Depression as a Risk Factor for Dementia and Alzheimer’s Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants and Selection Criteria
- Age ≥ 65 years.
- Medical diagnosis of dementia or AD with a global deterioration scale (GDS) score between 5 and 7 [34]. Patients received diagnosis of dementia if they met DSM-V clinical criteria and received a diagnosis of probable or possible AD according to NINCDS/ADRDA (National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association) criteria.
- Being included, at least, for three months in the listings of the dementia process. In the case of the institution dedicated to the care of patients with Alzheimer’s disease, patients who had used this service for at least three months were included.
- Being unable to communicate verbally.
- Having a relative or legal representative that could sign the informed consent for the participation of the patient in the study.
- Age ≥ 65 years.
- Being able to sign the informed consent for their participation in the study.
- Not presenting with a diagnosis of dementia or AD.
2.3. Study Measures
2.4. Statistical Analysis
2.5. Limitations
2.6. Ethical Aspects
3. Results
3.1. Sample Characteristics
3.2. Variables Associated with Dementia and AD
- Model 1: Adjusted for age and depression.
- Model 2: Adjusted for age and dyslipidemias.
- Model 3: Adjusted for age, depression, dyslipidemias, and T2DM.
3.3. Diagnostic Accuracy of Dementia and AD
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prince, M.; Ali, G.-C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.-T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer’s Res. Ther. 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.R.; Officer, A.M.; Cassels, A.K. The World Report on Ageing and Health. GERONT 2016, 56, S163–S166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, D.; Perestelo-Pérez, L.; Westman, E.; Wahlund, L.-O.; Sarría, A.; Serrano-Aguilar, P. Meta-Review of CSF Core Biomarkers in Alzheimer’s Disease: The State-of-the-Art after the New Revised Diagnostic Criteria. Front. Aging Neurosci. 2014, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Wortmann, M. Dementia: A global health priority—Highlights from an ADI and World Health Organization report. Alzheimer’s Res. Ther. 2012, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
- Shao, Y.; Zeng, Q.T.; Chen, K.K.; Shutes-David, A.; Thielke, S.M.; Tsuang, D.W. Detection of probable dementia cases in undiagnosed patients using structured and unstructured electronic health records. BMC Med. Inform. Decis. Mak. 2019, 19, 128. [Google Scholar] [CrossRef]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Anstey, K.J.; von Sanden, C.; Salim, A.; O’Kearney, R. Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. Am. J. Epidemiol. 2007, 166, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.; Wei, C.; Tang, Y.; Qin, Q.; Wang, F.; Qiao, Y.; et al. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol. 2020, 19, 81–92. [Google Scholar] [CrossRef]
- Oliveira, B.C.D.L.; Bellozi, P.M.Q.; Reis, H.J.; De Oliveira, A.C.P. Inflammation as a Possible Link Between Dyslipidemia and Alzheimer’s Disease. Neuroscience 2018, 376, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Mejías-Trueba, M.; Pérez-Moreno, M.A.; Fernández-Arche, M. Ángeles Systematic review of the efficacy of statins for the treatment of Alzheimer’s disease. Clin. Med. 2018, 18, 54–61. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, B.; Craig, D.; Bullock, R.; Passmore, P. Statins for the prevention of dementia. Cochrane Database Syst. Rev. 2009, CD003160. [Google Scholar] [CrossRef]
- Shinohara, M.; Sato, N. Bidirectional interactions between diabetes and Alzheimer’s disease. Neurochem. Int. 2017, 108, 296–302. [Google Scholar] [CrossRef]
- Tumminia, A.; Vinciguerra, F.; Parisi, M.; Frittitta, L. Type 2 Diabetes Mellitus and Alzheimer’s Disease: Role of Insulin Signalling and Therapeutic Implications. Int. J. Mol. Sci. 2018, 19, 3306. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.; Beare, R.; Phan, T.; Starkstein, S.; Bruce, D.; Romina, M.; Srikanth, V. Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. J. Alzheimer’s Dis. 2017, 59, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.N. Understanding the Link between Dementia and Diabetes. J. Alzheimer’s Dis. 2017, 59, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Wijesekara, N.; Liyanapathirana, M.; Newsholme, P.; Ittner, L.; Fraser, P.; Verdile, G. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. J. Alzheimer’s Dis. 2017, 59, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miklossy, J.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Làszló, F.; Miller, L.; Martins, R.N.; Waeber, G.; Mooser, V.; et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol. Aging 2010, 31, 1503–1515. [Google Scholar] [CrossRef]
- Santabárbara, J.; Lipnicki, D.; Bueno-Notivol, J.; Olaya-Guzmán, B.; Villagrasa, B.; López-Antón, R. Updating the evidence for an association between anxiety and risk of Alzheimer’s disease: A meta-analysis of prospective cohort studies. J. Affect. Disord. 2020, 262, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, P.B.; Mielke, M.M.; Appleby, B.S.; Oh, E.S.; Geda, Y.E.; Lyketsos, C.G. The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am. J. Geriatr. Psychiatry 2013, 21, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S.; Thomas, A.J. Depression and dementia: Cause, consequence or coincidence? Maturitas 2014, 79, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Donovan, N.J.; Locascio, J.J.; Marshall, G.A.; Gatchel, J.R.; Hanseeuw, B.J.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A.; for the Harvard Aging Brain Study. Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am. J. Psychiatry 2018, 175, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Krell-Roesch, J.; Lowe, V.J.; Neureiter, J.; Pink, A.; Roberts, R.O.; Mielke, M.M.; Vemuri, P.; Stokin, G.B.; Christianson, T.J.; Jack, C.R.; et al. Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: The Mayo Clinic Study of Aging. Int. Psychogeriatr. 2017, 30, 245–2512018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatchel, J.R.; Rabin, J.S.; Buckley, R.F.; Locascio, J.J.; Quiroz, Y.T.; Yang, H.-S.; Vannini, P.; Amariglio, R.E.; Rentz, D.M.; Properzi, M.; et al. Longitudinal Association of Depression Symptoms With Cognition and Cortical Amyloid Among Community-Dwelling Older Adults. JAMA Netw. Open 2019, 2, e198964. [Google Scholar] [CrossRef] [Green Version]
- Capogna, E.; Manca, R.; De Marco, M.; Hall, A.; Soininen, H.; Venneri, A. Understanding the effect of cognitive/brain reserve and depression on regional atrophy in early Alzheimer’s disease. Postgrad. Med. 2019, 131, 533–538. [Google Scholar] [CrossRef]
- Olaya, B.; Moneta, M.V.; Miret, M.; Ayuso-Mateos, J.L.; Haro, J.M. Course of depression and cognitive decline at 3-year follow-up: The role of age of onset. Psychol. Aging 2019, 34, 475–485. [Google Scholar] [CrossRef]
- Kuring, J.K.; Mathias, J.L.; Ward, L. Prevalence of Depression, Anxiety and PTSD in People with Dementia: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2018, 28, 393–416. [Google Scholar] [CrossRef] [PubMed]
- Perna, L.; Wahl, H.W.; Weberpals, J.; Jansen, L.; Mons, U.; Schöttker, B.; Brenner, H. Incident depression and mortality among people with different types of dementia: Results from a longitudinal cohort study. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Seo, H.I.; Cha, H.Y.; Yang, Y.J.; Kwon, S.H.; Yang, S.J. Diabetes and Alzheimer’s Disease: Mechanisms and Nutritional Aspects. Clin. Nutr. Res. 2018, 7, 229. [Google Scholar] [CrossRef] [Green Version]
- Arthur, A.; Savva, G.M.; Barnes, L.E.; Borjian-Boroojeny, A.; Dening, T.; Jagger, C.; Matthews, F.E.; Robinson, L.; Brayne, C.; the Cognitive Function and Ageing Studies Collaboration; et al. Changing prevalence and treatment of depression among older people over two decades. Br. J. Psychiatry 2019, 216, 49–54. [Google Scholar] [CrossRef]
- Helvik, A.-S.; Barca, M.L.; Bergh, S.; Šaltytė-Benth, J.; Kirkevold, Ø.; Borza, T. The course of depressive symptoms with decline in cognitive function—A longitudinal study of older adults receiving in-home care at baseline. BMC Geriatr. 2019, 19, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, S.L.; Cadet, T.; Alcide, A.; O’Driscoll, J.; Maramaldi, P. Psychosocial risk factors and Alzheimer’s disease: The associative effect of depression, sleep disturbance, and anxiety. Aging Ment. Health 2017, 22, 1577–1584. [Google Scholar] [CrossRef]
- Mirza, S.S.; Wolters, F.J.; Swanson, S.A.; Koudstaal, P.J.; Hofman, A.; Tiemeier, H.; Ikram, M.A. 10-year trajectories of depressive symptoms and risk of dementia: A population-based study. Lancet Psychiatry 2016, 3, 628–635. [Google Scholar] [CrossRef]
- Burke, S.L.; Maramaldi, P.; Cadet, T.; Kukull, W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: Dementia. Int. Psychogeriatr. 2016, 28, 1409–1424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-C.; Meguro, K.; Nakamura, K.; Akanuma, K.; Nakatsuka, M.; Seki, T.; Nakaaki, S.; Mimura, M.; Kawakami, N. Depression and Dementia in Old-Old Population: History of Depression May Be Associated with Dementia Onset. The Tome Project. Front. Aging Neurosci. 2017, 9, 335. [Google Scholar] [CrossRef]
- Graziane, J.A.; Beer, J.C.; Snitz, B.E.; Chang, C.-C.H.; Ganguli, M. Dual Trajectories of Depression and Cognition: A Longitudinal Population-Based Study. Am. J. Geriatr. Psychiatry 2016, 24, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkanova, V.; Ebmeier, K.P.; Allan, C.L. Depression is linked to dementia in older adults. Practitioner 2017, 261, 11–15. [Google Scholar] [PubMed]
- García, P.G.; De-La-Cámara, C.; Santabárbara, J.; López-Antón, R.; Quintanilla, M.Á.; Ventura, T.; Marcos, G.; Campayo, A.; Saz, P.; Lyketsos, C.; et al. Depression and incident Alzheimer disease: The impact of disease severity. Am. J. Geriatr. Psychiatry 2013, 23, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Santabárbara Serrano, J.; Sevil Pérez, A.; Olaya, B.; Gracia García, P.; López Antón, R. Depresión tardía clínicamente relevante y riesgo de demencia: Revisión sistemática y metaanálisis de estudios prospectivos de cohortes. Rev. Neurol. 2019, 68, 493. [Google Scholar] [CrossRef]
- Jamieson, A.; Goodwill, A.M.; Termine, M.; Campbell, S.; Szoeke, C. Depression related cerebral pathology and its relationship with cognitive functioning: A systematic review. J. Affect. Disord. 2019, 250, 410–418. [Google Scholar] [CrossRef]
- Leyhe, T.; Reynolds, C.F.; Melcher, T.; Linnemann, C.; Klöppel, S.; Blennow, K.; Zetterberg, H.; Dubois, B.; Lista, S.; Hampel, H. A common challenge in older adults: Classification, overlap, and therapy of depression and dementia. Alzheimer’s Dement. 2016, 13, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goukasian, N.; Hwang, K.S.; Romero, T.; Grotts, J.; Do, T.M.; Groh, J.R.; Bateman, D.R.; Apostolova, L.G. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: A multisite observational cohort study. BMJ Open 2019, 9, e031947. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, C.; Lang, U.E. Pathways Connecting Late-Life Depression and Dementia. Front. Pharmacol. 2020, 11, 279. [Google Scholar] [CrossRef]
- Brzezińska, A.; Bourke, J.; Rivera-Hernández, R.; Tsolaki, M.; Woźniak, J.; Kaźmierski, J. Depression in Dementia or Dementia in Depression? Systematic Review of Studies and Hypotheses. Curr. Alzheimer Res. 2020, 17, 16–28. [Google Scholar] [CrossRef]
- Peakman, G.; Karunatilake, N.; Seynaeve, M.; Perera, G.; Aarsland, D.; Stewart, R.; Mueller, C. Clinical factors associated with progression to dementia in people with late-life depression: A cohort study of patients in secondary care. BMJ Open 2020, 10, e035147. [Google Scholar] [CrossRef] [PubMed]
- Anor, C.J.; O’Connor, S.; Saund, A.; Tang-Wai, D.F.; Keren, R.; Tartaglia, M.C. Neuropsychiatric Symptoms in Alzheimer Disease, Vascular Dementia, and Mixed Dementia. Neurodegener. Dis. 2017, 17, 127–134. [Google Scholar] [CrossRef]
- Chiu, P.-Y.; Wang, C.-W.; Tsai, C.-T.; Li, S.-H.; Lin, C.-L.; Lai, T.-J. Depression in dementia with Lewy bodies: A comparison with Alzheimer’s disease. PLoS ONE 2017, 12, e0179399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.E.; Beckman, D.; Ferreira, S.T. Microglial dysfunction connects depression and Alzheimer’s disease. Brain Behav. Immun. 2016, 55, 151–165. [Google Scholar] [CrossRef]
- Goodarzi, Z.; Mele, B.; Guo, S.; Hanson, H.; Jette, N.; Patten, S.; Pringsheim, T.; Holroyd-Leduc, J. Guidelines for dementia or Parkinson’s disease with depression or anxiety: A systematic review. BMC Neurol. 2016, 16, 244. [Google Scholar] [CrossRef] [Green Version]
- Sinoff, G.; Werner, P. Anxiety disorder and accompanying subjective memory loss in the elderly as a predictor of future cognitive decline. Int. J. Geriat. Psychiatry 2003, 18, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Deardorff, W.J.; Grossberg, G.T. Behavioral and psychological symptoms in Alzheimer’s dementia and vascular dementia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 165, pp. 5–32. ISBN 9780444640123. [Google Scholar]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Wahl, D.; Solon-Biet, S.M.; Cogger, V.C.; Fontana, L.; Simpson, S.J.; Le Couteur, D.G.; Ribeiro, R.V. Aging, lifestyle and dementia. Neurobiol. Dis. 2019, 130, 104481. [Google Scholar] [CrossRef]
- Su, M.; Naderi, K.; Samson, N.; Youssef, I.; Fülöp, L.; Bozso, Z.; Laroche, S.; Delatour, B.; Davis, S. Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol. Neurobiol. 2019, 56, 5815–5834. [Google Scholar] [CrossRef]
- Tuligenga, R.H.; Dugravot, A.; Tabák, A.G.; Elbaz, A.; Brunner, E.J.; Kivimäki, M.; Singh-Manoux, A. Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: A post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol. 2014, 2, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Hong, W.; Chen, L.; Tao, Y.; Peng, Z.; Zhou, H. Analysis of risk factors for depression in Alzheimer’s disease patients. Int. J. Neurosci. 2020, 130, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Ancelin, M.-L.; Ripoche, E.; Dupuy, A.-M.; Barberger-Gateau, P.; Auriacombe, S.; Rouaud, O.; Berr, C.; Carrière, I.; Ritchie, K. Sex Differences in the Associations Between Lipid Levels and Incident Dementia. J. Alzheimer’s Dis. 2013, 34, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Ereed, B.; Villeneuve, S.; Mack, W.J.; DeCarli, C.; Chui, H.C.; Jagust, W.J. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014, 71, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Kinno, R.; Mori, Y.; Kubota, S.; Nomoto, S.; Futamura, A.; Shiromaru, A.; Kuroda, T.; Yano, S.; Ishigaki, S.; Murakami, H.; et al. High serum high-density lipoprotein-cholesterol is associated with memory function and gyrification of insular and frontal opercular cortex in an elderly memory-clinic population. NeuroImage: Clin. 2019, 22, 101746. [Google Scholar] [CrossRef]
- Ward, M.A.; Bendlin, B.B.; McLaren, D.G.; Hess, T.M.; Gallagher, C.L.; Kastman, E.K.; Rowley, H.A.; Asthana, S.; Carlsson, C.M.; Sager, M.A.; et al. Low HDL cholesterol is associated with lower gray matter volume in cognitively healthy adults. Front. Aging Neurosci. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raber, J.; Huang, Y.; Ashford, J. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol. Aging 2004, 25, 641–650. [Google Scholar] [CrossRef]
- Sáiz-Vazquez, O.; Puente-Martínez, A.; Ubillos-Landa, S.; Pacheco-Bonrostro, J.; Santabárbara, J. Cholesterol and Alzheimer’s Disease Risk: A Meta-Meta-Analysis. Brain Sci. 2020, 10, 386. [Google Scholar] [CrossRef]
- Petek, B.; Villa-Lopez, M.; Loera-Valencia, R.; Gerenu, G.; Winblad, B.; Kramberger, M.G.; Ismail, M.-A.-M.; Eriksdotter, M.; Garcia-Ptacek, S. Connecting the brain cholesterol and renin-angiotensin systems: Potential role of statins and RAS-modifying medications in dementia. J. Intern. Med. 2018, 284, 620–642. [Google Scholar] [CrossRef]
- Armitage, J.; Baigent, C.; Barnes, E.; Betteridge, D.J.; Blackwell, L.; Blazing, M.; Bowman, L.; Braunwald, E.; Byington, R.; Cannon, C.; et al. Efficacy and safety of statin therapy in older people: A meta-analysis of individual participant data from 28 randomised controlled trials. Lancet 2019, 393, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. BioFactors 2020, 46, 309–325. [Google Scholar] [CrossRef]
- Geifman, N.; Brinton, R.D.; Kennedy, R.E.; Schneider, L.S.; Butte, A.J. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimer’s Res. Ther. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Huang, C.-N.; Li, H.-H.; Lin, C.-L. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen. Res. 2018, 13, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-S.; Tseng, P.-T.; Stubbs, B.; Chen, T.-Y.; Tang, C.-H.; Li, D.-J.; Yang, W.-C.; Chen, Y.-W.; Wu, C.-K.; Veronese, N.; et al. Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 5804. [Google Scholar] [CrossRef]
- Sahebzamani, F.M. Examination of the FDA Warning for Statins and Cognitive Dysfunction. J. Pharmacovigil. 2014, 2. [Google Scholar] [CrossRef]
- Crum, J.; Wilson, J.R.; Sabbagh, M.N. Does taking statins affect the pathological burden in autopsy-confirmed Alzheimer’s dementia? Alzheimer’s Res. Ther. 2018, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, B.G.; Patten, D.K.; Berlau, D.J. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl. Neurodegener. 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Zissimopoulos, J.M.; Barthold, D.; Brinton, R.D.; Joyce, G. Sex and Race Differences in the Association between Statin Use and the Incidence of Alzheimer Disease. JAMA Neurol. 2017, 74, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Total n = 221 | Women n = 168 | Men n = 53 | p Value |
---|---|---|---|---|
Age | 79.1 (8.6) | 79.1 (8.8) | 79.1 (7.9) | 0.99 |
Study Group | ||||
Cases | 96 (43.4%) | 76 (45.2%) | 20 (37.7%) | 0.33 |
Controls | 125 (56.6%) | 92 (54.8%) | 33 (62.3%) | |
Marital Status | ||||
Single | 11 (5%) | 9 (5.4%) | 2 (3.8%) | <0.05 |
Married | 106 (48%) | 71 (42.3%) | 35 (66%) | |
Widowed | 99 (44.8%) | 84 (50%) | 15 (28.3%) | |
Divorced | 5 (2.3%) | 4 (2.4%) | 1 (1.9%) | |
Origin of Participants | ||||
Health Center | 114 (51.6%) | 84 (50%) | 30 (56.6%) | 0.4 |
Nursing Home | 107 (48.4%) | 84 (50%) | 23 (43.4%) | |
Living area of the Sample | ||||
Urban | 167 (75.6%) | 124 (73.8%) | 43 (81.1%) | 0.28 |
Rural | 54 (24.4%) | 44 (26.2%) | 10 (18.9%) | |
Clinical Variables | ||||
Dementia | 96 (43.4%) | 76 (45.2%) | 20 (37.7%) | 0.42 |
Alzheimer’s Disease | 74 (77.1%) | 60 (78.9%) | 14 (70%) | |
Vascular Dementia | 8 (8.3%) | 6 (7.9%) | 2 (10%) | 0.62 |
Senile Dementia | 1 (1%) | 1 (1.3%) | - | |
Primary Dementia | 2 (0.9%) | 2 (1.2%) | - | |
Mixed Dementia | 11 (11.5%) | 7 (9.2%) | 4 (20%) | |
Lewy Bodies Dementia | - | - | - | |
Depression | 39 (17.6%) | 33 (19.6%) | 6 (11.3%) | 0.24 |
Hypertension | 136 (61.5%) | 105 (62.5%) | 31 (58.5%) | 0.72 |
T2DM a | 40 (18.1%) | 28 (16.7%) | 12 (22.6%) | 0.43 |
Dyslipidemia | 86 (38.9%) | 65 (38.7%) | 21 (39.6%) | 0.97 |
Statins (n = 86) | 64 (74.4%) | 50 (76.9%) | 14 (66.7%) | 0.51 |
Diagnosis Time (Years) Depression (n = 38) | 14.7 (5.5) | 15.3 (5.6) | 11.2 (3.9) | 0.09 |
Diagnosis Time (Years) Dementia (n = 33) | 5.5 (3) | 6 (2.9) | 2.7 (1.5) | <0.05 |
Difference in Diagnosis Time (Years) | 9 (4.2) | 9.3 (4.4) | 7.4 (2.1) | 0.35 |
Dementia | Alzheimer’s Disease | |||
---|---|---|---|---|
Variable | cOR 95% CI | p | cOR 95% CI | p |
Age | 1.15 (1.1–1.2) | <0.001 | 1.15 (1.1–1.2) | <0.001 |
Sex (Female) | 1.4 (0.72–2.6) | 0.34 | 1.5 (0.76–3.1) | 0.23 |
Depression | 10.4 (4.1–26.1) | <0.001 | 10.1 (3.9–26.2) | <0.001 |
Hypertension | 1.25 (0.73–2.2) | 0.41 | 1.35 (0.74–2.5) | 0.33 |
T2DM | 1.6 (0.79–3.1) | 0.2 | 1.8 (0.87–3.7) | 0.11 |
Dyslipidemia | 0.52 (0.3–0.9) | <0.05 | 0.47 (0.26–0.88) | <0.05 |
Model/Variables | Adjusted OR 95% CI | p Value |
---|---|---|
Dementia | ||
Model 1 | ||
Age | 1.16 (1.1–1.2) | <0.001 |
Depression | 13.6 (4.8–38.7) | <0.001 |
Model 2 | ||
Age | 1.15 (1.1–1.2) | <0.001 |
Dyslipidemia | 0.6 (0.3–1.1) | 0.12 * |
Model 3 | ||
Age | 1.16 (1.1–1.2) | <0.001 |
Depression | 15.6 (5.3–45) | <0.001 |
Diabetes mellitus | 2.6 (1.05–6.3) | <0.05 |
Dyslipidemia | 0.54 (0.27–1.1) | 0.089 ** |
AD | ||
Model 1 | ||
Age | 1.15 (1.1–1.2) | <0.001 |
Depression | 11.7 (4–34.6) | <0.001 |
Model 2 | ||
Age | 1.15 (1.1–1.2) | <0.001 |
Dyslipidemia | 0.53 (0.26–1.05) | 0.07 *** |
Model 3 | ||
Age | 1.15 (1.1–1.2) | <0.001 |
Depression | 12.9 (4.3–39.9) | <0.001 |
Diabetes mellitus | 2.8 (1.1–7.1) | <0.05 |
Dyslipidemia | 0.47 (0.22–1.1) | 0.056 *** |
Outcome Variable | Model | Goodness of Fit (Nagelkerke r2) | Sensitivity | Specificity | Youden Index | PPV | NPV | Validity Index | AUC |
---|---|---|---|---|---|---|---|---|---|
Dementia | Model 1 | 0.45 | 71.9% | 83.2% | 0.55 | 76.7% | 79.4% | 78.3% | 85% |
Model 2 | 0.32 | 67.7% | 82.4% | 0.5 | 74.7% | 76.9% | 76% | 78.9% | |
Model 3 | 0.48 | 77.1% | 81.6% | 0.59 | 76.3% | 82.3% | 79.6% | 86% | |
AD | Model 1 | 0.43 | 63.5% | 85.6% | 0.49 | 72.3% | 79.9% | 77.4% | 84.2% |
Model 2 | 0.32 | 64.9% | 85.6% | 0.5 | 72.7% | 80.5% | 77.9% | 79.1% | |
Model 3 | 0.48 | 66.2% | 83.2% | 0.49 | 70% | 80.6% | 76.9% | 85.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantón-Habas, V.; Rich-Ruiz, M.; Romero-Saldaña, M.; Carrera-González, M.d.P. Depression as a Risk Factor for Dementia and Alzheimer’s Disease. Biomedicines 2020, 8, 457. https://doi.org/10.3390/biomedicines8110457
Cantón-Habas V, Rich-Ruiz M, Romero-Saldaña M, Carrera-González MdP. Depression as a Risk Factor for Dementia and Alzheimer’s Disease. Biomedicines. 2020; 8(11):457. https://doi.org/10.3390/biomedicines8110457
Chicago/Turabian StyleCantón-Habas, Vanesa, Manuel Rich-Ruiz, Manuel Romero-Saldaña, and Maria del Pilar Carrera-González. 2020. "Depression as a Risk Factor for Dementia and Alzheimer’s Disease" Biomedicines 8, no. 11: 457. https://doi.org/10.3390/biomedicines8110457
APA StyleCantón-Habas, V., Rich-Ruiz, M., Romero-Saldaña, M., & Carrera-González, M. d. P. (2020). Depression as a Risk Factor for Dementia and Alzheimer’s Disease. Biomedicines, 8(11), 457. https://doi.org/10.3390/biomedicines8110457