrogen-bond propensity, molecular complementarity, and hydrogen-bond energy for cocrystal screening. Cryst. Growth Des. 2020, 20, 7320–7327. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Pallipurath, A.R.; Civati, F.; Eziashi, M.; Omar, E.; McArdle, P.; Erxleben, A. Tailoring Cocrystal and Salt Formation and Controlling the Crystal Habit of Diflunisal. Cryst. Growth Des. 2016, 16, 6468–6478. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wu, G.; Gao, X.; Shen, L. A Bisulfate of JAK Kinase Inhibitor and Its Preparation Method. CN104470927B, 4 May 2016. [Google Scholar]
Water | 0.1 M HCl | |
---|---|---|
SHR0302 | 0.10 | \ |
SHR0302-SAL | 0.17 | 1.56 |
SHR0302-CA | 0.33 | 1.30 |
SHR0302-26DHBA | 0.02 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Shi, G.; Sun, J.; Li, S.; Gao, W.; Hu, Y.; Zu, C.; Tang, W.; Gong, J. Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility. Crystals 2022, 12, 1722. https://doi.org/10.3390/cryst12121722
Xie Y, Shi G, Sun J, Li S, Gao W, Hu Y, Zu C, Tang W, Gong J. Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility. Crystals. 2022; 12(12):1722. https://doi.org/10.3390/cryst12121722
Chicago/Turabian StyleXie, Yujiang, Genpei Shi, Jie Sun, Si Li, Wei Gao, Yimin Hu, Chang Zu, Weiwei Tang, and Junbo Gong. 2022. "Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility" Crystals 12, no. 12: 1722. https://doi.org/10.3390/cryst12121722
APA StyleXie, Y., Shi, G., Sun, J., Li, S., Gao, W., Hu, Y., Zu, C., Tang, W., & Gong, J. (2022). Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility. Crystals, 12(12), 1722. https://doi.org/10.3390/cryst12121722