Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives
Abstract
:1. Forest Tree Breeding
1.1. Traditional Breeding
1.2. Marker-Assisted Selection
1.3. Genomic Selection
2. Methodology of Genomic Selection
3. Genotyping Forest Trees
3.1. Single Nucleotide Polymorphic Marker Arrays
3.2. Diversity Array Technology
3.3. Complex Genome Genotyping
3.4. Next Generation Sequencing Technologies
4. Phenotyping Forest Trees
4.1. Problems of Classical Phenotyping
4.2. High-Throughput Phenotyping
4.3. High-Throughput Phenotyping in GS of Forest Trees
4.4. Importance of Age-Related Phenotyping
5. Genomic Prediction Models
5.1. Parametric and Nonparametric Models
5.2. Non-Additive Genetic Effects
5.3. Multi-Trait and Multi-Environment GS
5.4. Epigenetic Effects
6. Accuracy Drivers in Genomic Predictions
6.1. Linkage Disequilibrium, Effective Population Size, and Marker Density
6.2. Size and Structure of Tree Populations in GS
6.3. Heritability and Genetic Architecture of Traits
7. Economic Efficiency of GS in Tree Breeding
8. Perspectives of GS in Forestry
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Isik, F.; Kumarx, S.; Martínez-García, P.J.; Iwatajj, H.; Yamamoto, T. Acceleration of forest and fruit tree domestication by genomic selection. Adv. Bot. Res. 2015, 74, 93–124. [Google Scholar] [CrossRef]
- Isik, F. Genomic selection in forest tree breeding: The concept and an outlook to the future. New For. 2014, 45, 379–401. [Google Scholar] [CrossRef]
- Harfouche, A.; Meilan, R.; Kirst, M.; Morgante, M.; Boerjan, W.; Sabatti, M.; Mugnozza, G.S. Accelerating the domestication of forest trees in a changing world. Trends Plant Sci. 2012, 17, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Durán, R.; Isik, F.; Zapata-Valenzuela, J.; Balocchi, C.; Sofía Valenzuela, S. Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genet. Genomes 2017, 13, 74. [Google Scholar] [CrossRef]
- Muranty, H.; Jorge, V.; Bastien, C.; Lepoittevin, C.; Bouffier, L.; Sanchez, L. Potential for marker-assisted selection for forest tree breeding: Lessons from 20 years of MAS in crops. Tree Genet. Genomes 2014, 10, 1491–1510. [Google Scholar] [CrossRef] [Green Version]
- Ballesta, P.; Serra, N.; Guerra, F.P.; Hasbún, R.; Mora, F. Genomic prediction of growth and stem quality traits in Eucalyptus globulus Labill. at its southernmost distribution limit in Chile. Forests 2018, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Bartholomé, J.; van Heerwaarden, J.; Isik, F.; Boury, C.; Vidal, M.; Plomion, C.; Bouffier, L. Performance of genomic prediction within and across generations in maritime pine. BMC Genom. 2016, 17, 604. [Google Scholar] [CrossRef]
- Kainer, D.; Stone, E.A.; Padovan, A.; Foley, W.J.; Külheim, C. Accuracy of genomic prediction for foliar terpene traits in Eucalyptus polybractea. G3 Genes Genomes Genet. 2018, 8, 2573. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Valenzuela, J.; Whetten, R.W.; Neale, D.; McKeand, S.; Isik, F. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3 Genes Genomes Genet. 2013, 3, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Desta, Z.A.; Ortiz, R. Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci. 2014, 19, 592–601. [Google Scholar] [CrossRef]
- Grattapaglia, D. Status and perspectives of genomic selection in forest tree breeding. In Genomic Selection for Crop Improvement; Varshney, R.K., Roorkiwal, L., Sorrells, M.E., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 199–249. [Google Scholar] [CrossRef]
- Zapata-Valenzuela, J.; Isik, F.; Maltecca, C.; Wegrzyn, J.; Neale, D.; McKeand, S.; Whetten, R. SNP markers trace familial linkages in a cloned population of Pinus taeda—Prospects for genomic selection. Tree Genet. Genomes 2012, 8, 1307–1318. [Google Scholar] [CrossRef]
- Nagano, S.; Hirao, T.; Takashima, Y.; Matsushita, M.; Mishima, K.; Takahashi, M.; Iki, T.; Ishiguri, F.; Hiraoka, Y. SNP genotyping with target amplicon sequencing using a multiplexed primer panel and its application to genomic prediction in Japanese cedar, Cryptomeria japonica (L.f.) D.Don. Forests 2020, 11, 898. [Google Scholar] [CrossRef]
- Ratcliffe, B.; El-Dien, O.G.; Klápště, J.; Porth, I.; Chen, C.; Jaquish, B.; El-Kassaby, Y.A. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity 2015, 115, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dien, O.G.; Ratcliffe, B.; Klápště, J.; Chen, C.; Porth, I.; El-Kassaby, Y.A. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genom. 2015, 16, 370. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.-L.; Sorrells, M.E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Isik, F.; Bartholomé, J.; Farjat, A.; Chancerel, E.; Raffina, A.; Sanchez, L.; Plomion, C.; Bouffiera, L. Genomic selection in maritime pine. Plant Sci. 2016, 242, 108–119. [Google Scholar] [CrossRef]
- Thistlethwaite, F.R.; Ratcliffe, B.; Klápště, J.; Porth, I.; Chen, C.; Stoehr, M.U.; El-Kassaby, Y.A. Genomic selection of juvenile height across a single-generational gap in Douglas-fir. Heredity 2019, 122, 848–863. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Ali, S.; Salgotra, R.K.; Mir, Z.A.; Dutta, S.; Jadon, V.; Tyagi, A.; Mushtaq, M.; Jain, N.; Singh, P.K.; et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 2016, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; Camacho-González, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Resende, M.D.V.; Resende, M.F.R., Jr.; Sansaloni, C.P.; Petroli, C.D.; Missiaggia, A.A.; Aguiar, A.M.; Abad, J.M.; Takahashi, E.K.; Rosado, A.M.; Faria, D.A.; et al. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012, 194, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Grattapaglia, D.; Resende, M.D.V.; Resende, M.R.; Sansaloni, C.P.; Petroli, C.D.; Missiaggia, A.A.; Takahashi, E.K.; Zamprogno, K.C.; Kilian, A. Genomic Selection for growth traits in Eucalyptus: Accuracy within and across breeding populations. BMC Proc. 2011, 5, O16. [Google Scholar] [CrossRef] [Green Version]
- Grattapaglia, D.; Silva-Junior, O.B.; Resende, R.T.; Cappa, E.P.; Müller, B.S.F.; Tan, B.; Isik, F.; Blaise Ratcliffe, B.; Yousry, A. El-Kassaby, Y.A Quantitative genetics and genomics converge to accelerate forest tree breeding. Front. Plant Sci. 2018, 9, 1693. [Google Scholar] [CrossRef] [PubMed]
- Iwata, H.; Hayashi, T.; Tsumura, Y. Prospects for genomic selection in conifer breeding: A simulation study of Cryptomeria japonica. Tree Genet. Genomes 2011, 7, 747–758. [Google Scholar] [CrossRef]
- Resende, M.F.R., Jr.; Munoz, P.; Acosta, J.J.; Peter, G.F.; Davis, J.M.; Grattapaglia, D.; Resende, M.D.V.; Kirst, M. Accelerating the domestication of trees using genomic selection: Accuracy of prediction models across ages and environments. New Phytol. 2012, 193, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Cros, D.; Mbo-Nkoulou, L.; Bell, J.M.; Oum, J.; Masson, A.; Soumahoro, M.; Tran, D.M.; Achour, Z.; Le Guen, V.; Clement-Demange, A. Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Ind. Crops Prod. 2019, 138, 111464. [Google Scholar] [CrossRef]
- Westbrook, J.W.; Zhang, Q.; Mandal, M.K.; Jenkins, E.V.; Barth, L.E.; Jenkins, J.W.; Grimwood, J.; Schmutz, J.; Holliday, J.A. Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic. Evol. Appl. 2020, 13, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Stocks, J.J.; Metheringham, C.L.; Plumb, W.J.; Lee, S.J.; Kelly, L.J.; Nichols, R.A.; Buggs, R.J.A. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 2019, 3, 1686–1696. [Google Scholar] [CrossRef]
- Lenz, P.R.N.; Nadeau, S.; Mottet, M.-J.; Perron, M.; Isabel, N.; Beaulieu, J.; Bousquet, J. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol. Appl. 2020, 13, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.; Nadeau, S.; Ding, C.; Celedon, J.M.; Azaiez, A.; Carol Ritland, C.; Laverdière, J.-P.; Marie Deslauriers, M.; Adams, G.; Fullarton, M.; et al. Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evol. Appl. 2020, 1–19. [Google Scholar] [CrossRef]
- Bouvet, J.-M.; Ekomonod, C.G.M.; Brendelf, O.; Laclaug, J.-P.; Bouillet, J.-P.; Epron, D. Selecting for water use efficiency, wood chemical traits and biomass with genomic selection in a Eucalyptus breeding program. For. Ecol. Manag. 2020, 465, 118092. [Google Scholar] [CrossRef]
- Denis, M.; Bouvet, J.-M. Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet. Genomes 2013, 9, 37–51. [Google Scholar] [CrossRef]
- de Almeida Filho, J.E.; Guimarães, J.F.R.; de Silva, F.F.; de Resende, M.D.V.; Muñoz, P.; Kirst, M.; Resende, M.F.R., Jr. The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity 2016, 117, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Dungey, H.S. Expected benefit of genomic selection over forward selection in conifer breeding and deployment. PLoS ONE 2018, 13, e0208232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stejskal, J.; Lstibůrek, M.; Klápště, J.; Čepl, J.; El-Kassaby, Y.A. Effect of genomic prediction on response to selection in forest tree breeding. Tree Genet. Genomes 2018, 14, 74. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Fukatsu, E.; Mishima, K.; Hirao, T.; Teshima, K.M.; Tamura, M.; Tsubomura, M.; Iki, T.; Kurita, M.; Takahashi, M.; et al. Potential of genome-wide studies in unrelated plus trees of a coniferous species, Cryptomeria japonica (Japanese cedar). Front. Plant Sci. 2018, 9, 1322. [Google Scholar] [CrossRef]
- Müller, B.S.F.; Neves, L.G.; de Almeida Filho, J.E.; Resende, M.F., Jr.; Muñoz, P.R.; dos Santos, P.E.T.; Filho, E.P.; Kirst, M.; Dario Grattapaglia, D. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genom. 2017, 18, 524. [Google Scholar] [CrossRef] [Green Version]
- Ballesta, P.; Bush, D.; Silva, F.F.; Freddy Mora, F. Genomic predictions using low-density SNP markers, pedigree and GWAS information: A case study with the non-model species Eucalyptus cladocalyx. Plants 2020, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Ballesta, P.; Maldonado, C.; Pérez-Rodríguez, P.; Mora, F. SNP and haplotype-based genomic selection of quantitative traits in Eucalyptus globulus. Plants 2019, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Cappa, E.P.; El-Kassaby, Y.A.; Muñoz, F.; Garcia, M.N.; Villalba, P.V.; Klápště, J.; Poltri, S.N.M. Improving accuracy of breeding values by incorporating genomic information in spatial-competition mixed models. Mol. Breed. 2017, 37, 125. [Google Scholar] [CrossRef]
- Resende, R.T.; Resende, M.D.V.; Silva, F.F.; Azevedo, C.F.; Takahashi, E.K.; Silva-Junior, O.B.; Grattapaglia, D. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity 2017, 119, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Cappa, E.P.; El-Kassaby, Y.A.; Muñoz, F.; Garcia, M.N.; Villalba, P.V.; Klápště, J.; Poltri, S.N.M. Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. Plant Sci. 2018, 271, 27–33. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, B.F.X.; dos Santos, R.F.; de Lima, B.M.; Aguiar, A.M.; Missiaggia, A.A.; da Costa Dias, D.; Rezende, G.D.P.S.; Gonçalves, F.M.A.; Acosta, J.J.; Kirst, M.; et al. Genomic selection prediction models comparing sequence capture and SNP array genotyping methods. Mol. Breed. 2018, 38, 115. [Google Scholar] [CrossRef]
- Cappa, E.P.; de Lima, B.M.; da Silva-Junior, O.B.; Garcia, C.C.; Shawn, D.; Mansfield, S.D.; Grattapaglia, D. Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci. 2019, 284, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Mphahlele, M.M.; Isik, F.; Mostert-O’Neill, M.M.; Reynolds, S.M.; Hodge, G.R.; Myburg, A.A. Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis. Tree Genet. Genomes 2020, 16, 49. [Google Scholar] [CrossRef]
- Suontama, M.; Klápště, J.; Telfer, E.; Graham, N.; Stovold, T.; Low, C.; McKinley, R.; Dungey, H. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity 2019, 122, 370–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thavamanikumar, S.; Arnold, R.J.; Luo, J.; Thumma, B.R. Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita. G3 Genes Genomes Genet. 2020, 10, 3751–3763. [Google Scholar] [CrossRef]
- Rambolarimanana, T.; Ramamonjisoa, L.; Verhaegen, D.; Tsy, J.-M.L.P.; Jacquin, L.; Cao-Hamadou, T.-V.; Makouanzi, G.; Bouvet, J.-M. Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genet. Genomes 2018, 14, 71. [Google Scholar] [CrossRef]
- Bouvet, J.-M.; Makouanzi, G.; Cros, D.; Vigneron, P. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: Prediction accuracy implications. Heredity 2016, 116, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Grattapaglia, D.; Martins, G.S.; Ferreira, K.Z.; Sundberg, B.; Ingvarsson, P.K. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 2017, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Grattapaglia, D.; Wu, H.X.; Ingvarsson, P.K. Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. Plant Sci. 2018, 267, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.M.; Francisco, F.R.; Gonçalves, P.S.; Junior, E.J.S.; Le Guen, V.; Fritsche-Neto, R.; Souz, A.P. Genomic selection in rubber tree breeding: A comparison of models and methods for managing G×E interactions. Front Plant Sci. 2019, 10, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-Q.; Baison, J.; Pan, J.; Karlsson, B.; Andersson, B.; Westin, J.; García-Gil1, M.R.; Wu, H.X. Accuracy of genomic selection for growth and wood quality traits in two controlpollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genom. 2018, 19, 946. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-Q.; Baison, J.; Pan, J.; Westin, J.; Gil, M.R.G.; Wu, H.X. Increased prediction ability in Norway spruce trials using a marker × environment interaction and non-additive genomic selection model. J. Hered. 2019, 110, 830–843. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Chen, Z.; Olsson, L.; Grahn, T.; Karlsson, B.; Wu, H.W.; Lundqvist, S.-O.; García- Gil, M.R. Effect of number of annual rings and tree ages on genomic predictive ability for solid wood properties of Norway spruce. BMC Genom. 2020, 21, 323. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.; Doerksen, T.K.; MacKay, J.; Rainville, A.; Bousquet, J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genom. 2014, 15, 1048. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.; Doerksen, T.; Clement, S.; MacKay, J.; Bousquet, J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 2014, 113, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dien, O.G.; Ratcliffe, B.; Klápště, J.; Chen, C.; Porth, I.; El-Kassaby, Y.A. Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3 Genes Genomes Genet. 2016, 6, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, B.; El-Dien, O.G.; Cappa, E.P.; Porth, I.; Klápste, J.; Chen, C.; El-Kassaby, Y.A. Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. G3 Genes Genomes Genet. 2017, 7, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Dien, O.G.; Ratcliffe, B.; Klápště, J.; Chen, C.; Porth, I.; El-Kassaby, Y.A. Multienvironment genomic variance decomposition analysis of open-pollinated Interior spruce (Picea glauca x engelmannii). Mol. Breed. 2018, 38, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenz, P.R.N.; Nadeau, S.; Azaiez, A.; Gérardi, S.; Deslauriers, M.; Perron, M.; Isabel, N.; Beaulieu, J.; Bousquet, J. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: An example from white spruce. Heredity 2020, 124, 562–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thistlethwaite, F.R.; El-Dien, O.G.; Ratcliffe, B.; Klaґpstě, J.; Porth, I.; Chen, C.; Michael, U.; Stoehr, M.U.; Ingvarsson, P.K.; El-Kassaby, Y.A. Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in conifer species. PLoS ONE 2020, 15, e0232201. [Google Scholar] [CrossRef] [PubMed]
- Lenz, P.R.N.; Beaulieu, J.; Mansfield, S.D.; Clément, S.; Desponts, M.; Bousquet, J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genom. 2017, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Utrilla, P.; Goswami, C.; Cottrell, J.E.; Pong-Wong, R.; Law, A.; A’Hara, S.W.; Lee, S.J.; Woolliams, J.A. QTL analysis and genomic selection using RADseq derived markers in Sitka spruce: The potential utility of within family data. Tree Genet. Genomes 2017, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Ukrainetz, N.K.; Mansfield, S.D. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet. Genomes 2020, 16, 14. [Google Scholar] [CrossRef]
- Li, Y.; Klápště, J.; Telfer, E.; Wilcox, P.; Graham, N.; Macdonald, L.; Dungey, H.S. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using DNA marker information. BMC Genom. 2019, 20, 1026. [Google Scholar] [CrossRef]
- Calleja-Rodriguez, A.; Pan, J.; Funda, T.; Chen, Z.-Q.; Baison, J.; Isik, F.; Abrahamsson, S.; Wu, H.X. Genomic prediction accuracies and abilities for growth and wood quality traits of Scots pine, using genotyping-by-sequencing (GBS) data. bioRxiv 2019. [Google Scholar] [CrossRef]
- Resende, M.F.R., Jr.; Muñoz, P.; Resende, M.D.V.; Garrick, D.J.; Fernando, R.L.; Davis, J.M.; Jokela, E.J.; Martin, T.A.; Peter, G.F.; Kirst, M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 2012, 190, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.R.; Resende, M.F.R., Jr.; Gezan, S.A.; Resende, M.D.V.; de los Campos, G.; Kirst, M.; Huber, D.; Peter, G.F. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics 2014, 198, 1759–1768. [Google Scholar] [CrossRef]
- Alves, F.C.; Balmant, K.M.; Resende, M.F.R.; Kirst, M.; de los Campos, G. Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. Plant Genome 2020, e20048. [Google Scholar] [CrossRef]
- Thistlethwaite, F.R.; Ratcliffe, B.; Klápště, J.; Porth, I.; Chen, C.; Stoehr, M.U.; El-Kassaby, Y.A. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genom. 2017, 18, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawitri, S.; Tani, N.; Na’iem, M.; Widiyatno, W.; Indrioko, S.; Uchiyama, K.; Suwa, R.; Siong Ng, K.K.; Lee, S.L.; Tsumura, Y. Potential of genome-wide association studies and genomic selection to improve productivity and quality of commercial timber species in tropical rainforest, a case study of Shorea platyclados. Forests 2020, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Akdemir, D.; Isidro-Sánchez, J. Design of training populations for selective phenotyping in genomic prediction. Sci. Rep. 2019, 9, 1446. [Google Scholar] [CrossRef] [PubMed]
- Robertsen, C.D.; Hjortshøj, R.L.; Janss, L.L. Genomic selection in cereal breeding. Agronomy 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Eckert, A.J.; van Heerwaarden, J.; Wegrzyn, J.L.; Nelson, C.D.; Ross-Ibarra, J.; Gonzalez-Martinez, S.C.; Neale, D.B. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010, 185, 969–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavy, N.; Gagnon, F.; Rigault, P.; Blais, S.; Deschênes, A.; Boyle, B.; Pelgas, B.; Deslauriers, M.; Clément, S.; Lavigne, P.; et al. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol. Ecol. Resour. 2013, 13, 324–336. [Google Scholar] [CrossRef]
- Silva-Junior, O.B.; Faria, D.A.; Grattapaglia, D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol. 2015, 206, 1527–1540. [Google Scholar] [CrossRef] [Green Version]
- Jaccoud, D.; Peng, K.M.; Feinstein, D.; Kilian, A. Diversity Arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001, 29, e25. [Google Scholar] [CrossRef] [Green Version]
- Heslot, N.; Rutkoski, J.; Poland, J.; Jannink, J.-L.; Sorrells, M.E. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS ONE 2013, 8, e74612. [Google Scholar] [CrossRef] [Green Version]
- Merida-Garcia, R.; Liu, G.; He, S.; Gonzalez-Dugo, V.; Dorado, G.; Gaґlvez, S.; Solís, I.; Zarco-Tejada, P.J.; Reif, J.C.; Hernandez, P. Genetic dissection of agronomic and quality traits based on association mapping and genomic selection approaches in durum wheat grown in Southern Spain. PLoS ONE 2019, 14, e0211718. [Google Scholar] [CrossRef] [Green Version]
- Sansaloni, C.; Petroli, C.; Jaccoud, D.; Carling, J.; Detering, F.; Grattapaglia, D.; Kilian, A. Diversity Arrays Technology (DArT) and next-generation sequencing combined: Genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 2011, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sikumaran, S.; Jarquin, D.; Crossa, J.; Dreisigacker, S.; Sansaloni, C.; Reynolds, M. Comparison of array-and sequencing-based makers for genome-wide association mapping and genomic prediction in spring wheat. Crop Sci. 2020, 60, 211–225. [Google Scholar] [CrossRef]
- Zimin, A.; Stevens, K.A.; Crepeau, M.W.; Holtz-Morris, A.; Koriabine, M.; Marçais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J.L.; de Jong, P.J.; et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 2014, 196, 875–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, L.G.; Davis, J.M.; Barbazuk, W.B.; Kirst, M. Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J. 2013, 75, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Suren, H.; Hodgins, K.A.; Yeaman, S.; Nurkowski, K.A.; Smets, P.; Rieseberg, L.H.; Aitken, S.N.; Holliday, J.A. Exome capture from the spruce and pine gigagenomes. Mol. Ecol. Res. 2016, 16, 1136–1146. [Google Scholar] [CrossRef]
- Pyhäjärvi, T.; Kujala, S.T.; Savolainen, O. 275 years of forestry meets genomics in Pinus sylvestris. Evol. Appl. 2020, 13, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by environment interactions in forest tree breeding: Review of methodology and perspectives on research and application. Tree Genet. Genom. 2017, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Bosquet, L.; Crossa, J.; von Zitzewitz, J.; Marıa Dolors Serret, M.D.; Araus, L.J. High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge. J. Integr. Plant Biol. 2012, 54, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.D.; Bashyam, S.; Qiu, Y.; Awada, T. Holistic and component plant phenotyping using temporal image sequence. Plant Methods 2018, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.quantitative-plant.org/ (accessed on 12 October 2020).
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salekdeh, G.H.; Reynolds, M.; Bennett, J.; Boyer, J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci. 2009, 14, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Rutkoski, J.; Poland, J.; Mondal, S.; Autrique, E.; González Pérez, L.; Crossa, J.; Reynolds, M.; Ravi, S. Predictor traits from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 Genes Genomes Genet. 2016, 6, 2799–2808. [Google Scholar] [CrossRef] [Green Version]
- Juliana, P.; Montesinos-López, O.A.; Crossa, J.; Mondal, S.; González Pérez, L.; Poland, J.; Huerta-Espino, J.; Crespo-Herrera, L.; Govindan, V.; Dreisigacker, S.; et al. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor. Appl. Genet. 2019, 132, 177–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, M.R.; Mondal, S.; Crossa, J.; Singh, R.P.; Pinto, F.; Haghighattalab, A.; Shrestha, S.; Rutkoski, J.; Gore, M.A.; Sorrells, M.E.; et al. Aerial high-throughput phenotyping enabling indirect selection for grain yield at the early-generation seed-limited stages in breeding programs. Crop Sci. 2020. [Google Scholar] [CrossRef]
- Lyra, D.H.; Virlet, N.; Sadeghi-Tehran, P.; Hassall, K.L.; Wingen, L.U.; Orford, S.; Griffiths, S.; Hawkesford, M.J.; Gancho, T.; Slavov, G.T. Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. J. Exp. Bot. 2020, 71, 1885–1898. [Google Scholar] [CrossRef] [Green Version]
- Lozada, D.N.; Godoy, J.V.; Ward, B.P.; Carter, A.H. Genomic prediction and indirect selection for grain yield in US Pacific Northwest winter wheat using spectral reflectance indices from high-throughput phenotyping. Int. J. Mol. Sci. 2020, 21, 165. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Momen, M.; Campbell, M.T.; Walia, H.; Morota, G. Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping. PLoS ONE 2020, 15, e0228118. [Google Scholar] [CrossRef] [Green Version]
- Yonis, B.O.; del Carpio, D.P.; Wolfe, M.; Jannink, J.L.; Kulakow, P.; Ismail Rabbi, I. Improving root characterisation for genomic prediction in cassava. Sci. Rep. 2020, 10, 8003. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Commun. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Chawade, A.; van Ham, J.; Blomquist, H.; Bagge, O.; Alexandersson, E.; Ortiz, R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front. Plant Sci. 2017, 8, 1681. [Google Scholar] [CrossRef]
- Solvin, T.M.; Puliti, S.; Arne Steffenrem, A. Use of UAV photogrammetric data in forest genetic trials: Measuring tree height, growth, and phenology in Norway spruce (Picea abies L. Karst.). Scand. J. For. Res. 2020, 35, 322–333. [Google Scholar] [CrossRef]
- Mazis, A.; Choudhury, S.D.; Morgan, P.B.; Stoerger, V.; Jeremy Hiller, J.; Ge, Y.; Awada, T. Application of high-throughput plant phenotyping for assessing biophysical traits and drought response in two oak species under controlled environment. For. Ecol. Manag. 2020, 465, 118101. [Google Scholar] [CrossRef]
- Vidyagina, E.O.; Subbotina, N.M.; Belyi, V.A.; Lebedev, V.G.; Krutovsky, K.V.; Shestibratov, K.A. Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions. BMC Plant Biol. 2020, 20, 251. [Google Scholar] [CrossRef]
- Martins, G.S.; Yuliarto, M.; Antes, R.; Sabki; Prasetyo, A.; Unda, F.; Mansfield, S.D.; Hodge, G.R.; Acosta, J.J. Wood and pulping properties variation of Acacia crassicarpa A. Cunn. ex Benth. and sampling strategies for accurate phenotyping. Forests 2020, 11, 1043. [Google Scholar] [CrossRef]
- Lin, Z.; Hayes, B.J.; Daetwyler, H.D. Genomic selection in crops, trees and forages: A review. Crop Pasture Sci. 2014, 65, 1177–1191. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Wiemann, M.C. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 2017, 74, 27. [Google Scholar] [CrossRef] [Green Version]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van den Bulcke, J.; Wang, X. Non-destructive evaluation techniques and what they tell us about wood property variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; CABI Publishing CAB International: Cambridge, UK, 2007. [Google Scholar]
- Banerjee, B.P.; Joshi, S.; Thoday-Kennedy, E.; Pasam, R.K.; Tibbits, J.; Hayden, M.; Spangenberg, G.; Kant, S. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J. Exp. Bot. 2020, 71, 4604–4615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xu, Y.; Hu, Z.; Xu, C. Genomic selection methods for crop improvement: Current status and prospects. Crop J. 2018, 6, 330–340. [Google Scholar] [CrossRef]
- Legarra, A.; Robert-Granie, C.; Croiseau, P.; Guillaume, F.; Fritz, S. Improved LASSO for genomic selection. Genet. Res. 2011, 93, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianola, D.; Fernandoand, R.L.; Stella, A. Genomic assisted prediction of genetic value with semi-parametric procedures. Genetics 2006, 173, 1761–1776. [Google Scholar] [CrossRef] [Green Version]
- Heslot, N.; Yang, H.-P.; Sorrells, M.E.; Jannink, J.-L. Genomic selection in plant breeding: A comparison of models. Crop Sci. 2012, 56, 146–160. [Google Scholar] [CrossRef]
- Heslot, N.; Jannink, J.-L.; Sorrells, M.E. Perspectives for genomic selection applications and research in plants. Crop Sci. 2015, 55, 1–12. [Google Scholar] [CrossRef]
- Banta, J.A.; Richards, C.L. Quantitative epigenetics and evolution. Heredity 2018, 121, 210–224. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Gugger, P.F.; Fitz-Gibbon, S.T.; Pellegrini, M.; Sork, V.L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 2016, 25, 1665–1680. [Google Scholar] [CrossRef]
- Le Gac, A.-L.; Lafon-Placette, C.; Chauveau, D. Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. J. Exp. Bot. 2018, 69, 4821–4837. [Google Scholar] [CrossRef] [Green Version]
- Koide, Y.; Sakaguchi, S.; Uchiyama, T.; Ota, Y.; Tezuka, A.; Nagano, A.J.; Ishiguro, S.; Takamure, I.; Kishima, Y. Genetic properties responsible for the transgressive segregation of days to heading in rice. G3 Genes Genomes Genet. 2019, 9, 1655–1662. [Google Scholar] [CrossRef] [Green Version]
- de Los Reyes, B.G. Genomic and epigenomic bases of transgressive segregation—New breeding paradigm for novel plant phenotypes. Plant Sci. 2019, 288, 110213. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, R.; Uezono, K.; Ishikura, S.; Osabe, K.; Peacock, W.J.; Elizabeth, S.; Dennis, E.S. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed. Sci. 2018, 68, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groszmann, M.; Greaves, I.K.; Fujimoto, R.; Peacock, W.J.; Dennis, E.S. The role of epigenetics in hybrid vigour. Trends Genet. 2013, 29, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Huang, Q.; Chu, Y.; Ding, C.; Zhang, B.; Su, X. Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides. BMC Genet. 2014, 15, S8. [Google Scholar] [CrossRef] [Green Version]
- Springer, N.M.; Schmitz, R.J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 2017, 18, 563–575. [Google Scholar] [CrossRef]
- Goddard, M.E.; Emma Whitelaw, E. The use of epigenetic phenomena for the improvement of sheep and cattle. Front. Genet. 2014, 5, 247. [Google Scholar] [CrossRef] [Green Version]
- Banos, D.T.; McCartney, D.L.; Patxot, M.; Anchieri, L.; Battram, T.; Christiansen, C.; Costeira, R.; Walker, R.M.; Morris, S.W.; Archie Campbell, A. Bayesian reassessment of the epigenetic architecture of complex traits. Nat. Commun. 2020, 11, 2865. [Google Scholar] [CrossRef]
- Shah, S.; Bonder, M.J.; Marioni, R.E.; Zhu, Z.; McRae, A.F.; Zhernakova, A.; Harris, S.E.; Liewald, D.; Henders, A.K.; Mendelson, M.M.; et al. Improving phenotypic prediction by combining genetic and epigenetic associations. Am. J. Hum. Genet. 2015, 97, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Mackenzie, S.A. Approaches to whole-genome methylome analysis in plants. In Plant Epigenetics and Epigenomics. Methods in Molecular Biology; Spillane, C., McKeown, P., Eds.; Humana: New York, NY, USA, 2020; Volume 2093. [Google Scholar] [CrossRef]
- Bernardo, R.; Yu, J.M. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 2007, 47, 1082–1090. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.; Bernardo, R. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 2008, 116, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.; Goddard, M. Genome-wide association and genomic selection in animal breeding. Genome 2010, 53, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Sork, V.L.; Aitken, S.N.; Dyer, R.J.; Eckert, A.J.; Legendre, P.; Neale, D.B. Putting the landscape into the genomics of trees: Approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 2013, 9, 901–911. [Google Scholar] [CrossRef]
- Charlesworth, B. Fundamental concepts in genetics: Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 2009, 10, 195–205. [Google Scholar] [CrossRef]
- Grattapaglia, D. Breeding forest trees by genomic selection: Current progress and the way forward. In Genomics of Plant Genetic Resources; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 651–682. [Google Scholar]
- Brondani, R.P.V.; Williams, E.R.; Brondani, C.; Grattapaglia, D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol. 2006, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Neves, L.G.; Davis, J.M.; Barbazuk, W.B.; Kirst, M. A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3 Genes Genomes Genet. 2014, 4, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Krutovsky, K.V.; Troggio, M.; Brown, G.R.; Jermstad, K.D.; Neale, D.B. Comparative mapping in the Pinaceae. Genetics 2004, 168, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Meuwissen, T.H.E. Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet. Sel. Evol. 2009, 41, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bink, M.C.A.M.; Volz, R.K.; Bus, V.G.M.; Chagné, D. Towards genomic selection in apple (Malus·domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 2012, 8, 1–14. [Google Scholar] [CrossRef]
- Mullin, T.J.; Andersson, B.; Bastien, J.C.; Beaulieu, J.; Burdon, R.D.; Dvorak, W.S.; King, J.N.; Kondo, T.; Krakowski, J.; Lee, S.J.; et al. Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifers; Plomion, C., Bousquet, J., Kole, C., Eds.; Science Publishers and CRC Press: New York, NY, USA, 2011; pp. 40–127. [Google Scholar]
- Rajsic, P.; Weersink, A.; Navabi, A.; Peter Pauls, K. Economics of genomic selection: The role of prediction accuracy and relative genotyping costs. Euphytica 2016, 210, 259–276. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Gaston, C.; Cool, J.; Barb, R.; Thomas, B.R. A financial analysis of using improved planting stock of white spruce and lodgepole pine in Alberta, Canada: Genomic selection versus traditional breeding. Int. J. For. Res. 2019, 92, 297–310. [Google Scholar] [CrossRef]
- Chamberland, V.; Robichaud, F.; Perron, M.; Gélinas, N.; Bousquet, J.; Beaulieu, J. Conventional versus genomic selection for white spruce improvement: A comparison of costs and benefits of plantations on Quebec public lands. Tree Genet. Genomes 2020, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-S.; Beaulieu, J.; Bousquet, J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In Vegetative Propagation of Forest Trees; Park, Y.-S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science: Seoul, Korea, 2016; pp. 302–322. [Google Scholar]
- Salojärvi, J.; Smolander, O.-P.; Nieminen, K.; Rajaraman, S. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 2017, 49, 904–912. [Google Scholar] [CrossRef]
- Plomion, C.; Aury, J.; Amselem, J.; Aury, J.-M.; Leroy, T. Oak genome reveals facets of long lifespan. Nat. Plants 2018, 4, 440–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasodha, R.; Vasudeva, R.; Balakrishnan, S.; Sakthi, A.R.; Abel, N.; Binai, N.; Rajashekar, B.; Bachpai, V.K.W.; Pillai, C.; Dev, S.A. Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): Insights into SSR diversity, phylogeny and conservation. DNA Res. 2018, 25, 409–419. [Google Scholar] [CrossRef]
- Wenzel, S.; Flachowsky, H.; Magda-Viola Hanke, M.-V. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus domestica Borkh.). Plant Cell Tissue Organ Cult. 2013, 115, 127–137. [Google Scholar] [CrossRef]
- Graham, T.; Scorza, R.; Wheeler, R.; Smith, B.; Dardick, C.; Dixit, A.; Raines, D.; Ann Callahan, A.; Srinivasan, C.; Spencer, L.; et al. Over-expression of FT1 in plum (Prunus domestica) results in phenotypes compatible with spaceflight: A potential new candidate crop for bioregenerative life support systems. Gravit. Space Res. 2015, 3, 39–50. [Google Scholar]
- Endo, T.; Fujii, H.; Omura, M.; Takehiko Shimada, T. Fast-track breeding system to introduce CTV resistance of trifoliate orange into citrus germplasm, by integrating early flowering transgenic plants with marker-assisted selection. BMC Plant Biol. 2020, 20, 224. [Google Scholar] [CrossRef]
- Vicient, C.M.; Casacuberta, J.M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 2017, 120, 195–207. [Google Scholar] [CrossRef]
- Wang, J.; Lu, N.; Yi, F.; Xiao, Y. Identification of transposable elements in conifer and their potential application in breeding. Evol. Bioinform. Online 2020, 16. [Google Scholar] [CrossRef] [PubMed]
Species | Population Size | Effective Population Size | Heritability of Trait | Number of QTL | Marker Density, Marker/cM | Prediction Model 1 | Scenario 2 | Reference |
---|---|---|---|---|---|---|---|---|
forest trees | 200–8000 | 10–1000 | 0.2–0.6 | 1–200 | 1–20 | BLUP | PS GS | [23] |
Cryptomeria japonica (Thunb. ex L.f.) D.Don | 2000 | - | 0.1–0.5 | 50 or 150 | 0.5–5 | linear | PS GS PS + GS | [25] |
Eucalyptus | - | 100 | 0.1 or 0.6 | 44 | 0.1 | BLASSO | PS GS GS + dominance | [33] |
Pinus taeda | 1000 | - | 0.25 | 30 or 1000 | 8.33 | BRR, Bayes A, Bayes B, BLASSO | GS GS + dominance | [34] |
conifers | 800–3000 | - | 0.2 or 0.5 | 350 | 4–53.3 | Bayes C | PS PS + clonal archive GS GS + top grafting | [35] |
forest trees | 2050 | 5–25 | 0.2 or 0.6 | 100–200 | 1–10 | ABLUP, GBLUP | GS | [36] |
Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. | 100–5000 | - | - | - | - | linear | PS PS + GS | [27] |
Species | Population Structure 1 | Genotyping Technology | Marker Type | Number of Markers | Traits 2 | Phenotyping Age, Years 3 | Prediction Model 4 | Breeding Cycle in PS/GS, Years 5 | Reference |
---|---|---|---|---|---|---|---|---|---|
Castanea dentata (Marshall) Borkh. | 1230 (HS) | GBS | SNP | 71,507 | disease resistance | 5–16 | ABLUP, HBLUP, Bayes C | [28] | |
Cryptomeria japonica | 476 (WP) | Axiom array | SNP | 32,036 | growth, physWP, male fecundity | 10 | GBLUP, Bayes B, RF | [37] | |
C. japonica | 547 (FS), 29 (HS) | Axiom array | SNP | 3034 | growth, physWP | 18 | GBLUP, RF | [13] | |
Eucalyptus benthamii Maiden and Cambage E. pellita F. Muell. | 505 (HS) 732 (HS) | EUChip60K | SNP | 13,787 19,506 | growth | 56 months 42 months | ABLUP, GBLUP, Bayes A, Bayes B, Bayes Cπ, BLASSO, BRR | [38] | |
E. cladocalyx F. Muell. | 480 (49 HS) | EUChip60K | SNP | 3879 | growth, physWP, treeArc, flowering intensity | 17 or 18 | Bayes A, Bayes B, Bayes C, BRR | [39] | |
E. globulus | 310 (40 FS, 13 HS) | EUChip60K | SNP | ~12,000 | growth | 5–11 | GBLUP, Bayes B, Bayes C, BLASSO | [4] | |
E. globulus | 647 (62 FS, 3 HS) | EUChip60K | SNP | 14,442 | growth, treeArc | 4 | RR-BLUP, RR-BLUP-B, Bayes A, Bayes B, BLASSO, PCR, S-PCR | [6] | |
E. globulus | 646 (FS, HS) | EUChip60K | SNP | 14,422 | growth, physWP, treeArc | 6 | Bayes A, Bayes B, Bayes C, BLASSO, BRR | [40] | |
E. grandis W. Hill × E. urophylla S.T. Blake E. grandis, E. urophylla, E. globulus and hybrids | 738 (43 FS) 920 (75 FS) | DArT Pty array | DArT | 3129 3564 | growth, physWP, pulp yield | 3 3 or 3.7 | RR-BLUP | 18/9 | [22] |
E. grandis | 187 (131 HS) | DArT Pty array | DArT | 7680 | growth | 5 | ABLUP, HBLUP | [41] | |
E. grandis × E. urophylla | 768 (37 FS) | EUChip60K | SNP | 24,806 | growth, physWP, pulp yield | 3 | GBLUP (+ D) | 18/14 or 9 | [42] |
E. grandis | 187 (131 HS) | DArT Pty array | DArT | 2816 | growth, treeArc | 5 | ABLUP, HBLUP (+ MT) | [43] | |
E. grandis, E. grandis × E. camaldulensis Dehnh. | 995 (69 FS) | sequence capture, EUChip60K | SNP | 55,722, 40,932 | growth, physWP, chemWP | 24 and 36 months | RR-BLUP, BayesB | [44] | |
E. grandis × E. urophylla | 999 (45 FS) | EUChip60K | SNP | 33,398 | growth, physWP, chemWP | 5 | ABLUP, GBLUP, HBLUP | [45] | |
E. grandis | 1548 (FS, HS) | EUChip60K | SNP | 15,040 | growth, physWP, chemWP | 7 | ABLUP, GBLUP | 8/4 | [46] |
E. nitens (H. Deane and Maiden) Maiden | 691 (72 HS) | EUChip60K | SNP | 12,236 | growth, physWP | 6 or 7 | GBLUP, BLUP | [47] | |
E. pellita | 468 (28 HS) | marker panel | SNP | 2023 | growth, pulp yield | 54 months | ABLUP, GBLUP, HBLUP | [48] | |
E. polybractea R.T. Baker | 480 (40 HS) | whole genome sequencing | SNP | 10,000, 97,000 and 502,000 | growth, terpene, and essential oil content | 1 and 2 | ABLUP, GBLUP, Bayes B | [8] | |
E. robusta Sm. | 415 (WP) | DArTseq | SNP | 2919 | growth, chemWP | 49 months or 20 years | GBLUP (+ MT) | [49] | |
E. urophylla × E. grandis | 1130 (69 FS) | DArTseq | SNP | 3303 | growth | 32 months | PBLUP (+ D, E) | [50] | |
E. urophylla × E. grandis | 958 (338 FS) | EUChip60K | SNP | 41,304 | growth, physWP, pulp yield | 3 and 6 | ABLUP, GBLUP, RR-BLUP, BLASSO, RKHS | [51] | |
E. urophylla × E. grandis | 958 (338 FS) | EUChip60K | SNP | 41,304 | growth, physWP, pulp yield | 3 and 6 | GBLUP (+ D, E) | [52] | |
E. urophylla × E. grandis | 1130 (69 FS) | DArTseq | SNP | 3303 | growth, chemWP, water use efficiency | 55 months | GBLUP (+ MT) | [32] | |
Fraxinus excelsior L. | 1250 (WP, HS) | whole genome sequencing | SNP | 100–50,000 | disease resistance | 6 | RR-BLUP | [29] | |
Hevea brasiliensis | 435 (FS) | GBS | SNP | 107,294 | growth | 1, 2, 3, and 4 | GBLUP | 10/3 | [53] |
H. brasiliensis | 330 (FS) | SSR | 332 | rubber production | 4 | RR-BLUP (+ D), BLASSO, RKHS | [27] | ||
Picea abies (L.) H. Karst. | 1370 (128 FS) | sequence capture | SNP | 116,765 | growth, physWP | 17 or 30 | ABLUP, GBLUP, BLASSO, BRR, RKHS | 25/15 | [54] |
P. abies | 1370 (128 FS) | sequence capture | SNP | 116,765 | growth, physWP | 17 or 30 | ABLUP, GBLUP (+ D, E) | [55] | |
P. abies | 726 (40 FS) | Infinium iSelect array | SNP | 5660 | growth, physWP pest resistance | 15 or 16 10 and 15 | ABLUP, GBLUP, TGBLUP, Bayes Cπ, BRR (+ MT) | [30] | |
P. abies | 484 (62 HS) | exome capture | SNP | 130,269 | physWP | 19 or 22 | ABLUP, GBLUP, RR-BLUP, Bayes B, RKHS | [56] | |
P. glauca (Moench) Voss, | 1748 (FS, HS) | Infinium array PgLM3 | SNP | 6932 | growth, physWP | 17 | ABLUP, RR-BLUP, BLASSO | [57] | |
P. glauca | 1694 (214 HS) | Infinium array PgAS1 | SNP | 7338 | growth, physWP | 27 | BLUP | 30/10 | [58] |
P. glauca × P. engelmannii Parry ex Engelm. | 769 (25 HS) | GBS | SNP | 34,570-50,803 | growth | 3, 6, 10, 15, 30, and 40 | RR-BLUP, Bayes Cπ, GRR | [14] | |
P. glauca × P. engelmannii | 1126 (25 HS) | GBS | SNP | 8868–62,618 | growth, physWP | 38 | ABLUP, GBLUP, RR-BLUP, GRR (+ MT) | [15] | |
P. glauca × P. engelmannii | 1694 (214 HS) | Infinium array PgAS1 | SNP | 7338 | growth, physWP | 38 | ABLUP, GBLUP (+ D, E) | [59] | |
P. glauca | 1694 (214 HS) | Infinium array PgAS1 | SNP | 6716 | growth, physWP | 22 | HBLUP | [60] | |
P. glauca × P. engelmannii | 1126 (25 HS) | GBS | SNP | ~30,000 | growth, physWP | 38 | ABLUP, GBLUP (+ D, E) | [61] | |
P. glauca | 1516 (136 FS) | Infinium iSelect array | SNP | 4148 | growth, physWP, pest resistance | 16–28 | ABLUP, GBLUP, Bayes Cπ (+ D) | [31] | |
P. glauca | 1513 (54 FS), 892 (HS) | Infinium array PgLM3 | SNP | 4092 | growth, physWP, | 19 or 20 | ABLUP, GBLUP | [62] | |
P. glauca × P. engelmannii | 1126 (25 HS) | GBS | SNP | 62,190 | growth, physWP | 38 | ABLUP, RR-BLUP | [63] | |
P. mariana (Mill.) Britton, Sterns, and Poggenb. | 734 (34 FS) | Infinium iSelect array | SNP | 4993 | growth, physWP | 25 | BLUP | 28/9 | [64] |
P. sitchensis (Bong.) Carr. | 498 (3 FS) | RADseq | SNP | from ~2000–3000 to ~56,000 | growth, timing of budburst | 5 or 6 | GBLUP | [65] | |
Pinus contorta Douglas ex Loudon | 732 (FS), 697 (HS) | Axiom array | SNP | 19,584 | growth, physWP | 10 | ABLUP, GBLUP, Bayes B, Bayes C | [66] | |
P. pinaster Aiton | 818 (35 HS) | Infinium array | SNP | 4436 | growth, treeArc | 8 or 12 | ABLUP, BLUP, BLASSO | [7] | |
P. pinaster | 661 (FS, HS) | Infinium array | SNP | 2500 | growth, treeArc | 6–15 | GBLUP, BLASSO, BRR | [18] | |
P. radiata D. Don | 1103 | exome capture | SNP | 67,168 | treeArc, internal checking, external resin bleeding | 7, 8, or 9 | ABLUP, GBLUP | 17/9 | [67] |
P. sylvestris L. | 694 (183 FS) | GBS | SNP | 8719 | growth, physWP | 10 and 30/30 and 36 | ABLUP, GBLUP, BLASSO, BRR | 36/18 and 21/11 | [68] |
P. taeda | 951 (61 FS) | Infinium array | SNP | 4853 | growth, physWP, chemWP, treeArc, disease resistance (greenhouse), rooting ability (greenhouse) | 4 or 6 | RR-BLUP, RR-BLUP B, Bayes A, Bayes Cπ, BLASSO | [69] | |
P. taeda | 926 (61 FS) | Infinium array | SNP | 4825 | growth | 1, 2, 3, 4, and 6/3, 4, and 6 | BLUP | [26] | |
P. taeda | 149 (13 FS) | Infinium array | SNP | 3406 | growth, chemWP, treeArc | 5 | BLUP | 15/7.5 | [12] |
P. taeda | 165 (9 FS) | Infinium array | SNP | 3461 | growth | 5 | ABLUP, GBLUP | [9] | |
P. taeda | 951 (61 FS) | Infinium array | SNP | 4853 | growth | PBLUP, GBLUP (+ D, E) | [70] | ||
P. taeda | 923 (71 FS) | Infinium array | SNP | 7216 | growth, disease resistance (greenhouse) | 6 | Bayes A, Bayes B, BLASSO, BRR | [34] | |
Populus deltoides W. Bartram ex Marshall | 473 (WP) | sequence capture | SNP | 92,000 | growth | 1, 2, 3, 4 and 5 (field)1–15 weeks (greenhouse) | GBLUP | [71] | |
Pseudotsuga menziesii (Mirb.) Franco | 1372 (37 FS) | exome capture | SNP | 69,551 | growth physWP | 12 and 35 38 | ABLUP, RR-BLUP, GRR | [72] | |
P. menziesii | 1321 (37 FS) | exome capture | SNP | 69,551 | growth | 12 | ABLUP, RR-BLUP, Bayes B, GRR | [19] | |
P. menziesii | 1321 (37 FS) | exome capture | SNP | 56,454 | growth, physWP | 35 or 38 | ABLUP, RR-BLUP | [63] | |
Shorea platyclados Sloot. ex Foxw. | 356 (HS) | whole genome sequencing | SNP | 5900 | growth, physWP, treeArc | 11 | Bayes A, Bayes B, Bayes C, BL, BRR | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.G.; Lebedeva, T.N.; Chernodubov, A.I.; Shestibratov, K.A. Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests 2020, 11, 1190. https://doi.org/10.3390/f11111190
Lebedev VG, Lebedeva TN, Chernodubov AI, Shestibratov KA. Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests. 2020; 11(11):1190. https://doi.org/10.3390/f11111190
Chicago/Turabian StyleLebedev, Vadim G., Tatyana N. Lebedeva, Aleksey I. Chernodubov, and Konstantin A. Shestibratov. 2020. "Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives" Forests 11, no. 11: 1190. https://doi.org/10.3390/f11111190
APA StyleLebedev, V. G., Lebedeva, T. N., Chernodubov, A. I., & Shestibratov, K. A. (2020). Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests, 11(11), 1190. https://doi.org/10.3390/f11111190