Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar
2.2. Site Description
2.3. Experimental Design
2.4. Sampling and Analyses of Soil and Plant
2.5. Assessment of Arbuscular Mycorrhizal Fungi Colonization
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Poultry Litter Biochar
3.2. Biochar Effects on Plant Growth, Yield and Nutrition
3.3. Biochar Effects on Mycorrhizal Fungi Colonization
3.4. Biochar Effects on Soil pH and Nutrient Availability at the End of Plant Growth Cycle
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Sombroek, W.G. Amazon Soils: A Reconnaissance of the Soils of the Brazilian Amazon Region; Wageningen: Pudoc, Philippines, 1966. [Google Scholar]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. Biochar Environ. Manag. Sci. Technol. 2009, 1, 67–84. [Google Scholar]
- Nguyen, B.T.; Lehmann, J.; Hockaday, W.C.; Joseph, S.; Masiello, C.A. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 2010, 44, 3324–3331. [Google Scholar] [CrossRef]
- Mickan, B.S.; Abbott, L.K.; Stefanova, K.; Solaiman, Z.M. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza 2016, 26, 565–574. [Google Scholar] [CrossRef]
- Sarfaraz, Q.; Silva, L.; Drescher, G.; Zafar, M.; Severo, F.; Kokkonen, A.; Molin, G.; Shafi, M.; Shafique, Q.; Solaiman, Z. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Paymaneh, Z.; Gryndler, M.; Konvalinková, T.; Benada, O.; Borovička, J.; Bukovská, P.; Püschel, D.; Řezáčová, V.; Sarcheshmehpour, M.; Jansa, J. Soil matrix determines the outcome of interaction between mycorrhizal symbiosis and biochar for Andropogon gerardii growth and nutrition. Front. Microbiol. 2018, 9, 2862. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Ezepue, G.U.C.; Uzoh, I.; Unagwu, B. Biochar-induced modification of soil properties and the effect on crop production. Adv. Agric. Sci. 2019, 7, 59–87. [Google Scholar]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Topoliantz, S.; Ponge, J.-F.; Ballof, S. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics. Biol. Fertil. Soils 2005, 41, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’neill, B.; Skjemstad, J.; Thies, J.; Luizao, F.; Petersen, J. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Steiner, C. Biochar Carbon Sequestration; University of Georgia, Biorefining and Carbon Cycling Program: Athens, Greece, 2008; Volume 30602. [Google Scholar]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Gavin, D.G.; Brubaker, L.B.; Lertzman, K.P. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 2003, 84, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, S.; Pessenda, L.; Aravena, R.; Boulet, R.; Scheel-Ybert, R.; Bendassoli, J.; Ribeiro, A.; Freitas, H. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Glob. Planet. Chang. 2002, 33, 95–106. [Google Scholar] [CrossRef]
- Trivedi, K.; Anand, K.V.; Kubavat, D.; Kumar, R.; Vaghela, P.; Ghosh, A. Crop stage selection is vital to elicit optimal response of maize to seaweed bio-stimulant application. J. Appl. Phycol. 2017, 29, 2135–2144. [Google Scholar] [CrossRef]
- Wang, Y.; Villamil, M.B.; Davidson, P.C.; Akdeniz, N. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 2019, 685, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, Z.M.; Blackwell, P.; Abbott, L.K.; Storer, P. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 2010, 48, 546–554. [Google Scholar] [CrossRef]
- LeCroy, C.; Masiello, C.A.; Rudgers, J.A.; Hockaday, W.C.; Silberg, J.J. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biol. Biochem. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.M.; Abbott, L.K.; Murphy, D.V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Sci. Rep. 2019, 9, 5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, E.C.; Forstreuter, M.; Rillig, M.C.; Kohler, J. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol. 2015, 96, 114–121. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci.Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, M.J.; Campbell, S. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Madiba, O.F.; Solaiman, Z.M.; Carson, J.K.; Murphy, D.V. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol. Fertil.Soils 2016, 52, 439–446. [Google Scholar] [CrossRef]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil. J. Integrat. Agric. 2014, 13, 483–490. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Saito, M.; Marumoto, T. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the future prospects. In Diversity and Integration in Mycorrhizas; Springer: Berlin/Heidelberg, Germany, 2002; pp. 273–279. [Google Scholar]
- Hammer, E.C.; Balogh-Brunstad, Z.; Jakobsen, I.; Olsson, P.A.; Stipp, S.L.S.; Rillig, M.C. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 2014, 77, 252–260. [Google Scholar] [CrossRef]
- Ogawa, M.; Okimori, Y.; Takahashi, F. Carbon Sequestration by Carbonization of Biomass and Forestation: Three Case Studies. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 429–444. [Google Scholar] [CrossRef]
- Ishii, T.; Kadoya, K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J. Jpn. Soc. Hortic. Sci. 1994, 63, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, I.; Abbott, L.; Robson, A. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 1992, 120, 371–380. [Google Scholar] [CrossRef]
- Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Perelomov, L.V.; Soja, G.; Zamulina, I.V.; Rajput, V.D.; Sushkova, S.N.; Mohan, D.; Yao, J. The mechanisms of biochar interactions with microorganisms in soil. Environ. Geochem. Health 2019, 42, 2495–2518. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Zhu, Y.; Liu, X.; Han, Z.; Sun, K.; Ji, L.; He, Q.; Han, L. The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma 2018, 328, 100–108. [Google Scholar] [CrossRef]
- Sistani, K.R.; Simmons, J.R.; Jn-Baptiste, M.; Novak, J.M. Poultry litter, biochar, and fertilizer effect on corn yield, nutrient uptake, N2O and CO2 emissions. Environments 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Sikder, S.; Joardar, J. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef] [Green Version]
- KA, A.; Benson, O. Poultry wastes management strategies and environmental implications on human health in Ogun state of Nigeria. Adv. Econ. Bus. 2014, 2, 164–171. [Google Scholar]
- Revell, K.T.; Maguire, R.O.; Agblevor, F.A. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci. 2012, 177, 402–408. [Google Scholar] [CrossRef]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Melbourne, Australian, 2010. [Google Scholar]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars influence seed germination and early growth of seedlings. Plant Soil 2011, 353, 273–287. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Colwell, J. The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust. J. Exp. Agric. 1963, 3, 190–197. [Google Scholar] [CrossRef]
- Kouno, K.; Tuchiya, Y.; Ando, T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 1995, 27, 1353–1357. [Google Scholar] [CrossRef]
- Isbell, R. The Australian Soil Classification; CSIRO Publishing: Melbourne, Australia, 1996. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.; USDA Soil Conservation Service: Washington, DC, USA, 1998.
- Johnson, C.M.; Ulrich, A. 2. Analytical methods for use in plant analysis. In Bulletin of the California Agricultural Experiment Station; California Agricultural Experiment Station: Berkeley, CA, USA, 1959. [Google Scholar]
- Phillips, J.M.; Hayman, D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158-IN118. [Google Scholar] [CrossRef]
- Abbott, L.K.; Robson, A. Infectivity and effectiveness of five endomycorrhizal fungi: Competition with indigenous fungi in field soils. Aust. J. Agric. Res. 1981, 32, 621–630. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Abbott, L.K. Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus under jarrah forest soil. Biol. Fertil. Soils 2008, 44, 815–821. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. Biochar Environ. Manag. Sci. Technol. 2009, 1, 13–32. [Google Scholar]
- Baronti, S.; Vaccari, F.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Uzoma, K.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Pandian, K.; Subramaniayan, P.; Gnasekaran, P.; Chitraputhirapillai, S. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 2016, 62, 1293–1310. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Downie, A.; Morris, S.; Petty, S.; Rust, J.; Chan, K. A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Res. 2010, 48, 569–576. [Google Scholar] [CrossRef]
- Silber, A.; Levkovitch, I.; Graber, E. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Abbas, T.; Adrees, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Qayyum, M.F.; Nawaz, R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manag. 2018, 206, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, D.; Mulcahy, D.; Dietz, D. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ. 2013, 88, 222–225. [Google Scholar] [CrossRef]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Warnock, D.D.; Mummey, D.L.; McBride, B.; Major, J.; Lehmann, J.; Rillig, M.C. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Appl. Soil Ecol. 2010, 46, 450–456. [Google Scholar] [CrossRef]
- Elmer, W.H.; Pignatello, J.J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis. 2011, 95, 960–966. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.; Robson, A. Field management of VA mycorrhizal fungi. In The Rhizosphere and Plant Growth; Springer: Berlin/Heidelberg, Germany, 1991; pp. 355–362. [Google Scholar]
- Steenari, B.-M.; Schelander, S.; Lindqvist, O. Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB–a comparative study. Fuel 1999, 78, 249–258. [Google Scholar] [CrossRef]
- Sanchez, P.; Villachica, J.; Bandy, D. Soil fertility dynamics after clearing a tropical rainforest in Peru 1. Soil Sci. Soc. Am. J. 1983, 47, 1171–1178. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Campillo, M.d.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-H.; Xu, R.-K. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res. 2012, 50, 570–578. [Google Scholar] [CrossRef]
- Tsutomu, I.; Takashi, A.; Kuniaki, K.; Kikuo, O. Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon. J. Health Sci. 2004, 50, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Shenbagavalli, S.; Mahimairaja, S. Characterization and effect of biochar on nitrogen and carbon dynamics in soil. Int. J. Adv. Biol. Res. 2012, 2, 249–255. [Google Scholar]
- Skjemstad, J.O.; Clarke, P.; Taylor, J.; Oades, J.; McClure, S.G. The chemistry and nature of protected carbon in soil. Soil Res. 1996, 34, 251–271. [Google Scholar] [CrossRef]
- Schmidt, M.; Skjemstad, J.; Gehrt, E.; Kögel-Knabner, I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 1999, 50, 351–365. [Google Scholar] [CrossRef]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafa-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Blackwell, P.; Joseph, S.; Munroe, P.; Anawar, H.M.; Storer, P.; Gilkes, R.J.; Solaiman, Z.M. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 2015, 25, 686–695. [Google Scholar] [CrossRef]
Properties | Units | Concentration |
---|---|---|
pH (CaCl2) | ----- | 9.0 |
EC | mS cm−1 | 7.7 |
Total C | % | 38.8 |
Total N | % | 3.7 |
CN ratio | ----- | 10.57 |
Water holding capacity | % | 70 |
Phosphorus (P) | % | 2.53 |
Potassium (K) | % | 2.08 |
Calcium (Ca) | % | 4.5 |
Magnesium (Mg) | % | 1.03 |
Sodium (Na) | % | 1.07 |
Sulphur (S) | % | 0.46 |
Copper (Cu) | mg kg−1 | 271.4 |
Iron (Fe) | mg kg−1 | 6494.6 |
Manganese (Mn) | mg kg−1 | 1016.7 |
Zinc (Zn) | mg kg−1 | 1007.5 |
Arsenic (As) | mg kg−1 | 6.4 |
Cadmium (Cd) | mg kg−1 | <0.5 |
Lead (Pb) | mg kg−1 | 20.3 |
Chromium (Cr) | mg kg−1 | 26.9 |
Treatment | CPM | NP | PLB |
---|---|---|---|
t/ha | |||
Control | 9 | 5 | 0 |
Treatment 1 | 9 | 5 | 7 |
Treatment 2 | 9 | 5 | 13 |
Treatment 3 | 0 | 0 | 13 |
Treatment 4 | 1 | 2 | 7 |
Treatment 5 | 1 | 2 | 13 |
Treatment 6 | 0 | 0 | 33 |
Treatment | N | P | K | S | Ca | Mg | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | mg kg−1 | ||||
Control | 4.0 | 0.5 | 2.5 | 1.0 | 4.2 | 0.9 | 285 | 15.5 | 206 | 336 |
Treatment 1 | 4.1 | 0.5 | 2.5 | 1.0 | 5.0 | 1.1 | 380 | 19.1 | 345 | 478 |
Treatment 2 | 4.4 | 0.5 | 2.5 | 1.1 | 5.2 | 1.0 | 385 | 17.6 | 365 | 502 |
Treatment 3 | 4.7 | 0.6 | 2.6 | 0.9 | 4.4 | 1.0 | 365 | 15.5 | 251 | 455 |
Treatment 4 | 4.2 | 0.5 | 1.4 | 1.0 | 3.7 | 0.7 | 405 | 24.3 | 329 | 539 |
Treatment 5 | 4.9 | 0.7 | 2.6 | 0.8 | 3.3 | 0.8 | 382 | 25.8 | 209 | 348 |
Treatment 6 | 3.2 | 0.3 | 1.2 | 0.8 | 3.5 | 0.7 | 346 | 14.7 | 1013 | 362 |
LSD p < 0.05 | 0.8 | 0.2 | 1.0 | Ns | 1.0 | ns | 81 | 5.3 | 121 | 102 |
Treatment | pH | N | TOC | CN | SOM | P | K | Ca | Mg | S | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | % | % | Ratio | % | mg kg−1 | |||||||||
Control | 6.1 | 0.03 | 0.39 | 13.5 | 0.67 | 34 | 120 | 458 | 62 | 89 | 5.0 | 2.2 | 40 | 52 |
Treatment 1 | 6.9 | 0.06 | 0.83 | 14.3 | 1.43 | 58 | 186 | 633 | 112 | 119 | 9.8 | 6.5 | 42 | 64 |
Treatment 2 | 6.9 | 0.06 | 0.71 | 12.5 | 1.22 | 55 | 218 | 642 | 92 | 89 | 5.0 | 2.1 | 42 | 57 |
Treatment 3 | 7.0 | 0.05 | 0.65 | 12.8 | 1.12 | 45 | 168 | 645 | 110 | 114 | 8.9 | 4.3 | 41 | 61 |
Treatment 4 | 7.0 | 0.06 | 0.69 | 12.5 | 1.19 | 48 | 192 | 567 | 92 | 70 | 4.4 | 1.7 | 36 | 62 |
Treatment 5 | 6.7 | 0.04 | 0.45 | 12.0 | 0.78 | 42 | 183 | 565 | 87 | 30 | 5.3 | 2.4 | 37 | 43 |
Treatment 6 | 6.8 | 0.04 | 0.49 | 12.2 | 0.84 | 42 | 179 | 550 | 82 | 60 | 5.4 | 2.0 | 38 | 43 |
LSD p < 0.05 | 0.2 | 0.01 | 0.12 | 2.0 | 0.25 | 6 | 65 | 67 | 11 | 23 | 2.1 | 1.8 | ns | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solaiman, Z.M.; Shafi, M.I.; Beamont, E.; Anawar, H.M. Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil. Agriculture 2020, 10, 480. https://doi.org/10.3390/agriculture10100480
Solaiman ZM, Shafi MI, Beamont E, Anawar HM. Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil. Agriculture. 2020; 10(10):480. https://doi.org/10.3390/agriculture10100480
Chicago/Turabian StyleSolaiman, Zakaria M., Muhammad Izhar Shafi, Euan Beamont, and Hossain M. Anawar. 2020. "Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil" Agriculture 10, no. 10: 480. https://doi.org/10.3390/agriculture10100480
APA StyleSolaiman, Z. M., Shafi, M. I., Beamont, E., & Anawar, H. M. (2020). Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil. Agriculture, 10(10), 480. https://doi.org/10.3390/agriculture10100480