Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review
Abstract
:1. Introduction
2. Review Methodology
2.1. Patent Search
- Inclusion criteria:
- (a)
- The patent belongs to a type of lower limb exoskeleton or orthosis.
- (b)
- The patent corresponds to a component of an exoskeleton or lower limb orthosis.
- (c)
- The patent describes the design or manufacturing method of an exoskeleton or lower limb orthosis.
- (d)
- The patent can be registered in any patent office in any country.
- Exclusion criteria:
- (a)
- Related to other devices for members of the body other than the lower one.
- (b)
- Related to complementary systems not related to the knee joint.
- (c)
- Patents are found in more than one database; only the patent found in the first database was considered to avoid duplication of information.
- (d)
- Patents prior to 2011, considering slow progress in development and management.
2.2. Search of Scientific Communications
- Inclusion criteria:
- (a)
- Related to the design of exoskeletons.
- (b)
- Related to the type of exoskeletons and orthoses focused on the type of application.
- (c)
- Related to tests and evaluation metrics of exoskeletons or orthoses.
- (d)
- Related to the exoskeletons of the lower limb or knee joint.
- (e)
- Related to the development of exoskeletons or orthoses.
- (f)
- Exoskeleton manufacturing methods.
- Exclusion criteria:
- (a)
- Related to upper limb exoskeletons.
- (b)
- Related to active or powered exoskeletons.
- (c)
- Related to gait control.
- (d)
- Related to electromyography (EMG)
- (e)
- Duplicate registration.
- (f)
- Articles prior to 2011.
3. Results
3.1. Patentometric Analysis
3.2. Scientometric Analysis
4. Discussion
4.1. Structural Support Elements
4.2. Union Types
4.3. Types of Force Elements Used
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Disability and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/disability-and-health (accessed on 13 August 2021).
- INEGI. La Discapacidad en México; Version 2017; INEGI: Aguascalientes, Mexico, 2014; p. 365. [Google Scholar]
- OECD. The Heavy Burden of Obesity: The Economics of Prevention; OECD: Paris, France, 2019. [Google Scholar] [CrossRef]
- Kapandji, A.I. Fisiologia articular/miembros inferiores/lower limb. Med. Panameri 2010, 2, 400. [Google Scholar]
- Ibarra, L.G.; Segura, V.H.; Chávez, D.D. Las enfermedades y traumatismos del sistema músculo esquelético. In Un Análisis del Instituto Nacional de Rehabilitación de México, Como Base Para su Clasificación y Prevención; Secretaría de Salud: Salud, Mexico, 2013; p. 147. [Google Scholar]
- National Institute of Arthritis and Musculoskeletal and Skin Diseases. What Causes Osteoarthritis, Symptoms & More; NIH: Bethesda, MD, USA, 2019. Available online: https://www.niams.nih.gov/health-topics/osteoarthritis#tab-causes (accessed on 15 February 2021).
- Chen, B.; Ma, H.; Qin, L.-Y.; Gao, F.; Chan, K.-M.; Law, S.-W.; Qin, L.; Liao, W.-H. Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Lovrenovic, Z.; Doumit, M. Review and analysis of recent development of lower extremity exoskeletons for walking assist. In Proceedings of the IEEE EMBS International Student Conference (ISC), Ottawa, ON, Canada, 29–31 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kolakowsky-Hayner, S.A. Safety and Feasibility of using the EksoTM Bionic Exoskeleton to Aid Ambulation after Spinal Cord Injury. Spinal Cord Inj. 2013, 4, 3. [Google Scholar] [CrossRef]
- Zeilig, G.; Weingarden, H.; Zwecker, M.; Dudkiewicz, I.; Bloch, A.; Esquenazi, A. Safety and tolerance of the ReWalk TM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J. Spinal Cord Med. 2012, 35, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, R.J.; Quintero, H.A.; Goldfarb, M. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Kilicarslan, A.; Prasad, S.; Grossman, R.G.; Contreras-Vidal, J.L. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5606–5609. [Google Scholar] [CrossRef] [Green Version]
- Kazerooni, H.; Steger, R. The Berkeley Lower Extremity Exoskeleton. J. Dyn. Syst. Meas. Control 2006, 128, 14–25. [Google Scholar] [CrossRef]
- Pratt, J.; Krupp, B.; Morse, C.; Collins, S. The RoboKnee: An exoskeleton for enhancing strength and endurance during walking. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’ 04, New Orleans, LA, USA, 26 April–1 May 2004; Volume 3, pp. 2430–2435. [Google Scholar] [CrossRef]
- Aliman, N.; Ramli, R.; Haris, S.M. Design and development of lower limb exoskeletons: A survey. Robot. Auton. Syst. 2017, 95, 102–116. [Google Scholar] [CrossRef]
- Herr, H. Exoskeletons and orthoses: Classification, design challenges and future directions. J. NeuroEng. Rehabil. 2009, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Nathanson, J.J. Knee Brace Hinges with Adaptive Motion. CA2550027A1, 2005. Available online: https://patents.google.com/patent/CA2550027A1/en (accessed on 23 February 2021).
- Li, J.; Liu, J.; Wang, Y.; Wang, L. Control Orthosis Knee Joint Hinge during Stance. GB Patent CN103006362A, 2013. Available online: https://patents.google.com/patent/CN103006362A/en?oq=CN103006362A (accessed on 23 April 2021).
- Long, Y.; Zhou, S. Stretching Assisting Orthosis of Knee Joints. GB Patent CN104970908A, 14 October 2015. [Google Scholar]
- Sun, T.; Fang, L.; Zhang, R.; Deng, X.; Hu, J. Knee-Powered Radian Pulley-Type Foot Drop and Hemiplegic Gait Orthosis. GB Patent CN105997320A, 12 October 2016. [Google Scholar]
- Lin, X.; Deng, Q.; Yin, Z.; Qiu, J.; Chen, Y.; Zhou, C. Unlocking Adaptive Exoskeleton Knee Joint Support Plate. GB Patent CN106074094A, 9 November 2016. [Google Scholar]
- Chen, Z.; Wu, Y. Knee Joint Load-Bearing Power Assisting Exoskeleton Device and Working Method Thereof. GB Patent CN106361541A, 1 February 2017. [Google Scholar]
- Zhang, L.; Huang, Q.; Wang, W.; Wang, Z. Gait-Based Wearable Flexible Knee Joint Robot Exoskeleton Facility. GB Patent CN106420279A, 22 February 2017. [Google Scholar]
- Huang, Q.; Zhang, L. Self-Driven Self-Adaption Gait Wearable Knee Joint Walking Aid Device. GB Patent CN106491317A, 15 March 2017. [Google Scholar]
- Chen, S.; Zhao, J.; Wang, M.; Ye, X. Hip and Knee Integrated Joint Device Used for Exoskeleton Robot and Exoskeleton Robot. GB Patent CN106726362A, 31 May 2017. [Google Scholar]
- Fu, C.; Chang, Y.; Wang, W. Quasi-Passive Knee Joint and Ankle Joint Coupling Lower Limb Exoskeleton and Control Method Thereof. GB Patent CN107126348A, 5 September 2017. [Google Scholar]
- Hu, B.; Tan, W.; Lv, H.; Yu, H.; Yu, H. Lower Limb Exoskeleton Knee Joint Based on Torsional Spring Clutch. GB Patent CN107928995A, 20 April 2018. [Google Scholar]
- Xu, G.; Fu, S.; Wang, J.; Yang, P.; Zou, H.; Wang, L.; Ren, D.; Wang, Q.; Li, Y. Intelligent Knee Osteoarthritis Correction Integrated Instrument. GB Patent CN108852584A, 23 November 2018. [Google Scholar]
- Shufeng, T.; Jianguo, C.; Zirui, G.; Wei, L.; Xiangpeng, L. A Knee Joint Exoskeleton Mechanism Driven by a Connecting Rod. GB Patent CN109199799A, 15 January 2019. [Google Scholar]
- Gu, S.; Ru, C.; Zhu, J.; Wang, Y. Lower Limb Knee Joint and Ankle Joint Assisting Exoskeleton Stiffness Adjusting Device. GB Patent CN109276412A, 29 January 2019. [Google Scholar]
- Chen, C. Lower Extremity Exoskeleton Heterogeneous Knee Joint Based on Parallel Elastomer. GB Patent CN109528453A, 29 March 2019. [Google Scholar]
- Guo, K.; Zhang, M.; Zhong, B. Lower Limb Exoskeleton Structure Integrated with Self-Adaptive Knee Joints and Robot. GB Patent CN109620653A, 16 April 2019. [Google Scholar]
- Cui, G.; Zhang, J.; Liu, X.; Li, K.; Zhao, X.; Zhu, L. Wearable Lower-Limb Walking-Assisting Exoskeleton Capable of Imitating Movement Curve of Human Knee Joint. GB Patent CN110464606A, 19 November 2019. [Google Scholar]
- Chen, H.; Xie, D.; Qi, J.; Zhu, X.; Wang, H.; Ma, B.; Zhang, T.; Jia, Y. Knee Joint Orthosis. GB Patent CN110623781A, 31 December 2019. [Google Scholar]
- Li, B.; Yang, Y.; Zhao, H.; Ma, X.; Zhao, X.; Liu, Z. Self-Adaptive Variable-Stiffness In-Vitro Knee Joint Device with Intelligent Tensioning Function. GB Patent CN111110520A, 8 May 2020. [Google Scholar]
- Auberger, R. Knee Orthosis. EU Patent EP2276433A2, 26 January 2011. [Google Scholar]
- Frass, A.; Wayd, K.; Grafinger, J. Joint for Knee Orthotics, Prosthetics and Supports. EU Patent EP2524672B1, 10 April 2019. [Google Scholar]
- Anglada, G.; Girard, F. Device for Holding the Kneecap and Knee Orthosis. EU Patent EP2914217A1, 9 September 2015. [Google Scholar]
- Millet, D. Knee Orthosis Adapted for a Prolonged Sitting Position. EU Patent EP3503853A1, 3 July 2019. [Google Scholar]
- Ninomiya, M. Single Bar Knee-Ankle-Foot Orthosis. Japan Patent JP2014113312A, 26 June 2014. [Google Scholar]
- Amari, T. Knee Joint Mechanism of Movement Assist Device. Japan Patent JP2018171142A, 8 November 2018. [Google Scholar]
- Bryan, K.B.; Jeffrey, T.M.; Russell, S.M. Knee Brace. Japan Patent JP2019058796A, 18 April 2019. [Google Scholar]
- Han, G.B.; Kim, C.W. Reciprocal Action Type Knee Brace by Different Movement in Medial-Lateral Hinge. Korea Patent KR101418833B1, 17 July 2014. [Google Scholar]
- Kim, J.G. Auxiliary Apparatus for Bracing Knee. Korea Patent KR20200052678A, 15 May 2020. [Google Scholar]
- Nelson, R. Self-Adjusting Knee Brace. U.S. Patent US20040176715A1, 9 September 2004. Available online: https://patents.google.com/patent/US20040176715A1/en?oq=US2004176715A1 (accessed on 13 February 2021).
- Schofield, J.S. Knee Ankle Foot Orthosis. U.S. Patent US20130245524A1, 15 March 2013. Available online: https://patents.google.com/patent/US20130245524A1/en?oq=US2013245524A1 (accessed on 23 February 2021).
- Campbell, J.H.; Shamoun, M.C.; Gallagher, M.; Zalinski, N.C. Orthotic Joint and Knee-Ankle-Foot Orthotic Device Incorporating Same. U.S. Patent US20130296754A1, 7 November 2013. Available online: https://patents.google.com/patent/US20130296754A1/en?oq=US2013296754A1 (accessed on 23 February 2021).
- Leos, A.N.; Matthews, K.C. Orthotic System and Method Utilizing Hydrostatic Compression of Soft Tissue to Unload the Knee and/or Heel up to 100%. U.S. Patent US2014276303A1, 18 September 2014. [Google Scholar]
- Knecht, S.S. Knee Brace with Adjustable Bolster. U.S. Patent US20140323937A1, 30 October 2014. Available online: https://patents.google.com/patent/US20140323937A1/en?oq=US2014323937A1 (accessed on 23 February 2021).
- Cortanze, A.D.; Lecurieux-Clerville, R. Active Knee Orthosis. U.S. Patent US20140336553A1, 13 November 2014. Available online: https://patents.google.com/patent/US20140336553A1/en?oq=US2014336553A1 (accessed on 23 February 2021).
- Audu, M.L.; Triolo, R.J.; Kobetic, R.; To, C.S.; Bulea, T.C.; Quinn, R.D.; Nandor, M. Power Assisted Orthosis with Hip-Knee Synergy. U.S. Patent US2014358053A1, 4 December 2014. [Google Scholar]
- Knecht, S.S. Knee Brace with Tool Less Length Adjuster. U.S. Patent US20140364782A1, 11 December 2014. Available online: https://patents.google.com/patent/US20140364782A1/en?oq=US2014364782A1 (accessed on 23 February 2021).
- DeSousa, E.J.-J. Dynamic Load Bearing Shock Absorbing Exoskeletal Knee Brace. U.S. Patent US20140364783A1, 11 December 2014. Available online: https://patents.google.com/patent/US20140364783A1/en?oq=US2014364783A1 (accessed on 23 February 2021).
- Eschbach, M.; Kazerounian, K.; Huber, M.; Ilies, H. Knee Orthosis Device and Associated Methods. U.S. Patent US2015005686A1, 1 January 2015. [Google Scholar]
- Koga, H.; Matsuo, K. Knee Joint Supporter. U.S. Patent US2015209170A1, 30 July 2015. [Google Scholar]
- Auberger, R.; James, K.B. Method for Controlling a Knee Orthosis. U.S. Patent US20150230962A1, 20 August 2015. Available online: https://patents.google.com/patent/US20150230962A1/en?oq=US2015230962A1 (accessed on 23 February 2021).
- Nace, R.A. Knee Orthosis for Treatment of PCL Injury. U.S. Patent US2015290010A1, 15 October 2015. [Google Scholar]
- Ramirez, C. Artificial Knee Joint. U.S. Patent US20160287423A1, 6 October 2016. Available online: https://patents.google.com/patent/US20160287423A1/en?oq=US2016287423A1 (accessed on 23 February 2021).
- Mc Dermott, A.; Costello, M.; French III, C.J.; Hodge, G.S.; Ledwith, B.; Parker, K.L.; Zufelt, N. Adjustable Knee Brace. U.S. Patent US2017000639A1, 5 January 2017. [Google Scholar]
- Humphrey, J.C. Orthopedic Knee Brace. U.S. Patent US20180055673A1, 1 March 2018. Available online: https://patents.google.com/patent/US20180055673A1/en?oq=US2018055673A1 (accessed on 23 February 2021).
- Seifert, D. Method for Controlling an Artificial Knee Joint. U.S. Patent US20180133029A1, 17 May 2018. Available online: https://patents.google.com/patent/US20180133029A1/en?oq=US2018133029A1 (accessed on 23 February 2021).
- Polygerinos, P.; Sridar, S.; Maruyama, T.; St. Clair, C.; Kwasnica, C. Soft Inflatable Exosuit for Knee Rehabilitation. U.S. Patent US20190029914A1, 31 January 2019. Available online: https://patents.google.com/patent/US20190029914A1/en?oq=US2019029914A1 (accessed on 23 February 2021).
- Sankai, Y. Knee Joint Orthotic Device Manufacturing Apparatus and Knee Joint Treatment Support Apparatus and Knee Joint Treatment Support Method. U.S. Patent US2019209357A1, 11 July 2019. [Google Scholar]
- Huang, Q.; Zhang, L. Unpowered Wearable Walking Assistance Knee Equipment with Gait Self-Adaptivity. U.S. Patent US2019282430A1, 19 September 2019. [Google Scholar]
- Huang, Q.; Zhang, L.; Wang, W. Soft Knee Exoskeleton Driven by Negative-Pressure Linear Actuator. U.S. Patent US2020206064A1, 2 July 2020. [Google Scholar]
- Adachi, Y.; Fujita, Y.; Tsuboyama, T.; Ichihashi, N.; Ohata, K. Actuator Unit for Knee-Ankle-Foot Orthosis. U.S. Patent US2020069505A1, 5 March 2020. [Google Scholar]
- Angold, R.; Zoss, A.B.; Burns, J.W.; Harding, N.H. Hip and Knee Actuation Systems for Lower Limb Orthotic Devices. U.S. Patent US9011354B2, 21 April 2015. Available online: https://patents.google.com/patent/US9011354/en (accessed on 23 February 2021).
- Colaco, G.; Hunter, D.; Stamenovic, D. Knee Brace with Expandable Members and Method of Using the Same. International Patent WO2009012458A1, 22 January 2009. [Google Scholar]
- Hyun, D.J.; Kazerooni, H.; Tung, W.; Mckinley, S. Controllable Passive Artificial Knee. International Patent WO2014039134A1, 13 March 2014. [Google Scholar]
- Cappa, P.; Patané, F.; Rossi, S.; Castelli, E.; Petrarca, M. Ankle and Knee Motorized Orthosis. International Patent WO2014072883A1, 15 May 2014. [Google Scholar]
- Knecht, S.S. Dynamic Force Hinge Joint for Knee Brace and Knee Brace Equipped Therewith. International Patent WO2014143518A1, 18 September 2014. [Google Scholar]
- Gan, Y.; Luo, Y.; Xu, M. Knee Joint Orthosis Having Offloading Function. International Patent WO2015018340A1, 12 February 2015. [Google Scholar]
- Gan, Y.; Luo, Y. Knee Joint Orthosis. International Patent WO2016004855A1, 14 January 2016. [Google Scholar]
- Matsumoto, H.; Sakima, T. Knee Joint Orthosis. International Patent WO2016013039A1, 28 January 2016. [Google Scholar]
- Seligman, S. Low Profile Knee Brace and Method of Using Same. International Patent WO2016029048A3, 2 June 2016. [Google Scholar]
- Ho, S.K.; Tong, K.-Y.; Ockenfeld, C.U.; Yeung, L.F.; Wai, H.-W.; Pang, M.-K. Interactive Exoskeleton Robotic Knee System. International Patent WO2016180074A1, 17 November 2016. [Google Scholar]
- Kazerooni, H.; Wu, S.-L. Passive Power-Conservative Artificial Knee. International Patent WO2016210121A1, 29 December 2016. [Google Scholar]
- Kawaguchi, T.; Yasui, T.; Yamamoto, S. Knee Joint Control Method and Lower Extremity Orthosis. International Patent WO2017017809A1, 2 February 2017. [Google Scholar]
- Chang, K.Y. Knee Retractor. International Patent WO2017026668A1, 16 February 2017. [Google Scholar]
- Matsumoto, H.; Sakima, T. Knee Joint Brace. International Patent WO2017043515A1, 16 March 2017. [Google Scholar]
- Garrish, R. Stabilizing System for a Knee Brace. International Patent WO2017059518A1, 13 April 2017. [Google Scholar]
- Higashi, Y.; Takahashi, R.; Sawada, Y.; Tsuboyama, T.; Ichihashi, N.; Ohata, K.; Kawaguchi, T. Actuator-Equipped Knee Ankle Foot Orthosis. International Patent WO2017208851A1, 7 December 2017. [Google Scholar]
- Millet, D. Knee Support Orthosis Adapted to a Prolonged Seated Position. International Patent WO2018042108A1, 8 March 2018. [Google Scholar]
- Sankai, Y. Device for Producing Knee Joint Correction Tool, Method for Producing Knee Joint Correction Tool, and Method for Assissting Knee Joint Treatment. International Patent WO2018051898A1, 22 March 2018. [Google Scholar]
- Boucher, S.; Desrosiers, L. Knee Brace and System for Custom Fabricating Knee Brace for a User. International Patent WO2018090146A1, 24 May 2018. [Google Scholar]
- Anglada, G.; Devillers, L. Orthosis, in Particular of the Knee, Including Deformable Lateral Supports. International Patent WO2018108635A1, 21 June 2018. [Google Scholar]
- Bauerfeind, H.B.; Hebenstreit, S.; Stier, G. Limb Orthosis, in Particular Knee Brace. International Patent WO2019101910A1, 31 May 2019. [Google Scholar]
- Bleau, J.; Hinse, S.; Labelle, M. Knee Orthosis with Helicoidal Axis and Method of Design and Fabrication thereof. International Patent WO2019109178A1, 13 June 2019. [Google Scholar]
- Stefansson, G. Powered Prosthetic Knee with Battery Recharging During Regeneration Phase. International Patent WO2019118507A1, 20 June 2019. [Google Scholar]
- Anzai, H.; Nagatsuma, A.; Mitsui, K. Joint Mechanism, Knee Joint Assist Device, Joint Member, and Clutch unit. International Patent WO2020195906A1, 1 October 2020. [Google Scholar]
- Vallery, H.; Burgkart, R.; Hartmann, C.; Mitternacht, J.; Riener, R.; Buss, M. Complementary limb motion estimation for the control of active knee prostheses. Biomed. Tech. Eng. 2011, 56, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Sancisi, N.; Zannoli, D.; Parenti-Castelli, V.; Belvedere, C.; Leardini, A. A one-degree-of-freedom spherical mechanism for human knee joint modelling. Proc. Inst. Mech. Eng. 2011, 225, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Kumar, R.P.; Özer, A. An adaptive foot device for increased gait and postural stability in lower limb Orthoses and exoskeletons. Int. J. Control Autom. Syst. 2011, 9, 515. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, S.; Baek, S.R. Calculation of knee joint moment in isometric and isokinetic knee motion. Int. J. Precis. Eng. Manuf. 2011, 12, 921–924. [Google Scholar] [CrossRef]
- Akdoğan, E.; Adli, M.A. The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 2011, 21, 509–522. [Google Scholar] [CrossRef]
- Kim, K.; Kang, M.; Choi, Y.; Jang, H.; Han, J.; Han, C. Development of the exoskeleton knee rehabilitation robot using the linear actuator. Int. J. Precis. Eng. Manuf. 2012, 13, 1889–1895. [Google Scholar] [CrossRef]
- Mefoued, S.; Mohammed, S.; Amirat, Y. Toward Movement Restoration of Knee Joint Using Robust Control of Powered Orthosis. IEEE Trans. Control Syst. Technol. 2013, 21, 2156–2168. [Google Scholar] [CrossRef]
- Lalami, M.E.; Rifaï, H.; Mohammed, S.; Hassani, W.; Fried, G.; Amirat, Y. Output feedback control of an actuated lower limb orthosis with bounded input. Ind. Robot. Int. J. 2013, 40, 541–549. [Google Scholar] [CrossRef]
- Bulea, T.C.; Kobetic, R.; Audu, M.L.; Triolo, R.J. Stance controlled knee flexion improves stimulation driven walking after spinal cord injury. J. NeuroEng. Rehabil. 2013, 10, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.Q.; Dhaher, Y.Y. Evaluation of lower limb cross planar kinetic connectivity signatures post-stroke. J. Biomech. 2014, 47, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galen, S.S.; Clarke, C.J.; McLean, A.N.; Allan, D.B.; Conway, B.A. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training. NeuroRehabilitation 2014, 34, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Yang, C. Design and validation of a lower limb exoskeleton employing the recumbent cycling modality for post-stroke rehabilitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 3517–3525. [Google Scholar] [CrossRef]
- Yu, S.; Han, C.; Cho, I. Design Considerations of a Lower Limb Exoskeleton System to Assist walking and Load-Carrying of Infantry Soldiers. Appl. Bionics Biomech. 2014, 11, 119–134. Available online: https://www.hindawi.com/journals/abb/2014/585837/ (accessed on 23 February 2021). [CrossRef] [Green Version]
- Jaeger, L.; Marchal-Crespo, L.; Wolf, P.; Riener, R.; Michels, L.; Kollias, S. Brain activation associated with active and passive lower limb stepping. Front. Hum. Neurosci. 2014, 8, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassani, W.; Mohammed, S.; Rifaï, H.; Amirat, Y. Powered orthosis for lower limb movements assistance and rehabilitation. Control Eng. Pract. 2014, 26, 245–253. [Google Scholar] [CrossRef]
- Domingo, A.; Lam, T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J. NeuroEng. Rehabil. 2014, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Shamaei, K.; Cenciarini, M.; Adams, A.A.; Gregorczyk, K.N.; Schiffman, J.M.; Dollar, A.M. Design and Evaluation of a Quasi-Passive Knee Exoskeleton for Investigation of Motor Adaptation in Lower Extremity Joints. IEEE Trans. Biomed. Eng. 2014, 1809–1821. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Huo, W.; Rifaï, H.; Hassani, W.; Amirat, Y. Robust Control of an Actuated Orthosis for Lower Limb Movement Restoration, Intelligent Assistive Robots: Recent Advances in Assistive Robotics for Everyday Activities; Springer International Publishing: Cham, Switzerland, 2015; pp. 385–400. [Google Scholar] [CrossRef]
- Flynn, L.; Geeroms, J.; Jimenez-Fabian, R.; Vanderborght, B.; Vitiello, N.; Lefeber, D. Ankle–knee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs Alpha-Prosthesis. Robot. Auton. Syst. 2015, 73, 4–15. [Google Scholar] [CrossRef]
- Meng, W.; Liu, Q.; Zhou, Z.; Ai, Q.; Sheng, B.; Xie, S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015, 31, 132–145. [Google Scholar] [CrossRef]
- Farris, D.J.; Hampton, A.; Lewek, M.D.; Sawicki, G.S. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: From individual limbs to lower limb joints. J. NeuroEng. Rehabil. 2015, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Zanotto, D.; Akiyama, Y.; Stegall, P.; Agrawal, S.K. Knee Joint Misalignment in Exoskeletons for the Lower Extremities: Effects on User’s Gait. IEEE Trans. Robot. 2015, 31, 978–987. [Google Scholar] [CrossRef]
- Jun, S.; Zhou, X.; Ramsey, D.K.; Krovi, V.N. Smart Knee Brace Design with Parallel Coupled Compliant Plate Mechanism and Pennate Elastic Band Spring. J. Mech. Robot. 2015, 041024, 62. [Google Scholar] [CrossRef]
- Shamaei, K.; Cenciarini, M.; Adams, A.A.; Gregorczyk, K.N.; Schiffman, J.M.; Dollar, A.M. Biomechanical Effects of Stiffness in Parallel with the Knee Joint During Walking. IEEE Trans. Biomed. Eng. 2015, 62, 2389–2401. [Google Scholar] [CrossRef]
- Cai, V.A.D.; Ibanez, A.; Granata, C.; Nguyen, V.T.; Nguyen, M.T. Transparency enhancement for an active knee orthosis by a constraint-free mechanical design and a gait phase detection based predictive control. Mechanical 2017, 52, 729–748. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, Z.-G.; Cheng, L.; Wang, W.; Chen, Y.; Hu, J.; Peng, L.; Wang, H. iLeg—A Lower Limb Rehabilitation Robot: A Proof of Concept. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 761–768. [Google Scholar] [CrossRef]
- Garcia, E.; Sanz-Merodio, D.; Cestari, M.; Perez, M.; Sancho, J. An Active Knee Orthosis for the Physical Therapy of Neurological Disorders. In Robot 2015: Second Iberian Robotics Conference; Springer: Cham, Switzerland, 2016; pp. 327–337. [Google Scholar] [CrossRef] [Green Version]
- Windrich, M.; Grimmer, M.; Christ, O.; Rinderknecht, S.; Beckerle, P. Active lower limb prosthetics: A systematic review of design issues and solutions. Biomed. Eng. Online 2016, 15, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, M.S.; Kota, S.; Young, A.; Ferris, D.P. Running with an Elastic Lower Limb Exoskeleton. J. Appl. Biomech. 2016, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Vouga, T.; Zhuang, K.Z.; Olivier, J.; Lebedev, M.A.; Nicolelis, M.A.; Bouri, M.; Bleuler, H. EXiO—A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, H.; Yan, H.; Wang, X.; Jin, Z.; Vladareanu, L. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. J. Healthc. Eng. 2017, 2017, 1523068. Available online: https://www.hindawi.com/journals/jhe/2017/1523068/ (accessed on 23 February 2021). [CrossRef]
- Kopitzsch, R.M.; Clever, D.; Mombaur, K. Optimization-based analysis of push recovery during walking motions to support the design of rigid and compliant lower limb exoskeletons. Adv. Robot. 2017, 31, 1238–1252. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Jiang, J.; Sun, B.; Cao, H. Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton. Int. J. Adv. Robot. Syst. 2017. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lim, D.H.; Han, C.S. Development of a Passive Knee Mechanism for Lower Extremity Exoskeleton Robot. J. Korea Robot. Soc. 2017, 12, 107–115. [Google Scholar] [CrossRef]
- Mohan, S.; Mohanta, J.K.; Kurtenbach, S.; Paris, J.; Corves, B.; Huesing, M. Design, development, and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech. Mach. Theory 2017, 112, 272–294. [Google Scholar] [CrossRef]
- Lerner, Z.F.; Damiano, D.L.; Bulea, T.C. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy. Sci. Rep. 2017, 7, 13512. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, S.L.; Lambrecht, S.; Inoue, R.S.; Bortole, M.; Montagnoli, A.N.; Moreno, J.C.; Rocon, E.; Terra, M.H.; Siqueira, A.A.G.; Pons, J.L. Global Kalman filter approaches to estimate absolute angles of lower limb segments. Biomed. Eng. Online 2017, 16, 58. [Google Scholar] [CrossRef] [Green Version]
- Rifaï, H.; Mohammed, S.; Djouani, K.; Amirat, Y. Toward Lower Limbs Functional Rehabilitation Through a Knee-Joint Exoskeleton. IEEE Trans. Control Syst. Technol. 2017, 25, 712–719. [Google Scholar] [CrossRef]
- Tucker, M.R.; Shirota, C.; Lambercy, O.; Sulzer, J.S.; Gassert, R. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait. IEEE Trans. Biomed. Eng. 2017, 64, 2331–2343. [Google Scholar] [CrossRef]
- Castellote, J.M.; Kofler, M.; Mayr, A.; Saltuari, L. Evidence for Startle Effects due to Externally Induced Lower Limb Movements: Implications in Neurorehabilitation. BioMed Res. Int. 2017, 8471546. Available online: https://www.hindawi.com/journals/bmri/2017/8471546/ (accessed on 23 February 2021). [CrossRef] [PubMed]
- Kitahara, K.; Hayashi, Y.; Yano, S.; Kondo, T. Target-directed motor imagery of the lower limb enhances event-related desynchronization. PLoS ONE 2017. 12, e0184245. [CrossRef] [Green Version]
- Liu, Y.; Gao, Y.; Zhu, Y. A novel cable-pulley underactuated lower limb exoskeleton for human load-carrying walking. J. Mech. Med. Biol. 2017, 17, 1740042. [Google Scholar] [CrossRef]
- Ranaweera, R.; Gopura, R.; Jayawardena, T.; Mann, G. Development of A Passively Powered Knee Exoskeleton for Squat Lifting. J. Robot. Netw. Artif. Life 2018, 5, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, M.A.; Majeed, A.P.P.A.; Taha, Z.; Alim, M.M.; Baarath, K. Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: Simulation modelling analysis. IOP Conf. Ser. Mater. Sci. Eng. 2018, 319, 012052. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.F.; Joyo, M.K.; Ali, A.; Ali, A.M.M.; Kadir, K.A.; Naqvi, Y.R.; Bakar, B.A.; Shah, A. Robotic Exoskeleton Control for Lower Limb Rehabilitation of Knee Joint. Int. J. Eng. Technol. 2018, 7, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Chaichaowarat, R.; Kinugawa, J.; Kosuge, K. Unpowered Knee Exoskeleton Reduces Quadriceps Activity during Cycling. Engineering 2018, 4, 471–478. [Google Scholar] [CrossRef]
- Li, B.; Yuan, B.; Tang, S.; Mao, Y.; Zhang, D.; Huang, C.; Tan, B. Biomechanical design analysis and experiments evaluation of a passive knee-assisting exoskeleton for weight-climbing. Ind. Robot Int. J. 2018, 45, 436–445. [Google Scholar] [CrossRef]
- Eguchi, Y.; Kadone, H.; Suzuki, K. Standing Mobility Device with Passive Lower Limb Exoskeleton for Upright Locomotion. IEEEASME Trans. Mechatron. 2018, 23, 1608–1618. [Google Scholar] [CrossRef]
- Ringhof, S.; Patzer, I.; Beil, J.; Asfour, T.; Stein, T. Does a Passive Unilateral Lower Limb Exoskeleton Affect Human Static and Dynamic Balance Control? Front. Sports Act. Living 2019, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Crespo, R.; Torricelli, D.; Huegel, J.C.; Gordillo, J.L.; Pons, J.L.; Soto, R. An Adaptable Human-Like Gait Pattern Generator Derived from a Lower Limb Exoskeleton. Front. Robot. AI 2019, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Wang, X.; Zhu, Z.; Xi, R.; Wu, Q. Development and control of a robotic lower limb exoskeleton for paraplegic patients. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 1087–1098. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, B.; Liu, W.; Ge, W.; Dong, R. The control system research of the brain controlled medical lower limb exoskeleton. J. Comput. Methods Sci. Eng. 2019, 19, 27–33. [Google Scholar] [CrossRef]
- Natali, C.D.; Poliero, T.; Sposito, M.; Graf, E.; Bauer, C.; Pauli, C.; Bottenberg, E.; De Eyto, A.; O'Sullivan, L.; Hidalgo, A.F.; et al. Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton. Robotica 2019, 37, 2014–2034. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yan, L.; Xiao, J.; Fan, L. Design and simulation analysis of an improved wearable power knee exoskeleton. J. Vibroeng. 2019, 21, 1472–1482. [Google Scholar] [CrossRef]
- Chen, B.; Zi, B.; Wang, Z.; Qin, L.; Liao, W.H. Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art. Mech. Mach. Theory 2019, 134, 499–511. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lim, D.-H.; Kim, W.-S.; Han, C.-S. Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace. Int. J. Precis. Eng. Manuf. 2020, 21, 227–236. [Google Scholar] [CrossRef]
- de la Tejera, J.A.; Bustamante-Bello, M.R.; Ramirez-Mendoza, R.A.; Navarro-Tuch, S.A.; Izquierdo-Reyes, J.; Pablos-Hach, J.L. Smart health: The use of a lower limb exoskeleton in patients with sarcopenia. Int. J. Interact. Des. Manuf. IJIDeM 2020, 14, 1475–1489. [Google Scholar] [CrossRef]
- Tu, Y.; Zhu, A.; Song, J.; Shen, H.; Shen, Z.; Zhang, X.; Cao, G. An Adaptive Sliding Mode Variable Admittance Control Method for Lower Limb Rehabilitation Exoskeleton Robot. Appl. Sci. 2020, 10, 2536. [Google Scholar] [CrossRef] [Green Version]
- Lavrovsky, E.K.; Pismennaya, E.V. About the Operator’s Gaits in the Passive Exoskeleton of the Lower Extremities when using the Fixed Knee Mode. Mekhatronika Avtom. Upr. 2020, 21, 34–42. Available online: https://mech.novtex.ru/jour/article/view/746 (accessed on 23 February 2021). [CrossRef]
- Zhou, L.; Chen, W.; Chen, W.; Bai, S.; Zhang, J.; Wang, J. Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mech. Mach. Theory 2020, 150, 103840. [Google Scholar] [CrossRef]
- Etenzi, E.; Borzuola, R.; Grabowski, A.M. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. J. NeuroEng. Rehabil. 2020, 17, 104. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, W.; Fu, C. A Lower Limb Exoskeleton Recycling Energy from Knee and Ankle Joints to Assist Push-Off. J. Mech. Robot. 2020, 12, 051011. [Google Scholar] [CrossRef]
- Wen, Y.; Si, J.; Brandt, A.; Gao, X.; Huang, H.H. Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis. IEEE Trans. Cybern. 2020, 50, 2346–2356. [Google Scholar] [CrossRef]
Search Engines | Filter_1 | Filter_2 | Filter_3 | Filter_4 |
---|---|---|---|---|
Patentscope | 1235 | 320 | 32 | 74 |
Google patents | 1254 | 65 | 4 | |
Espacenet | 500 | 132 | 16 | |
The Lens | 3629 | 719 | 57 | |
Derwent | 2000 | 905 | 96 | |
Total | 8618 | 2141 | 205 | 74 |
Search Engines | Filter_1 | Filter_2 |
---|---|---|
The Lens | 343 | 63 |
Web of Science | 146 | |
Total | 489 | 63 |
Cite | Title | Main Applicant | Body Part | Type | Technology |
---|---|---|---|---|---|
[17] | Knee Brace Hinges with Adaptive Motion. | Dj Orthopedics Llc | Knee | Brace | Mechanical |
[18] | Knee-joint Hinge of Standing Period Control Orthosis. | Li Jianjun | Knee | Orthosis | Mechanical |
[19] | Stretching Assisting Orthosis of Knee Joints. | Children’s Hospital of Chongqing Medical University | Knee | Orthosis | Mechanical |
[20] | Knee-powered Radian Pulley-type Foot Drop and Hemiplegic Gait Orthosis. | Guangdong Provincial Work Injury Rehabilitation | Foot | Orthosis | Mechanical |
[21] | Unlocking Adaptive Exoskeleton Knee Joint Support Plate. | Univ Electronic Science & Tech Ch | Knee | Device | Mechanical |
[22] | Knee Joint Load-bearing Power Assisting Exoskeleton Device and Working Method thereof. | Fuzhou University | Knee | Exoskeleton | Electronic |
[23] | Gait-based Wearable Flexible Knee Joint Robot Exoskeleton Facility. | Beijing Inst Technology | Knee | Exoskeleton | Pneumatic |
[24] | Self-driven Self-adaption Gait Wearable Knee Joint Walking aid Device. | Beijing Inst Technology | Knee | Device | Mechanical |
[25] | Hip and Knee Integrated Joint Device used for Exoskeleton Robot and Exoskeleton Robot. | Hefei Inst Physical Sci Cas | Hip-Knee | Exoskeleton | Electronic |
[26] | Quasi-passive Knee Joint and Ankle Joint Coupling Lower Limb Exoskeleton and Control Method thereof. | Univ Tsinghua | Knee-Ankle | Exoskeleton | Mechanical |
[27] | Lower Limb Exoskeleton Knee Joint Based on Torsional Spring Clutch. | Univ Shanghai Science & Tech | Knee | Exoskeleton | Mechanical |
[28] | Intelligent Knee Osteoarthritis Correction Integrated Instrument. | Affiliated Hospital to Nanchang Univ. | Knee | Device | Mechanical |
[29] | A Knee Joint Exoskeleton Mechanism Driven by a Connecting Rod. | Inner Mongolia Univ. of Technology | Knee | Exoskeleton | Electronic |
[30] | Lower Limb Knee Joint and Ankle Joint Assisting Exoskeleton Stiffness Adjusting Device. | Jiangsu Collection M. A.S. | Knee-Ankle | Device | Electromechanical |
[31] | Lower Extremity Exoskeleton Heterogeneous Knee Joint based on Parallel Elastomer. | Harbin Institute of Technology | Knee | Exoskeleton | Electromechanical |
[32] | Lower Limb Exoskeleton Structure Integrated with Self-adaptive Knee Joints and Robot. | Southern University | Knee | Exoskeleton | Electromechanical |
[33] | Wearable Lower-limb Walking-assisting Exoskeleton Capable of Imitating Movement Curve of Human Knee Joint. | Hebei University of Technology | Hip-Knee-Ankle | Exoskeleton | Electronic |
[34] | Knee Joint Orthosis. | Shandong First Medical Univ & Shandong Academy of Medical Sciences | Knee | Orthosis | Mechanical |
[35] | Self-adaptive Variable-stiffness In-vitro Knee Joint Device with Intelligent Tensioning Function. | Tianjin University of Technology | Knee | Exoskeleton | Mechanical |
[36] | Knee Orthosis. | Otto Bock Healthcare Gmbh | Knee | Orthosis | Electromechanical |
[37] | Joint for Knee Orthotics, Prosthetics and Supports. | Wayd Kurt | Knee | Orthosis | Mechanical |
[38] | Device for Holding the Kneecap and Knee Orthosis. | Gibaud | Kneecap | Orthosis | Mechanical |
[39] | Knee Orthosis Adapted for a Prolonged Sitting Position. | Millet Innovation | Knee | Orthosis | Mechanical |
[40] | Single Bar Knee-ankle-foot Orthosis. | Nagasaki Kanae Kk | Knee-Ankle-Foot | Orthosis | Mechanical |
[41] | Knee Joint Mechanism of Movement Assist Device. | Honda Motor Co Ltd. | Knee | Mechanism | Mechanical |
[42] | Knee Brace. | United Surgical, Inc. | Knee | Brace | Mechanical |
[43] | Reciprocal Action Type Knee Brace by Different Movement in Medial-lateral Hinge. | Triple-C Medical Corporation | Knee | Brace | Mechanical |
[44] | Auxiliary Apparatus for Bracing Knee. | Korea University Research and Business Foundation | Knee | Device | Mechanical |
[45] | Self-Adjusting Knee Brace. | Nelson Ronald E. | Knee | Brace | Mechanical |
[46] | Knee Ankle Foot Orthosis. | The Governors of The University of Alberta | Knee-Ankle-foot | Orthosis | Mechanical |
[47] | Orthotic Joint and Knee-ankle-foot Orthotic Device incorporating same. | Becker Orthopedic Appliance Company | Knee-Ankle | Device | Mechanical |
[48] | Orthotic System and Method utilizing Hydrostatic Compression of Soft Tissue to Unload The Knee and/or Heel up to 100%. | Leos Alexander N. | Knee-Ankle | Device | Mechanical |
[49] | Knee Brace with Adjustable Bolster. | Knecht Steven S. | Knee | Brace | Mechanical |
[50] | Active Knee Orthosis. | De Cortanze André | Knee | Orthosis | Mechanical |
[51] | Power-Assisted Orthosis with Hip-knee Synergy. | Case Western Reserve University | Hip-Knee | Orthosis | Mechanical |
[52] | Knee Brace with Tool-Less Length Adjuster. | Knecht Steven S. | Knee | Brace | Mechanical |
[53] | Dynamic Load Bearing Shock Absorbing Exoskeletal Knee Brace. | Desousa Egas Jose-Joaquim | Knee | Brace | Mechanical |
[54] | Knee Orthosis Device and Associated Methods. | University of Connecticut | Knee | Orthosis | Mechanical |
[55] | Knee Joint Supporter. | Kowa Company, Ltd. | Knee | Device | Mechanical |
[56] | Method for Controlling a Knee Orthosis. | Otto Bock Healthcare Gmbh | Knee | Orthosis | Electromechanical |
[57] | Knee Orthosis for Treatment of Pcl Injury. | Medical Alliance | Knee | Orthosis | Mechanical |
[58] | Artificial Knee Joint. | Fillauer Europe Ab | Knee | Orthosis | Mechanical |
[59] | Adjustable Knee Brace. | Deroyal Global Healthcare Solutions Limited | Knee | Brace | Mechanical |
[60] | Orthopedic Knee Brace. | Humphrey Jay C. | Knee | Brace | Mechanical |
[61] | Method for Controlling an Artificial Knee Joint. | Otto Bock Healthcare Products Gmbh | Knee | Method | Mechanical |
[62] | Soft Inflatable Exosuit for Knee Rehabilitation. | Arizona Board of Regents on Behalf of Arizona State University; Dignity Health | Knee | Exosuit | Pneumatic |
[63] | Knee Joint Orthotic Device Manufacturing Apparatus and Knee Joint Orthotic Device Manufacturing Method, and Knee Joint Treatment Support Apparatus and Knee Joint Treatment Support Method. | CYBERDYNE Inc.; University of Tsukuba | Knee | Device | Electromechanical |
[64] | Unpowered Wearable Walking Assistance Knee Equipment With Gait Self-adaptivity. | Beijing Institute of Technology | Knee | exoskeleton | Mechanical |
[65] | Soft Knee Exoskeleton Driven by Negative-pressure Linear Actuator. | Beijing Institute of Technology | Knee | Exoskeleton | Pneumatic |
[66] | Actuator Unit for Knee-ankle-foot Orthosis. | Suncall Corporation | Knee-Ankle-Foot | Orthosis | Electromechanical |
[67] | Hip and Knee Actuation Systems for Lower Limb Orthotic Devices. | Ekso Bionics, Inc. | Hip-Knee | Orthosis | Electromechanical |
[68] | Knee Brace with Expandable Members and Method of Using the same. | Colaco Glenn | Knee | Brace | Mechanical |
[69] | Controllable Passive Artificial Knee. | The Regents Of The University of California | Knee | Exoskeleton | Mechanical |
[70] | Ankle and Knee Motorized Orthosis. | Ospedale Pediatrico Bambino Gesù Irccs | Knee-Ankle | Orthosis | Electromechanical |
[71] | Dynamic Force Hinge Joint for Knee Brace and Knee Brace Equipped therewith. | Knecht Steven S. | Knee | Brace | Mechanical |
[72] | Knee Joint Orthosis Having Offloading Function. | Luo Yun | Knee | Orthosis | Mechanical |
[73] | Knee Joint Orthosis. | Luo Yun | Knee | Orthosis | Mechanical |
[74] | Knee Joint Orthosis. | Matsumoto, Hideo | Knee | Orthosis | Mechanical |
[75] | Low Profile Knee Brace and Method of using same. | Djo, Llc | Knee | Brace | Mechanical |
[76] | Interactive Exoskeleton Robotic Knee System. | The Hong Kong Polytechnic University | Knee | Exoskeleton | Electronic |
[77] | Passive Power-conservative Artificial Knee. | The Regents Of The University of California | Knee | Device | Mechanical |
[78] | Knee Joint Control Method and Lower Extremity Orthosis. | Kawamura Gishi Co., Ltd. | Knee-Ankle-Foot | Orthosis | Electromechanical |
[79] | Knee Retractor. | Chang Ki Yong | Knee | Orthosis | Mechanical |
[80] | Knee Joint Brace. | Matsumoto Hideo | Knee | Brace | Mechanical |
[81] | Stabilizing System for a Knee Brace. | Spring Loaded Technology Incorporated | Knee | Brace | Mechanical |
[82] | Actuator-equipped Knee Ankle Foot Orthosis. | Nat Univ Corp Kyoto Inst Technology | Knee-Ankle-Foot | Orthosis | Mechanical |
[83] | Knee Support Orthosis Adapted to A Prolonged Seated Position. | Millet Innovation | knee | Orthosis | Mechanical |
[84] | Device for Producing Knee Joint Correction Tool, Method for Producing Knee Joint Correction Tool, Device for Assisting Knee Joint Treatment, and Method for Assisting Knee Joint Treatment. | Cyberdyne | Knee | Method | Electromechanical |
[85] | Knee Brace and System for Custom Fabricating Knee Brace for a User. | Laboratoire Victhom | Knee | Brace | Mechanical |
[86] | Orthosis, in Particular of the Knee, including Deformable Lateral Supports. | Gibaud | Knee | Orthosis | Mechanical |
[87] | Limb Orthosis, in Particular Knee Brace. | Bauerfeind Ag | Knee | Brace | Mechanical |
[88] | Knee Orthosis with Helicoidal Axis and Method of Design and Fabrication thereof. | 2330-2029 Québec | Knee | Orthosis | Mechanical |
[89] | Powered Prosthetic Knee with Battery Recharging During Regeneration Phase. | Oessur Iceland Ehf [Is]; Ossur Americas | Knee | Prosthetic | Electromechanical |
[90] | Joint Mechanism, Knee Joint Assist Device, Joint Member, and Clutch Unit. | Fujikura Kasei Co | Knee | Mechanism | Electromechanical |
Author | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
Mohhamed, S. | 2 | 1 | 1 | 1 | 1 | ||||
Amirat, Y. | 2 | 1 | 1 | ||||||
Rifai, H. | 1 | 1 | 1 | 1 | |||||
Vitiello, N. | 2 | 1 | 1 | ||||||
Agrawal, SK | 1 | 2 | |||||||
Cempini, M. | 1 | 1 | 1 | ||||||
Domingo, A. | 2 | 1 | |||||||
Han, C. | 1 | 1 | 1 | 1 | |||||
Hyun, DJ | 2 | 1 | |||||||
Lam, T. | 2 | 1 | |||||||
Li, J. | 1 | 1 | 1 | ||||||
Tu, X. | 2 | 1 |
Cite | Main Author | Title | Year |
---|---|---|---|
[91] | Heike Vallery | Complementary limb motion estimation for the control of active knee prostheses | 2011 |
[92] | Sancisi, N. | A one-degree-of-freedom spherical mechanism for human knee joint modeling | 2011 |
[93] | Jungwon Yoon | An Adaptive Foot Device for Increased Gait and Postural Stability in Lower Limb Orthoses and Exoskeletons | 2011 |
[94] | Nam, Y | Calculation of Knee Joint Moment in Isometric and Isokinetic Knee Motion | 2011 |
[95] | Akdogan, E | The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot | 2011 |
[96] | Kim, K | Development of the Exoskeleton Knee Rehabilitation Robot Using the Linear Actuator | 2012 |
[97] | Mefoued, S | Toward Movement Restoration of Knee Joint Using Robust Control of Powered Orthosis | 2013 |
[98] | Lalami, ME | Output feedback control of an actuated lower limb orthosis with bounded input | 2013 |
[99] | Thomas C. Bulea | Stance-controlled knee flexion improves stimulation-driven walking after spinal cord injury. | 2013 |
[100] | Andrew Q. Tan | Evaluation of lower limb cross planar kinetic connectivity signatures post-stroke | 2014 |
[101] | Sujay S. Galen | Isometric hip and knee torque measurements as an outcome measure in robot-assisted gait training | 2014 |
[102] | Yan, H. | Design and validation of a lower limb exoskeleton employing the recumbent cycling modality for post-stroke rehabilitation | 2014 |
[103] | Seungnam Yu | Design Considerations of a Lower Limb Exoskeleton System to Assist walking and Load-Carrying of Infantry Soldiers | 2014 |
[104] | Lukas Jaeger | Brain activation associated with active and passive lower limb stepping | 2014 |
[105] | Walid Hassani | Powered orthosis for lower limb movements assistance and rehabilitation | 2014 |
[106] | Antoinette Domingo | Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury | 2014 |
[107] | Kamran Shamaei | Design and Evaluation of a Quasi-Passive Knee Exoskeleton for Investigation of Motor Adaptation in Lower Extremity Joints | 2014 |
[108] | Mohammed, S | Robust Control of an Actuated Orthosis for Lower Limb Movement Restoration | 2015 |
[109] | Louis Flynn | Ankle-knee prosthesis with active ankle and energy transfer | 2015 |
[110] | Meng, W. | The recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation | 2015 |
[111] | Dominic James Farris | Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints. | 2015 |
[112] | Damiano Zanotto | Knee Joint Misalignment in Exoskeletons for the Lower Extremities: Effects on User’s Gait | 2015 |
[113] | Seung-Kook Jun | Smart Knee Brace Design with Parallel Coupled Compliant Plate Mechanism and Pennate Elastic Band Spring | 2015 |
[114] | Shamaei, K | Biomechanical Effects of Stiffness in Parallel with the Knee Joint During Walking | 2015 |
[115] | Viet Anh Dung Cai | Transparency enhancement for an active knee orthosis by a constraint-free mechanical design and a gait phase detection based predictive control | 2016 |
[116] | Zhang, F. | iLeg- A Lower Limb Rehabilitation Robot: A Proof of Concept | 2016 |
[117] | Elena Garcia | An Active Knee Orthosis for the Physical Therapy of Neurological Disorders | 2016 |
[118] | Michael Windrich | Active lower limb prosthetics: a systematic review of design issues and solutions | 2016 |
[119] | Michael S. Cherry | Running With an Elastic Lower Limb Exoskeleton. | 2016 |
[120] | Vouga, T | EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques. | 2017 |
[121] | Y. Feng | Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. | 2017 |
[122] | Kopitzsch, Rm. | Optimization-based analysis of push recovery during walking motions supports the design of rigid and compliant lower limb exoskeletons. | 2017 |
[123] | Jun Zhu | Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton: | 2017 |
[124] | Ho-Jun Kim | Development of a Passive Knee Mechanism for Lower Extremity Exoskeleton Robot. | 2017 |
[125] | Santhakumar Mohan | Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. | 2017 |
[126] | Zachary F. Lerner | The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy. | 2017 |
[127] | Samuel L. Nogueira | Global Kalman filter approaches to estimate absolute angles of lower limb segments. | 2017 |
[128] | Hala Rifai | Toward Lower Limbs Functional Rehabilitation Through a Knee-Joint Exoskeleton. | 2017 |
[129] | Michael R. Tucker | Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait. | 2017 |
[130] | Juan M. Castellote | Evidence for Startle Effects due to Externally Induced Lower Limb Movements: Implications in Neurorehabilitation. | 2017 |
[131] | Kosuke Kitahara | Target-directed motor imagery of the lower limb enhances event-related desynchronization. | 2017 |
[132] | Yang Liu | A novel cable-pulley underactuated lower limb exoskeleton for human load-carrying walking. | 2017 |
[133] | R.K.P.S. Ranaweera | Development of A Passively Powered Knee Exoskeleton for Squat Lifting. | 2018 |
[134] | Muhammad Aizzat Zakaria | Forward and Inverse Predictive Model for the Trajectory Tracking Control of a Lower Limb Exoskeleton for Gait Rehabilitation: A simulation modeling analysis. | 2018 |
[135] | Syed Faiz Ahmed | Robotic Exoskeleton Control for Lower Limb Rehabilitation of Knee Joint. | 2018 |
[136] | Ronnapee Chaichaowarat | Unpowered Knee Exoskeleton Reduces Quadriceps Activity during Cycling. | 2018 |
[137] | Bo Li | Biomechanical design analysis and experiments evaluation of a passive knee-assisting exoskeleton for weight-climbing. | 2018 |
[138] | Yosuke Eguchi | Standing Mobility Device with Passive Lower Limb Exoskeleton for Upright Locomotion. | 2018 |
[139] | Steffen Ringhof | Does a Passive Unilateral Lower Limb Exoskeleton Affect Human Static and Dynamic Balance Control? | 2019 |
[140] | Rafael Mendoza Crespo | An Adaptable Human-Like Gait Pattern Generator Derived from a Lower Limb Exoskeleton | 2019 |
[141] | Yang, Mx | Development and control of a robotic lower-limb exoskeleton for paraplegic patients | 2019 |
[142] | Zhao, Yj | The control system research of the brain-controlled medical lower limb exoskeleton | 2019 |
[143] | Christian Di Natali | Design and evaluation of a soft assistive lower limb exoskeleton | 2019 |
[144] | Fangzheng Wang | Design and simulation analysis of an improved wearable power knee exoskeleton. | 2019 |
[145] | Bing Chen | Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art. | 2019 |
[146] | Ho-Jun Kim | Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace | 2020 |
[147] | De La Tejera, JA | Smart health: the use of a lower limb exoskeleton in patients with sarcopenia | 2020 |
[148] | Tu Yao | An Adaptive Sliding Mode Variable Admittance Control Method for Lower Limb Rehabilitation Exoskeleton Robot | 2020 |
[149] | Lavrovsky, E. | About the Operator’s Gaits in the Passive Exoskeleton of the Lower Extremities when Using the Fixed Knee Mode | 2020 |
[150] | Libo Zhou | Design of a passive lower-limb exoskeleton for walking assistance with gravity compensation | 2020 |
[151] | Ettore Etenzi | Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. | 2020 |
[152] | Chang Yihua | A Lower Limb Exoskeleton Recycling Energy from Knee and Ankle Joints to Assist Push-off | 2020 |
[153] | Wen, Y | Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meda-Gutiérrez, J.R.; Zúñiga-Avilés, L.A.; Vilchis-González, A.H.; Ávila-Vilchis, J.C. Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review. Appl. Sci. 2021, 11, 9990. https://doi.org/10.3390/app11219990
Meda-Gutiérrez JR, Zúñiga-Avilés LA, Vilchis-González AH, Ávila-Vilchis JC. Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review. Applied Sciences. 2021; 11(21):9990. https://doi.org/10.3390/app11219990
Chicago/Turabian StyleMeda-Gutiérrez, Juan R., Luis Adrián Zúñiga-Avilés, Adriana H. Vilchis-González, and Juan Carlos Ávila-Vilchis. 2021. "Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review" Applied Sciences 11, no. 21: 9990. https://doi.org/10.3390/app11219990
APA StyleMeda-Gutiérrez, J. R., Zúñiga-Avilés, L. A., Vilchis-González, A. H., & Ávila-Vilchis, J. C. (2021). Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review. Applied Sciences, 11(21), 9990. https://doi.org/10.3390/app11219990