Seasonal Variation in Canopy Size, Light Penetration and Photosynthesis of Three Cassava Genotypes with Different Canopy Architectures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Study Sites
2.2. Data Collection
2.2.1. Soil Physical and Chemical Properties
2.2.2. Weather Condition
2.2.3. Canopy Traits
2.2.4. LAI
2.2.5. Light Penetrations
2.2.6. Leaf Photosynthesis
2.2.7. Biomass, Storage Root Yield, Starch Content and Harvest Index
2.3. Statistical Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Weather Condition
3.3. Biomass (BM), Storage Root Yield (SRY), Starch Content (SC) and Harvest Index (HI)
3.4. Canopy Traits
3.5. LAI
3.6. Light Penetration
3.7. Leaf Photosynthesis
3.8. Stepwise Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef]
- Chetty, C.; Rossin, C.; Gruissem, W.; Vanderschuren, H.; Rey, M. Empowering biotechnology in southern Africa: Establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. New Biotechnol. 2013, 30, 136–143. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Cassava, Production Quantity (Tons)-for all Countries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Sholihin-Srean, P.; Sheela, M.N.; López-Lavalle, L.A.B.; Utsumi, Y.; Lu, C.; Kittipadakul, P.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Fermont, A.; van Asten, P.; Tittonell, P.; van Wijk, M.; Giller, K. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crop. Res. 2009, 112, 24–36. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Stress-Tolerant Cassava: The role of integrative ecophysiology-breeding research in crop improvement. Open J. Soil Sci. 2012, 2, 162–186. [Google Scholar] [CrossRef] [Green Version]
- Okogbenin, E.; Setter, T.L.; Ferguson, M.; Mutegi, R.; Ceballos, H.; Olasanmi, B.; Fregene, M. Phenotypic approaches to drought in cassava: Review. Front. Physiol. 2013, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.A.C. Cassava botany and physiology. In Cassava: Biology, Production and Utilization; CABI Publishing: Wallingford, UK, 2009; pp. 67–89. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Save and Grow a Guide to Sustainable Production Intensification; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Keating, B.A.; Evenson, J.P.; Fukai, S. Environmental effects on growth and development of cassava (Manihot esculenta Crantz.). I. crop development. Field Crop. Res. 1982, 5, 271–281. [Google Scholar] [CrossRef]
- Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Banterng, P.; Kesmala, T.; Holbrook, C.C.; Kvien, C.K. Seasonal variations in canopy size and yield of Rayong 9 cassava genotype under rainfed and irrigated conditions. Agronomy 2019, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Niinemets, U. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ. 2007, 30, 1052–1071. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, Y.; Timlin, D.J.; Fleisher, D.H.; Dathe, A.; Reddy, V.R.; Staver, K. Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agron. J. 2012, 104, 1523–1537. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhou, X.B.; Chen, Y.H. Effects of irrigation and precision planting patterns on photosynthetic product of wheat. Agron. J. 2016, 108, 2322–2328. [Google Scholar] [CrossRef]
- de Souza, A.P.; Massenburg, L.N.; Jaiswal, D.; Cheng, S.; Shekar, R.; Long, S.P. Rooting for cassava: Insights into photosynthesis and associated physiology as a route to improve yield potential. New Phytol. 2016, 213, 50–65. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.A.; Cock, J.H.; Lynam, J.K.; Hernàndez, A.D.P.; Cadavid, L.F.L. Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. Field Crop. Res. 1990, 25, 183–201. [Google Scholar] [CrossRef]
- de Tafur, S.; El-Sharkawy, M.; Calle, F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica 1998, 33, 249–257. [Google Scholar] [CrossRef]
- Tewodros, M.; Ayenew, B. Cassava (Manihot esculenta Crantz) varieties and harvesting stages influenced by yield and yield related components. J. Nat. Sci. Res. 2012, 2, 122–128. [Google Scholar]
- Ekanayake, I.J. Procedures for Growth Analysis of Cassava, 1st ed.; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 1996; p. 28. [Google Scholar]
- Cock, J.H.; Franklin, D.; Sandoval, G.; Juri, P. The ideal cassava plant for maximum yield. Crop. Sci. 1979, 19, 271–279. [Google Scholar] [CrossRef]
- Cock, J.H. Strategies of cassava plant for resistant drought. Cassava Newsl. 1984, 8, 4–10. [Google Scholar]
- Cock, J.H.; El-Sharkawy, M.A. Physiological characteristics for cassava selection. Exp. Agric. 1988, 24, 443–448. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Drought-tolerant cassava for Africa, Asia, and Latin America. Bioscience 1993, 43, 441–451. [Google Scholar] [CrossRef]
- Lahai, T.; Ekanayake, I.J.; Koroma, J.P.C. Influence of canopy structure on yield of cassava cultivars at various toposequences of an inland valley agro ecosystem. J. Agric. Biotechnol. Sustain. Dev. 2013, 5, 36–47. [Google Scholar] [CrossRef]
- Werner, C.; Ryel, R.J.; Correia, O.; Beyschlag, W. Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecologica 2001, 22, 129–138. [Google Scholar] [CrossRef]
- Howeler, R.H. Cassava agronomy research in Asia: Has it benefited cassava farmers? In Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs, Proceedings 6th Regional Workshop, Ho Chi Ming City, Vietnam, 21–25 February 2000; Howeler, R.H., Tan, S.L., Eds.; Centro Internacional de Agricultura Tropical (CIAT), Cassava Office for Asia: Bangkok, Thailand, 2001; pp. 345–382. [Google Scholar]
- Good Agricultural Practices for Cassava. Available online: http://www.acfs.go.th/standard/download/eng/GAP_cassava.pdf (accessed on 20 August 2019).
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- The Meteorological Department of Thailand. Available online: https://www.tmd.go.th/thailand_suntime.php (accessed on 3 January 2018).
- LI-COR Inc. LAI-2000 Plant Canopy Analyzer Instruction/Operating Manual; LI-COR Inc.: Lincoln, NE, USA, 1992. [Google Scholar]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2019, 76, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Wholey, D.W.; Booth, R.H. A comparison of simple methods for estimating starch content of cassava roots. J. Sci. Food Agric. 1979, 30, 158–164. [Google Scholar] [CrossRef]
- Statistix 10, Version 10: Analytical Software User’s Manual; Analytical Software: Tallahassee, FL, USA, 2013.
- Moore, K.J.; Dixon, P. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–771. [Google Scholar] [CrossRef]
- Lenis, J.; Calle, F.; Jaramillo, G.; Perez, J.; Ceballos, H.; Cock, J. Leaf retention and cassava productivity. Field Crop. Res. 2006, 95, 126–134. [Google Scholar] [CrossRef]
- Irikura, Y.; Cock, J.H.; Kawano, K. The physiological basis of genotype—Temperature interactions in cassava. Field Crop. Res. 1979, 2, 227–239. [Google Scholar] [CrossRef]
- Phosaengsri, W.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. Leaf performances of cassava genotypes in different seasons and its relationship with biomass. Turk. J. Field Crop. 2019, 24, 54–64. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; de Tafur, S.; Cadavid, L.F. Potential Photosynthesis of Cassava as Affected by Growth Conditions. Crop. Sci. 1992, 32, 1336–1342. [Google Scholar] [CrossRef]
- Vongcharoen, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica 2018, 56, 1398–1413. [Google Scholar] [CrossRef]
- Lowe, S.B.; Mahon, J.D.; Hunt, L.A. The effect of daylength on shoot growth and formation of root tubers in young plants of cassava (Manihot esculenta Crantz). Plant Sci. Lett. 1976, 6, 57–62. [Google Scholar] [CrossRef]
- Veltkamp, H.J. Partitioning of Dry Matter in Cassava. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 18 September 1985. [Google Scholar]
- Xu, L.; Li, X.; Wang, X.; Xiong, D.; Wang, F. Comparing the grain yields of direct-seeded and transplanted rice: A Meta-Analysis. Agronomy 2019, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Okogbenin, E.; Ekanayake, I.J.; Porto, M.C.M. Effect of planting materials and soil moisture on cassava performance in the semi-arid Sudan Savannah belt of Nigeria. Afr. Crop Sci. J. 1999, 1, 21–33. [Google Scholar]
- Lian, T.S.; Cock, J.H. Branching habit as a yield determinant in cassava. Field Crop. Res. 1979, 2, 281–289. [Google Scholar] [CrossRef]
Planting Date | May 2015/2016 | November 2015/2016 | May 2016/2017 | November 2016/2017 | ||||
---|---|---|---|---|---|---|---|---|
Depth (cm) | 0–30 | 30–60 | 0–30 | 30–60 | 0–30 | 30–60 | 0–30 | 30–60 |
Soil Chemical | ||||||||
pH 1:1 H2O | 7.2 | 7.0 | 6.3 | 6.1 | 7.3 | 7.2 | 7.1 | 7.5 |
Organic matter (%) | 0.4 | 0.4 | 0.5 | 0.3 | 0.5 | 0.4 | 0.5 | 0.2 |
Total N (%) | 0.021 | 0.018 | 0.020 | 0.013 | 0.024 | 0.022 | 0.037 | 0.030 |
Available P (mg kg−1) | 61.2 | 56.5 | 51.6 | 42.1 | 77.6 | 76.1 | 88.5 | 27.9 |
Exchangeable K (mg kg−1) | 54.6 | 35.6 | 39.4 | 33.4 | 34.2 | 25.6 | 30.8 | 23.9 |
Exchangeable Ca (mg kg−1) | 338.8 | 386.8 | 232.5 | 277.5 | 359.0 | 364.5 | 481.5 | 460.5 |
EC 1:5 H2O (ds m−1) | 0.043 | 0.069 | 0.062 | 0.031 | 0.06 | 0.054 | 0.073 | 0.035 |
CEC (c mol kg−1) | 3.00 | 3.44 | 3.74 | 8.26 | 2.97 | 3.72 | 3.74 | 6.69 |
Soil Physical | ||||||||
Texture Class | Loamy-sand | Loamy-sand | Sandy-loam | Sandy-loam | Sand | Sand | Loamy-sand | Sandy-loam |
Source | Degrees of Freedom | BM | Storage Root DW | Shoot DW | HI | SC | SRY |
---|---|---|---|---|---|---|---|
Years (Y) | 1 | 1,801,181 * (11.4) | 1,020,201 ** (10.7) | 5,327,288 ** (66.5) | 0.217 ** (52.0) | 75.1 ** (11.4) | 103.2 ns (2.4) |
Planting date (D) | 1 | 8,133,010 ** (51.5) | 3,428,545 ** (36.0) | 1,018,801 ** (12.7) | 0.020 ** (4.7) | 72.3 ** (11.0) | 1798.2 ** (42.2) |
Y *D | 1 | 90,813 ns (0.6) | 71,469 ns (0.7) | 1862 ns (0.0) | 0.021 ** (5.1) | 58.3 ** (8.9) | 4.2 ns (0.1) |
Error Y *D *R | 12 | 120,180 (9.1) | 72,044 (9.1) | 32,822 (4.9) | 0.001 (3.6) | 2.8 (5.2) | 47.9 (13.2) |
Genotypes (G) | 2 | 371,345 * (4.7) | 548,750 ** (11.5) | 92,956 ** (2.3) | 0.024 ** (11.6) | 86.9 ** (26.4) | 146.7 * (6.8) |
Y *G | 2 | 171,245 ns (2.2) | 35,909 ns (0.8) | 289,226 ** (7.2) | 0.003 ns (1.3) | 18.1 ** (5.5) | 21.2 ns (1.0) |
D *G | 2 | 355,615 * (4.5) | 764,608 ** (16.0) | 45,212 ns (1.1) | 0.024 ** (11.6) | 23.0 ** (7.0) | 418.4 ** (19.6) |
Y *D *G | 2 | 55,382 ns (0.7) | 42,008 ns (0.9) | 4853 ns (0.1) | 0.000 ns (0.1) | 60.0 ** (18.2) | 51.8 ns (2.4) |
Error Y *D *R *G | 24 | 100,453 (15.3) | 56,893 (14.3) | 16,752 (5.0) | 0.002 (10.0) | 1.7 (6.3) | 22.9 (12.3) |
Total | 47 | ||||||
CV (Y *D *R) | 10.6 | 15.6 | 11.9 | 6.6 | 6.2 | 14.6 | |
CV (Y *D *R *G) | 9.7 | 13.9 | 8.5 | 7.7 | 4.8 | 10.0 |
Traits/Genotypes | KU50 | Rayong 11 | CMR38-125-77 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | |
CH | Constant | 59.54 | 0.49 | 0.81 | 0.05 | Constant | 157.56 | 0.02 | 0.85 | 0.05 | Constant | 58.65 | 0.50 | 0.77 | 0.05 |
SR | −0.37 | 0.02 | SR | −0.40 | <0.01 | SR | −0.31 | 0.05 | |||||||
RH | 3.52 | <0.01 | RH | 2.19 | <0.01 | RH | 3.10 | <0.01 | |||||||
CW | Constant | 48.57 | 0.46 | 0.91 | 0.05 | Constant | 462.18 | <0.01 | 0.92 | 0.05 | Constant | 532.35 | <0.01 | 0.91 | 0.05 |
SR | −0.63 | <0.01 | SR | −0.39 | <0.01 | SR | −0.51 | <0.01 | |||||||
RH | 2.91 | <0.01 | Taver | −23.45 | <0.01 | Tmax | −15.23 | <0.01 | |||||||
Tmin | 8.97 | 0.02 | Tmin | 21.52 | 0.01 | Tmin | 15.63 | <0.01 | |||||||
CA | Constant | 0.04 | 0.98 | 0.81 | 0.05 | Constant | 6.28 | <0.01 | 0.89 | 0.05 | Constant | 8.01 | <0.01 | 0.91 | 0.05 |
SR | −0.01 | 0.04 | SR | −0.01 | 0.01 | SR | −0.01 | <0.01 | |||||||
RH | 0.07 | <0.01 | Taver | −0.36 | <0.01 | Tmax | −0.25 | <0.01 | |||||||
Tmin | 0.35 | <0.01 | Tmin | 0.26 | <0.01 | ||||||||||
CV | Constant | −6.99 | 0.01 | 0.64 | 0.05 | Constant | 0.50 | 0.76 | 0.81 | 0.05 | Constant | −4.49 | 0.01 | 0.65 | 0.05 |
RH | 0.14 | <0.01 | SR | −0.01 | 0.02 | RH | 0.09 | <0.01 | |||||||
RH | 0.07 | <0.01 | |||||||||||||
LAI | Constant | −10.42 | 0.03 | 0.91 | 0.05 | Constant | −12.21 | 0.01 | 0.92 | 0.05 | Constant | −9.01 | 0.04 | 0.91 | 0.05 |
SR | −0.03 | <0.01 | SR | −0.03 | <0.01 | SR | −0.02 | <0.01 | |||||||
RH | 0.10 | <0.01 | RH | 0.10 | <0.01 | RH | 0.10 | <0.01 | |||||||
DL | 1.71 | 0.01 | DL | 1.84 | 0.01 | DL | 1.34 | 0.03 |
Traits/Genotypes | KU50 | Rayong11 | CMR38-125-77 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | |
CH | Constant | −385.53 | 0.01 | 0.82 | 0.05 | Constant | −250.99 | 0.01 | 0.85 | 0.05 | Constant | −440.22 | <0.01 | 0.93 | 0.05 |
RH | −1.47 | 0.01 | RH | −1.82 | <0.01 | RH | −1.05 | <0.01 | |||||||
DL | 45.95 | 0.01 | DL | 35.97 | <0.01 | Tmin | −6.23 | 0.01 | |||||||
DL | 59.54 | <0.01 | |||||||||||||
CW | Constant | −267.59 | 0.02 | 0.60 | 0.05 | Constant | 758.03 | 0.12 | 0.88 | 0.05 | Constant | −294.59 | 0.01 | 0.68 | 0.05 |
DL | 31.60 | <0.01 | RH | −6.16 | 0.04 | DL | 34.46 | <0.01 | |||||||
Tmax | −34.38 | 0.03 | |||||||||||||
Tmin | 22.73 | 0.05 | |||||||||||||
DL | 35.00 | 0.02 | |||||||||||||
CA | Constant | 2.93 | 0.42 | 0.90 | 0.05 | Constant | 7.65 | 0.18 | 0.95 | 0.05 | Constant | −6.25 | <0.01 | 0.77 | 0.05 |
RH | −0.06 | 0.03 | RH | −0.08 | 0.02 | DL | 0.62 | <0.01 | |||||||
Taver | −0.63 | 0.02 | Tmax | −0.47 | 0.01 | ||||||||||
Tmin | 0.47 | 0.04 | Tmin | 0.32 | 0.02 | ||||||||||
DL | 0.75 | <0.01 | DL | 0.63 | 0.01 | ||||||||||
CV | Constant | −9.18 | <0.01 | 0.71 | 0.05 | Constant | 3.51 | 0.40 | 0.97 | 0.05 | Constant | −8.93 | <0.01 | 0.88 | 0.05 |
DL | 0.84 | <0.01 | SR | 0.01 | 0.03 | RH | −0.01 | 0.05 | |||||||
RH | −0.10 | 0.01 | DL | 0.89 | <0.01 | ||||||||||
Taver | −0.86 | 0.01 | |||||||||||||
Tmin | 0.70 | 0.02 | |||||||||||||
DL | 0.77 | <0.01 | |||||||||||||
LAI | Constant | 55.70 | 0.02 | 0.84 | 0.05 | Constant | 52.57 | 0.02 | 0.83 | 0.05 | Constant | −6.56 | 0.12 | 0.82 | 0.05 |
RH | −0.42 | 0.01 | RH | −0.41 | 0.01 | RH | −0.10 | <0.01 | |||||||
Tmax | −1.68 | 0.02 | Tmax | −1.63 | 0.03 | DL | 1.26 | <0.01 | |||||||
Tmin | 1.38 | 0.01 | Tmin | 1.39 | 0.01 |
Traits/Genotypes | KU50 | Rayong 11 | CMR38-125-77 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | |
CH | Constant | 193.13 | 0.19 | 0.69 | 0.05 | Constant | 343.94 | <0.01 | 0.81 | 0.05 | Constant | 246.05 | 0.02 | 0.77 | 0.05 |
RH | 3.80 | <0.01 | SR | −0.33 | 0.01 | RH | 2.95 | <0.01 | |||||||
DL | −31.27 | 0.03 | Taver | 10.82 | 0.05 | DL | −30.16 | <0.01 | |||||||
DL | −33.15 | 0.02 | |||||||||||||
CW | Constant | 789.26 | 0.01 | 0.62 | 0.05 | Constant | 555.46 | <0.01 | 0.81 | 0.05 | Constant | 562.84 | 0.01 | 0.60 | 0.05 |
Taver | −65.23 | 0.01 | SR | −0.29 | 0.04 | Taver | −42.46 | 0.01 | |||||||
Tmin | 47.41 | <0.01 | DL | −25.44 | 0.02 | Tmin | 30.50 | 0.01 | |||||||
CA | Constant | 7.69 | 0.05 | 0.72 | 0.05 | Constant | 10.13 | <0.01 | 0.77 | 0.05 | Constant | 8.79 | 0.02 | 0.56 | 0.05 |
RH | 0.10 | <0.01 | Tmin | 0.17 | 0.02 | Taver | −0.71 | 0.01 | |||||||
DL | −1.10 | 0.01 | DL | −1.09 | 0.01 | Tmin | 0.51 | 0.01 | |||||||
CV | Constant | 9.37 | 0.04 | 0.73 | 0.05 | Constant | 10.22 | <0.01 | 0.76 | 0.05 | Constant | 11.76 | 0.02 | 0.56 | 0.05 |
RH | 0.12 | <0.01 | Tmin | 0.17 | 0.03 | Taver | −0.95 | 0.01 | |||||||
DL | −1.34 | 0.01 | DL | −1.11 | <0.01 | Tmin | 0.67 | 0.01 | |||||||
LAI | Constant | −2.40 | 0.13 | 0.46 | 0.05 | Constant | 2.12 | 8.33 | 0.00 | 0.05 | Constant | −2.87 | 0.06 | 0.55 | 0.05 |
RH | 0.06 | 0.01 | RH | 0.07 | 0.01 |
Traits/Genotypes | KU50 | Rayong 11 | CMR38-125-77 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | Variable | Coefficient | p | R2 | p-Value for Regression | |
CH | Constant | −585.32 | 0.01 | 0.70 | 0.05 | Constant | −448.12 | <0.01 | 0.91 | 0.05 | Constant | −289.82 | 0.03 | 0.65 | 0.05 |
Taver | −38.25 | 0.02 | SR | 0.36 | 0.04 | RH | −2.03 | 0.01 | |||||||
Tmax | 34.47 | <0.01 | RH | −2.76 | <0.01 | DL | 41.82 | <0.01 | |||||||
DL | 46.03 | 0.04 | DL | 44.48 | 0.01 | ||||||||||
CW | Constant | 320.88 | 0.37 | 0.79 | 0.05 | Constant | 97.78 | 0.00 | 0.00 | 0.05 | Constant | −583.66 | <0.01 | 0.68 | 0.05 |
RH | −10.24 | 0.02 | Tmin | −15.24 | 0.03 | ||||||||||
Taver | −99.89 | 0.03 | DL | 84.20 | <0.01 | ||||||||||
Tmin | 80.25 | 0.05 | |||||||||||||
DL | 115.13 | <0.01 | |||||||||||||
CA | Constant | −6.93 | 0.07 | 0.35 | 0.05 | Constant | −8.84 | 0.04 | 0.41 | 0.05 | Constant | −5.90 | 0.02 | 0.78 | 0.05 |
DL | 0.66 | 0.04 | DL | 0.81 | 0.03 | RH | −0.04 | 0.01 | |||||||
Tmax | −0.23 | 0.03 | |||||||||||||
DL | 1.44 | <0.01 | |||||||||||||
CV | Constant | 1.02 | <0.01 | 0.00 | 0.05 | Constant | −12.19 | <0.01 | 0.91 | 0.05 | Constant | −9.29 | <0.01 | 0.72 | 0.05 |
SR | 0.02 | 0.01 | RH | −0.03 | 0.02 | ||||||||||
RH | −0.03 | 0.04 | DL | 1.01 | <0.01 | ||||||||||
Taver | −0.37 | 0.03 | |||||||||||||
DL | 1.40 | <0.01 | |||||||||||||
LAI | Constant | −20.13 | <0.01 | 0.89 | 0.05 | Constant | −21.84 | <0.01 | 0.92 | 0.05 | Constant | −18.92 | <0.01 | 0.92 | 0.05 |
SR | −0.02 | 0.03 | SR | −0.02 | 0.02 | SR | −0.02 | <0.01 | |||||||
Tmax | 0.42 | 0.02 | Tmax | 0.36 | 0.04 | Tmax | 0.57 | <0.01 | |||||||
DL | 1.41 | <0.01 | DL | 1.80 | <0.01 | DL | 1.12 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahakosee, S.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P.; Holbrook, C.C.; Kvien, C.K.; Banterng, P. Seasonal Variation in Canopy Size, Light Penetration and Photosynthesis of Three Cassava Genotypes with Different Canopy Architectures. Agronomy 2020, 10, 1554. https://doi.org/10.3390/agronomy10101554
Mahakosee S, Jogloy S, Vorasoot N, Theerakulpisut P, Holbrook CC, Kvien CK, Banterng P. Seasonal Variation in Canopy Size, Light Penetration and Photosynthesis of Three Cassava Genotypes with Different Canopy Architectures. Agronomy. 2020; 10(10):1554. https://doi.org/10.3390/agronomy10101554
Chicago/Turabian StyleMahakosee, Supattra, Sanun Jogloy, Nimitr Vorasoot, Piyada Theerakulpisut, C. Corley Holbrook, Craig K. Kvien, and Poramate Banterng. 2020. "Seasonal Variation in Canopy Size, Light Penetration and Photosynthesis of Three Cassava Genotypes with Different Canopy Architectures" Agronomy 10, no. 10: 1554. https://doi.org/10.3390/agronomy10101554
APA StyleMahakosee, S., Jogloy, S., Vorasoot, N., Theerakulpisut, P., Holbrook, C. C., Kvien, C. K., & Banterng, P. (2020). Seasonal Variation in Canopy Size, Light Penetration and Photosynthesis of Three Cassava Genotypes with Different Canopy Architectures. Agronomy, 10(10), 1554. https://doi.org/10.3390/agronomy10101554