Temporal Changes in In Vivo Glutamate Signal during Demyelination and Remyelination in the Corpus Callosum: A Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animal Models
4.2. MRI Data Acquisition
4.3. MRI Data Analysis
4.4. Transmission Electron Microscopy (TEM)
4.5. Myelin Staining
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oakden, W.; Bock, N.A.; Al-Ebraheem, A.; Farquharson, M.J.; Stanisz, G.J. Early regional cuprizone-induced demyelination in a rat model revealed with MRI. NMR Biomed. 2017, 30, e3743. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.J.; Ffrench-Constant, C. Remyelination in the CNS: From biology to therapy. Nat. Rev. Neurosci. 2008, 9, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.J.; Kornak, J.; Chu, P.; Sampat, M.; Okuda, D.T.; Cree, B.A.; Nelson, S.J.; Hauser, S.L.; Pelletier, D. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann. Neurol. 2014, 76, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Geurts, J.J.; Reuling, I.E.; Vrenken, H.; Uitdehaag, B.M.; Polman, C.H.; Castelijns, J.A.; Barkhof, F.; Pouwels, P.J. MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn. Reson. Med. 2006, 55, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Tisell, A.; Leinhard, O.D.; Warntjes, J.B.; Aalto, A.; Smedby, O.; Landtblom, A.M.; Lundberg, P. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS ONE 2013, 8, e61817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, R.; Sailasuta, N.; Hurd, R.; Nelson, S.; Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain J. Neurol. 2005, 128, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, D.; Werner, P.; Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 2000, 6, 67–70. [Google Scholar] [CrossRef]
- van Zijl, P.C.M.; Yadav, N.N. Chemical Exchange Saturation Transfer (CEST): What is in a Name and What Isn’t? Magn. Reson. Med. 2011, 65, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Roalf, D.R.; Nanga, R.P.R.; Rupert, P.E.; Hariharan, H.; Quarmley, M.; Calkins, M.E.; Dress, E.; Prabhakaran, K.; Elliott, M.A.; Moberg, P.J.; et al. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol. Psychiatry 2017, 22, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.A.; Nanga, R.P.; Das, S.; Chen, S.H.; Hadar, P.N.; Pollard, J.R.; Lucas, T.H.; Shinohara, R.T.; Litt, B.; Hariharan, H.; et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci. Transl. Med. 2015, 7, 309ra161. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Bagga, P.; Nath, K.; Hariharan, H.; Mankoff, D.A.; Reddy, R. Glutamate-Weighted Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Detects Glutaminase Inhibition in a Mouse Model of Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 5521–5526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.H.; Woo, C.W.; Kwon, J.I.; Chae, Y.J.; Ham, S.J.; Suh, J.Y.; Kim, S.T.; Kim, J.K.; Kim, K.W.; Woo, D.C.; et al. Cerebral mapping of glutamate using chemical exchange saturation transfer imaging in a rat model of stress-induced sleep disturbance at 7.0T. J. Magn. Reson. Imaging 2019, 50, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.J.; Haris, M.; Singh, A.; Kogan, F.; Greenberg, J.H.; Hariharan, H.; Detre, J.A.; Reddy, R. Magnetic resonance imaging of glutamate. Nat. Med. 2012, 18, 302–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, K.P.; Dula, A.N.; Lyttle, B.D.; Thompson, L.M.; Conrad, B.N.; Box, B.A.; McKeithan, L.J.; Pawate, S.; Bagnato, F.; Landman, B.A.; et al. Glutamate-sensitive imaging and evaluation of cognitive impairment in multiple sclerosis. Mult. Scler. 2019, 25, 1580–1592. [Google Scholar] [CrossRef] [Green Version]
- Nathoo, N.; Yong, V.W.; Dunn, J.F. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. Neuroimage Clin. 2014, 4, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.P.; Zhou, J.Y.; Xue, R.; Zuo, Z.T.; An, J.; Wang, D.J.J. Quantitative Characterization of Nuclear Overhauser Enhancement and Amide Proton Transfer Effects in the Human Brain at 7 Tesla. Magn. Reson. Med. 2013, 70, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Heo, H.Y.; Jones, C.K.; Hua, J.; Yadav, N.; Agarwal, S.; Zhou, J.Y.; van Zijl, P.C.M.; Pillai, J.J. Whole-Brain Amide Proton Transfer (APT) and Nuclear Overhauser Enhancement (NOE) Imaging in Glioma Patients Using Low-Power Steady-State Pulsed Chemical Exchange Saturation Transfer (CEST) Imaging at 7T. J. Magn. Reson. Imaging 2016, 44, 41–50. [Google Scholar] [CrossRef]
- Matute, C.; Alberdi, E.; Domercq, M.; Sanchez-Gomez, M.V.; Perez-Samartin, A.; Rodriguez-Antiguedad, A.; Perez-Cerda, F. Excitotoxic damage to white matter. J. Anat. 2007, 210, 693–702. [Google Scholar] [CrossRef]
- Khodanovich, M.Y.; Sorokina, I.V.; Glazacheva, V.Y.; Akulov, A.E.; Nemirovich-Danchenko, N.M.; Romashchenko, A.V.; Tolstikova, T.G.; Mustafina, L.R.; Yarnykh, V.L. Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci. Rep. 2017, 7, 46686. [Google Scholar] [CrossRef] [Green Version]
- Orije, J.; Kara, F.; Guglielmetti, C.; Praet, J.; Van der Linden, A.; Ponsaerts, P.; Verhoye, M. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neuroimage 2015, 114, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Piani, D.; Frei, K.; Do, K.Q.; Cuenod, M.; Fontana, A. Murine Brain Macrophages Induce Nmda Receptor Mediated Neurotoxicity in vitro by Secreting Glutamate. Neurosci. Lett. 1991, 133, 159–162. [Google Scholar] [CrossRef]
- Pitt, D.; Nagelmeier, I.E.; Wilson, H.C.; Raine, C.S. Glutamate uptake by oligodendrocytes: Implications for excitotoxicity in multiple sclerosis. Neurology 2003, 61, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.; Xu, J.; Goerke, S.; Khan, I.S.; Singer, R.J.; Gore, J.C.; Gochberg, D.F.; Bachert, P. Inverse Z-spectrum analysis for spillover-, MT-, and T1 -corrected steady-state pulsed CEST-MRI--application to pH-weighted MRI of acute stroke. NMR Biomed. 2014, 27, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Debnath, A.; Cai, K.; Bagga, P.; Haris, M.; Hariharan, H.; Reddy, R. Evaluating the feasibility of creatine-weighted CEST MRI in human brain at 7 T using a Z-spectral fitting approach. NMR Biomed. 2019, 32, e4176. [Google Scholar] [CrossRef]
- Debnath, A.; Hariharan, H.; Nanga, R.P.R.; Reddy, R.; Singh, A. Glutamate-Weighted CEST Contrast After Removal of Magnetization Transfer Effect in Human Brain and Rat Brain with Tumor. Mol. Imaging Biol. 2020, 22, 1087–1101. [Google Scholar] [CrossRef]
- Praet, J.; Orije, J.; Kara, F.; Guglielmetti, C.; Santermans, E.; Daans, J.; Hens, N.; Verhoye, M.; Berneman, Z.; Ponsaerts, P.; et al. Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra. NMR Biomed. 2015, 28, 505–513. [Google Scholar] [CrossRef]
- Azami Tameh, A.; Clarner, T.; Beyer, C.; Atlasi, M.A.; Hassanzadeh, G.; Naderian, H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann. Anat. 2013, 195, 415–423. [Google Scholar] [CrossRef]
- Wang, N.; Zhuang, J.; Wei, H.J.; Dibb, R.; Qi, Y.; Liu, C.L. Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI. J. Magn. Reson. Imaging 2019, 50, 1852–1865. [Google Scholar] [CrossRef]
- Kim, M.; Gillen, J.; Landman, B.A.; Zhou, J.; van Zijl, P.C. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn. Reson. Med. 2009, 61, 1441–1450. [Google Scholar] [CrossRef] [Green Version]
ADC (m2/s) | CBF (ml/100g/min) | T2 (ms) | T1 (s) | |
---|---|---|---|---|
Normal control (CTRL) | 0.63 ± 0.01 | 25.04 ± 8.21 | 45.48 ± 1.25 | 1.14 ± 0.02 |
Demyelination (CPZDM) | 0.64 ± 0.03 | 29.96 ± 7.23 | 46.63 ± 1.18 | 1.13 ± 0.03 |
Remyelination (CPZRM) | 0.64 ± 0.01 | 22.96 ± 8.13 | 46.02 ± 1.73 | 1.12 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-W.; Heo, H.; Woo, C.-W.; Woo, D.-C.; Kim, J.-K.; Kim, K.-W.; Lee, D.-H. Temporal Changes in In Vivo Glutamate Signal during Demyelination and Remyelination in the Corpus Callosum: A Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging Study. Int. J. Mol. Sci. 2020, 21, 9468. https://doi.org/10.3390/ijms21249468
Lee D-W, Heo H, Woo C-W, Woo D-C, Kim J-K, Kim K-W, Lee D-H. Temporal Changes in In Vivo Glutamate Signal during Demyelination and Remyelination in the Corpus Callosum: A Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging Study. International Journal of Molecular Sciences. 2020; 21(24):9468. https://doi.org/10.3390/ijms21249468
Chicago/Turabian StyleLee, Do-Wan, Hwon Heo, Chul-Woong Woo, Dong-Cheol Woo, Jeong-Kon Kim, Kyung-Won Kim, and Dong-Hoon Lee. 2020. "Temporal Changes in In Vivo Glutamate Signal during Demyelination and Remyelination in the Corpus Callosum: A Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging Study" International Journal of Molecular Sciences 21, no. 24: 9468. https://doi.org/10.3390/ijms21249468
APA StyleLee, D.-W., Heo, H., Woo, C.-W., Woo, D.-C., Kim, J.-K., Kim, K.-W., & Lee, D.-H. (2020). Temporal Changes in In Vivo Glutamate Signal during Demyelination and Remyelination in the Corpus Callosum: A Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging Study. International Journal of Molecular Sciences, 21(24), 9468. https://doi.org/10.3390/ijms21249468