MBHAN: Motif-Based Heterogeneous Graph Attention Network
Abstract
:1. Introduction
2. Related Work
2.1. Graph Neural Networks
2.2. Motifs
3. Preliminary Information
4. The Proposed Method
4.1. Node-Level Attention Mechanism
4.2. Motif Subgraph-Level Attention Mechanism
4.3. Node Feature Mapping Mechanism
Algorithm 1 The Overall MBHAN Process |
1: Input: A heterogeneous graph: ;
2: Node types: ; 3: A random walk + Skip-Gram Parameters set: ; 4: The inherent semantic features contained in some types of nodes: ; 5: The collection of motif subgraphs with node-type connectivity patterns based on the heterogeneous graph, : ; 6: The number of attention heads: ; |
7: Output: Node representation learning vectors: ; |
8: Generate node “structure” features using the random walk strategy;
9: Random Walk, (); 10: for every node type, , in do: 11: if does not have semantic features do; 12: ; 13: Integration of all node features →; 14: for every motif sub-graph, , in ; |
15: for do; |
16: for in do; |
17: find, for , the neighboring nodes set, ; |
18: for do;
19: Calculate the weight coefficient ; |
20: Calculate the motif subgraph-specific node embedding;
21: ; |
22: Calculating embeddings learned from all attention mechanisms;
23: ; 24: Calculate the weight of the motif subgraphs, ; 25: Calculate the -type node embedding ; |
26: Fuse all types of node embedding, ;
27: Calculate the downstream task-specific loss functions; 28: Back-propagate and update the parameters in MBHAN; |
29: return . |
5. Experiments
5.1. Datasets
5.2. Baseline Algorithms
5.3. Implementation Details
5.4. Multi-Class Classification
5.5. Clustering
5.6. Comparative Statistical Tests for the Different Algorithms
5.7. Analysis of the Hyperparameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, T.; Qi, S.; Wang, W.; Shen, J.; Zhu, S.C. Cascaded Parsing of Human-Object Interaction Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2827–2840. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Li, L.; Li, X.; Feng, C.M.; Li, J.; Shao, L. Group-Wise Learning for Weakly Supervised Semantic Segmentation. IEEE Trans. Image Process. 2022, 31, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zemel, R.; Brockschmidt, M.; Tarlow, D. Gated Graph Sequence Neural Networks. In Proceedings of the ICLR’16, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw. 2009, 20, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Gori, M.; Monfardini, G.; Scarselli, F. A New Model for Learning in Graph Domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005. [Google Scholar]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den, B.R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates Inc.: Barcelona, Spain, 2016; pp. 3844–3852. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Long Beach, CA, USA, 2017; pp. 1025–1035. [Google Scholar]
- Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Ashish, V.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Long Beach, CA, USA, 2017; pp. 6000–6010. [Google Scholar]
- Dzmitry, B.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Kelvin, X.; Ba, J.L.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; JMLR.org: Lille, France, 2015; Volume 37, pp. 2048–2057. [Google Scholar]
- Zhixing, T.; Wang, M.; Xie, J.; Chen, Y.; Shi, X. Deep Semantic Role Labeling with Self-Attention. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Patrick, V.; Strubell, E.; McCallum, A. Simultaneously Self-Attending to All Mentions for Full-Abstract Biological Relation Extraction. arXiv 2018, arXiv:1802.10569. [Google Scholar]
- Zichao, Y.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E.H. Hierarchical Attention Networks for Document Classification. In Proceedings of the NAACL, San Diego, CA, USA, 12–17 June 2016. [Google Scholar]
- Petar, V.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903. [Google Scholar]
- Zhouhan, L.; Feng, M.; dos Santos, C.N.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A Structured Self-Attentive Sentence Embedding. arXiv 2017, arXiv:1703.03130. [Google Scholar]
- Yizhou, Z.; Xiong, Y.; Kong, X.; Li, S.; Zhu, Y. Deep Collective Classification in Heterogeneous Information Networks. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018. [Google Scholar]
- Xiao, W.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P.S. Heterogeneous Graph Attention Network. In The World Wide Web Conference; Association for Computing Machinery: San Francisco, CA, USA, 2019; pp. 2022–2032. [Google Scholar]
- Shaohua, F.; Zhu, J.; Han, X.; Shi, C.; Hu, L.; Ma, B.; Li, Y. Metapath-Guided Heterogeneous Graph Neural Network for Intent Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 4–8 August 2019; Association for Computing Machinery: Anchorage, AK, USA, 2019; pp. 2478–2486. [Google Scholar]
- Seongjun, Y.; Jeong, M.; Kim, R.; Kang, J.; Kim, H.J. Graph Transformer Networks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Carranza, A.G.; Rossi, R.A.; Rao, A.; Koh, E. Higher-Order Clustering in Complex Heterogeneous Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; Association for Computing Machinery: San Francisco, CA, USA, 2020; pp. 25–35. [Google Scholar]
- Yang, C.; Liu, M.; Zheng, V.W.; Han, J. Node, Motif and Subgraph: Leveraging Network Functional Blocks through Structural Convolution. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28–31 August 2018. [Google Scholar]
- Qian, H.; Lin, F.; Wang, B.; Li, C. Mbrep: Motif-Based Representation Learning in Heterogeneous Networks. Expert Syst. Appl. 2021, 190, 116031. [Google Scholar]
- Dareddy, M.R.; Das, M.; Yang, H. Motif2vec: Motif Aware Node Representation Learning for Heterogeneous Networks. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar]
- Li, Y.; Lou, Z.; Shi, Y.; Han, J. Temporal Motifs in Heterogeneous Information Networks. In Proceedings of the 14th International Workshop on Mining and Learning with Graphs (MLG), London, UK, 20 August 2018. [Google Scholar]
- Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network Motifs: Simple Building Blocks of Complex Networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.U.; Huang, L.; Wang, C. Motif-Preserving Network Representation Learning. J. Front. Comput. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, Z.; Liu, J.; Zhao, G.; Wen, J. Rum: Network Representation Learning Using Motifs. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macau, China, 8–11 April 2019. [Google Scholar]
- Boaz, L.J.; Rossi, R.A.; Kong, X.; Kim, S.; Koh, E.; Rao, A. Graph Convolutional Networks with Motif-Based Attention. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; Association for Computing Machinery: Beijing, China, 2019; pp. 499–508. [Google Scholar]
- Hao, P.; Li, J.; Gong, Q.; Wang, S.; Ning, Y.; Yu, P.S. Graph Convolutional Neural Networks Via Motif-Based Attention. arXiv 2019, arXiv:1811.08270. [Google Scholar]
- Cai, H.; Zheng, V.W.; Chang, K.C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [Google Scholar] [CrossRef]
- Mahmudul, H.A.S.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A Survey of Deep Learning Techniques for Weed Detection from Images. Comput. Electron. Agric. 2021, 184, 106067. [Google Scholar]
- Shervin, M.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning-Based Text Classification: A Comprehensive Review. ACM Comput. Surv. 2021, 54, 62. [Google Scholar]
- Chuxu, Z.; Song, D.; Huang, C.; Swami, A.; Chawla, N.V. Heterogeneous Graph Neural Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: Anchorage, AK, USA, 2019; pp. 793–803. [Google Scholar]
- Ziniu, H.; Dong, Y.; Wang, K.; Sun, Y. Heterogeneous Graph Transformer. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: Taipei, Taiwan, 2020; pp. 2704–2710. [Google Scholar]
- Austin, R.B.; Gleich, D.F.; Leskovec, J. Higher-Order Organization of Complex Networks. Science 2016, 353, 163–166. [Google Scholar]
- Dawei, Z.; Zhang, S.; Yildirim, M.Y.; Alcorn, S.; Tong, H.; Davulcu, H.; He, J. A Local Algorithm for Structure-Preserving Graph Cut. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2017. [Google Scholar]
- Hao, Y.; Benson, A.R.; Leskovec, J.; Gleich, D.F. Local Higher-Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; Association for Computing Machinery: Halifax, NS, Canada, 2017; pp. 555–564. [Google Scholar]
- Le-kui, Z.; Yang, Y.; Ren, X.; Wu, F.; Zhuang, Y. Dynamic Network Embedding by Modeling Triadic Closure Process. In Proceedings of the AAAI, Hilton, New Orleans, 2–7 February 2018. [Google Scholar]
- Tomas, M.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 5–10 December 2013; Curran Associates Inc.: Lake Tahoe, Nevada, 2013; Volume 2, pp. 3111–3119. [Google Scholar]
- Jiawei, H. Mining Heterogeneous Information Networks by Exploring the Power of Links. In Proceedings of the 20th International Conference on Algorithmic Learning Theory, Porto, Portugal, 3–5 October 2009; Springer: Porto, Portugal, 2009. [Google Scholar]
- Bryan, P.; Al-Rfou, R.; Skiena, S. Deepwalk: Online Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 24–27 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 701–710. [Google Scholar]
- Yuxiao, D.; Chawla, N.V.; Swami, A. Metapath2vec: Scalable Representation Learning for Heterogeneous Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; Association for Computing Machinery: Halifax, NS, Canada, 2017; pp. 135–144. [Google Scholar]
- Aditya, G.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; Association for Computing Machinery: San Francisco, CA, USA, 2016; pp. 855–864. [Google Scholar]
- Meng, C.; Ma, X.; Xu, M.; Wang, C. Heterogeneous Information Network Embedding with Meta-Path Based Graph Attention Networks; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Ming, J.; Sun, Y.; Danilevsky, M.; Han, J.; Gao, J. Graph Regularized Transductive Classification on Heterogeneous Information Networks. In Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part I, Barcelona, Spain, 20–24 September 2010; Springer: Barcelona, Spain, 2010; pp. 570–586. [Google Scholar]
- Ziqi, L.; Chen, C.; Yang, X.; Zhou, J.; Li, X.; Song, L. Heterogeneous Graph Neural Networks for Malicious Account Detection. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, New York, NY, USA, 22–26 October 2018; Association for Computing Machinery: Torino, Italy, 2018; pp. 2077–2085. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Nitish, S.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Notation | Explanation |
---|---|
𝓖 | Heterogeneous graph |
𝓥 | Node set |
𝓔 | Link set |
𝒗𝒊 | The -th node |
𝓣 | Type of node set |
𝓡 | Type of link set |
𝒎𝒊 | The -th motif pattern |
𝓖𝒎 | The subgraph in that satisfies the motif pattern, |
The set of neighboring nodes of in | |
𝒉 | Node features |
Importance of node pair in | |
𝒂𝒎 | Node-level attention vector in |
Weight of -based node pair | |
𝒒 | Motif-level attention vector |
𝒘𝒎𝓽 | Importance of -type nodes in |
𝜷𝒎𝓽 | Attention weight of -type nodes in |
𝓩𝓽 | Final representation vector of the -type nodes |
Nodes Type | Nodes Number | Is Labeled | Is Featured | Motif Pattern | |
---|---|---|---|---|---|
DBLP_ four_area | Author (A) | 14475 | ● | ○ | |
Paper (P) | 14376 | ● | ● | ||
Term (T) | 8920 | ○ | ○ | ||
Conference (C) | 20 | ○ | ○ | ||
| |||||
ACM | Author (A) | 7167 | ○ | ○ | |
Paper (P) | 4025 | ● | ● | ||
Subject (S) | 60 | ○ | ○ | ||
Venue (V) | 73 | ○ | ○ | ||
|
Datasets | DBLP_Four_Area | ACM | ||||
---|---|---|---|---|---|---|
Target Nodes | Author | Paper | Paper | |||
Metrics | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 | Mac-F1 | Mic-F1 |
DeepWalk | 85.01 | 85.71 | 84.35 | 84.17 | 84.71 | 85.07 |
metapath2vec | 87.74 | 87.58 | 84.61 | 84.89 | 84.81 | 84.57 |
GCN | 86.47 | 87.09 | 85.84 | 86.58 | 85.77 | 85.29 |
GAT | 88.57 | 89.11 | 87.85 | 89.64 | 87.44 | 87.80 |
HAN | 93.08 | 93.99 | 89.48 | 92.40 | 90.40 | 90.72 |
GTN | 94.14 | 94.17 | 88.80 | 91.64 | 90.77 | 90.68 |
MBHANnon_type | 94.47 | 94.14 | 90.00 | 93.43 | 90.71 | 90.32 |
MBHAN | 95.45 | 95.57 | 90.00 | 93.65 | 91.17 | 90.82 |
Datasets | DBLP_Four_Area | ACM | |
---|---|---|---|
Metrics | NMI | NMI | |
Target Nodes | Author | Paper | Paper |
DeepWalk | 73.49 | 57.91 | 43.89 |
metapath2vec | 66.17 | 53.48 | 22.47 |
GCN | 76.31 | 60.47 | 54.26 |
GAT | 76.80 | 60.70 | 58.47 |
HAN | 79.87 | 62.79 | 61.56 |
GTN | 80.05 | 63.09 | 61.77 |
MBHANnon_type | 81.17 | 63.00 | 60.74 |
MBHAN | 81.75 | 63.14 | 61.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Lin, W.; Tang, M.; Jiang, J. MBHAN: Motif-Based Heterogeneous Graph Attention Network. Appl. Sci. 2022, 12, 5931. https://doi.org/10.3390/app12125931
Hu Q, Lin W, Tang M, Jiang J. MBHAN: Motif-Based Heterogeneous Graph Attention Network. Applied Sciences. 2022; 12(12):5931. https://doi.org/10.3390/app12125931
Chicago/Turabian StyleHu, Qian, Weiping Lin, Minli Tang, and Jiatao Jiang. 2022. "MBHAN: Motif-Based Heterogeneous Graph Attention Network" Applied Sciences 12, no. 12: 5931. https://doi.org/10.3390/app12125931
APA StyleHu, Q., Lin, W., Tang, M., & Jiang, J. (2022). MBHAN: Motif-Based Heterogeneous Graph Attention Network. Applied Sciences, 12(12), 5931. https://doi.org/10.3390/app12125931