Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Exergames and Training Protocols
2.4. Physical Activity Level
2.5. Body Composition
2.6. Muscle Strength
2.7. Flexibility
2.8. Balance Ability
2.9. Cardiopulmonary Endurance
2.10. Statistical Analyses
3. Results
3.1. Weekly Physical Activity Level
3.2. Body Composition
3.3. Muscle Strength
3.4. Flexibility
3.5. Balance Ability
3.6. Cardiopulmonary Endurance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freddi, K. Growing Older in America [Electronic Resource]: The Health & Retirement Study; National Institutes of Health, U.S. Dept. of Health and Human Services: Bethesda, MD, USA, 2007. [Google Scholar]
- Briggs, A.M.; Cross, M.J.; Hoy, D.G.; Sanchez-Riera, L.; Blyth, F.M.; Woolf, A.D.; March, L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist 2016, 56 (Suppl. 2), 243–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonca, G.V.; Pezarat-Correia, P.; RVaz, J.; Silva, L.; DAlmeida, I.; SHeffernan, K. Impact of Exercise Training on Physiological Measures of Physical Fitness in the Elderly. Curr. Aging Sci. 2016, 9, 240–259. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Li, B.; Yan, J. Kinect Human Body Somatosensory Interactive Exploration: Using C#; TopTeam Information: Taipei, Taiwan, 2015. [Google Scholar]
- Biddiss, E.; Irwin, J. Active video games to promote physical activity in children and youth: A systematic review. Arch Pediatr Adolesc. Med. 2010, 164, 664–672. [Google Scholar] [CrossRef]
- Wu, P.T.; Wu, W.L.; Chu, I.H. Energy Expenditure and Intensity in Healthy Young Adults during Exergaming. Am. J. Health Behav. 2015, 39, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Navarro Guillén, J.; Zaragozà Biot, M.C.; Alfaro Royo, M.C.; Sánchez Miguel, R.; Cárdenas Beltrán, C.N.; Fernández Alquézar, O. Effectiveness of the use of video games in the cognitive training of the elderly. Atena J. Public Health 2019, 1. Available online: https://www.atenajournals.com/index.php/ajph/article/view/8 (accessed on 16 February 2020).
- Emeljanovas, A.; Mieziene, B.; MoChingMok, M.; Chin M-kai Cesnaitiene, V.J.; Fatkulina, N.; Trinkuniene, L.; López Sánchez, G.F.; Díaz Suárez, A. The effect of an interactive program during school breaks on attitudes toward physical activity in primary school children. Anales Psicol. Ann. Psychol. 2018, 34, 580–586. [Google Scholar]
- Rizzo, A.S.; Kim, G.J. A SWOT analysis of the field of virtual real¬ity rehabilitation and therapy. Presence Teleoper. Virtual Environ. 2005, 14, 119–146. [Google Scholar] [CrossRef]
- Ordnung, M.; Hoff, M.; Kaminski, E.; Villringer, A.; Ragert, P. No Overt Effects of a 6-Week Exergame Training on Sensorimotor and Cognitive Function in Older Adults. A Preliminary Investigation. Front. Hum. Neurosci. 2017, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Kim, J. Effects of a physical activity program using exergame with elderly women. J. Korean Acad. Nurs. 2015, 45, 84–96. [Google Scholar] [CrossRef]
- Karahan, A.Y.; Tok, F.; Taşkın, H.; Küçüksaraç, S.; Başaran, A.; Yıldırım, P. Effects of Exergames on Balance, Functional Mobility, and Quality of Life of Geriatrics Versus Home Exercise Programme: Randomized Controlled Study. Cent. Eur. J. Public Health 2015, 23, S14–S18. [Google Scholar] [PubMed] [Green Version]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint, J. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Vivian, H.H.; Ann, L.G. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Wang, R.; Blackburn, G.; Desai, M.; Phelan, D.; Gillinov, L.; Houghtaling, P.; Gillinov, M. Accuracy of Wrist-Worn Heart Rate Monitors. JAMA Cardiol. 2017, 2, 104–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Max, J.; Noffal, G. The reliability and validity of a chair sit-and-reach test as a measure of hamstring flexibility in older adults. Res. Q. Exerc. Sport 1998, 69, 338–343. [Google Scholar] [CrossRef]
- Jenkinson, C.; Heffernan, C.; Doll, H.; Fitzpatrick, R. The Parkinson’s Disease Questionnaire (PDQ-39): Evidence for a method of imputing missing data. Age Ageing 2006, 35, 497–502. [Google Scholar] [CrossRef] [Green Version]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Zeng, N.; Pope, Z.; Lee, J.E.; Gao, Z. A systematic review of active video games on rehabilitative outcomes among older patients. J. Sport Health Sci. 2017, 6, 33–43. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Maillot, P.P.A.; Hartley, A. Effects of interactive physical-activity videogame training on physical and cognitive function in older adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N. Wii-based exercise program to improve physical fitness, motor proficiency and functional mobility in adults with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 755–765. [Google Scholar] [CrossRef]
- Van Heuvelen, M.J.; Kempen, G.I.; Brouwer, W.H.; De Greef, M.H. Physical fitness related to disability in older persons. Gerontology 2000, 46, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Orsega-Smith, E.; Davis, J.; Slavish, K.; Gimbutas, L. Wii Fit Balance Intervention in Community-Dwelling Older Adults. Games Health J 2012, 1, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Hruda, K.V.; Hicks, A.L.; McCartney, N. Training for muscle power in older adults: Effects on functional abilities. Can. J. Appl. Physiol. 2003, 28, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Spirduso, W.W.; Francis, K.L.; MacRae, P.G. Physical Dimensions of Aging; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Griffin, J.C. Client-Centered Exercise Prescription, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Pitetti, K.H.; Boneh, S. Cardiovascular fitness as related to leg strength in adults with mental retardation. Med. Sci. Sports Exerc. 1995, 27, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Cho, H.; Sohng, K.Y. The effect of a virtual reality exercise program on physical fitness, body composition, and fatigue in hemodialysis patients. J. Phys. Ther. Sci. 2014, 26, 1661–1665. [Google Scholar] [CrossRef] [Green Version]
- Halvarsson, A.; Oddsson, L.; Franzén, E.; Ståhle, A. Long-term effects of a progressive and specific balance-training programme with multi-task exercises for older adults with osteoporosis: A randomized controlled study. Clin. Rehabil. 2016, 30, 1049–1059. [Google Scholar] [CrossRef]
- Brady, A.O.; Straight, C.R.; Evans, E.M. Body composition, muscle capacity, and physical function in older adults: An integrated conceptual model. J. Aging Phys. Act. 2014, 22, 441–452. [Google Scholar] [CrossRef]
- Pope, Z.; Zeng, N.; Gao, Z. The effects of active video games on patients’ rehabilitative outcomes: A meta-analysis. Prev. Med. 2017, 95, 38–46. [Google Scholar] [CrossRef]
- Trost, S.G.; Sundal, D.; Foster, G.D.; Lent, M.R.; Vojta, D. Effects of a pediatric weight management program with and without active video games a randomized trial. JAMA Pediatr 2014, 168, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Tripette, J.; Murakami, H.; Gando, Y.; Kawakami, R.; Sasaki, A.; Hanawa, S.; Hirosako, A.; Miyachi, M. Home-based active video games to promote weight loss during the postpartum period. Med. Sci. Sports Exerc. 2014, 46, 472–478. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n=40) | EX (n=20) | CON (n=20) | p-Value |
---|---|---|---|---|
Age (years) | 64.00 ± 4.44 | 64.25 ± 4.75 | 63.75 ± 4.23 | 0.727 |
Male (N; %) | 8 (20%) | 5 (25%) | 3 (15%) | 0.429 |
SBP (mmHg) | 134.25 ± 19.57 | 139.40 ± 21.69 | 129.10 ± 16.11 | 0.096 |
DBP (mmHg) | 76.50 ± 11.35 | 79.55 ± 10.80 | 73.45 ± 11.33 | 0.089 |
Heart rate (bpm) | 73.25 ± 9.36 | 72.80 ± 9.81 | 73.70 ± 9.13 | 0.766 |
MMSE | 27.77 ± 1.46 | 28.10 ± 1.33 | 27.45 ± 1.54 | 0.162 |
Weekly leisure activity level | ||||
Duration (min/week) | 292.13 ± 266.45 | 296.75 ± 294.53 | 287.50 ± 242.77 | 0.914 |
Frequency (times/week) | 4.13 ± 2.62 | 4.20 ± 2.48 | 4.05 ± 2.82 | 0.859 |
Intensity score | 20.25 ± 18.77 | 19.45 ± 14.13 | 21.05 ± 22.85 | 0.791 |
Body composition | ||||
BMI (kg/m2) | 23.27 ± 2.73 | 23.26 ± 2.74 | 23.28 ± 2.79 | 0.978 |
Body fat (%) | 30.55 ± 7.76 | 28.55 ± 9.06 | 32.55 ± 5.75 | 0.105 |
Muscle strength | ||||
Grip strength (kg) | 26.58 ± 7.71 | 27.30 ± 8.30 | 25.85 ± 7.20 | 0.559 |
Sit-to-stand (times/30sec) | 17.68 ± 4.92 | 18.55 ± 5.37 | 16.80 ± 4.40 | 0.267 |
Flexibility | ||||
Back-scratch (cm) | 2.38 ± 7.72 | 3.40 ± 7.30 | 1.35 ± 8.18 | 0.408 |
Sit-and-reach (cm) | 9.80 ± 13.95 | 7.75 ± 17.60 | 11.85 ± 8.99 | 0.359 |
Balance ability | ||||
Static balance (cm)* | 25.98 ± 4.33 | 25.69 ± 3.94 | 26.33 ± 4.89 | 0.689 |
Dynamic balance (sec) | 5.23 ± 0.66 | 5.10 ± 0.55 | 5.35 ± 0.75 | 0.236 |
6MWT (m) | 544.38 ± 66.24 | 554.35 ± 59.76 | 534.40 ± 72.30 | 0.348 |
Variables | EX (n = 20) | CON (n = 20) | Time × Group p-Value | η2 | ||
---|---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | |||
SBP (mmHg) | 139.40 ± 21.69 | 135.25 ± 19.64 | 129.10 ± 16.11 | 127.75 ± 14.31 | 0.474 | 0.014 |
DBP (mmHg) | 79.55 ± 10.80 | 75.75 ± 10.23* | 73.45 ± 11.33 | 72.80 ± 10.96 | 0.204 | 0.042 |
Heart rate (bpm) | 72.80 ± 9.81 | 74.05 ± 9.32 | 73.70 ± 9.13 | 73.55 ± 10.92 | 0.605 | 0.007 |
Weekly leisure activity level | ||||||
Duration (min/week) | 296.75 ± 294.53 | 436.25 ± 280.50* | 287.50 ± 242.77 | 273.00 ± 198.39 | 0.007 | 0.177 |
Frequency (times/week) | 4.20 ± 2.48 | 5.95 ± 1.32* | 4.05 ± 2.82 | 3.95 ± 2.70 | 0.004 | 0.195 |
Intensity score | 19.45 ± 14.13 | 31.85 ± 13.85* | 21.05 ± 22.85 | 18.20 ± 14.88 | 0.004 | 0.201 |
Body composition | ||||||
BMI (kg/m2) | 23.26 ± 2.74 | 23.33 ± 2.67 | 23.27 ± 2.79 | 23.29 ± 2.78 | 0.562 | 0.009 |
Body fat (%) | 28.55 ± 9.06 | 29.25 ± 8.08 | 32.55 ± 5.75 | 32.41 ± 5.68 | 0.188 | 0.045 |
Muscle strength | ||||||
Grip strength (kg) | 27.30 ± 8.30 | 27.00 ± 10.57 | 25.85 ± 7.20 | 24.60 ± 6.82 | 0.385 | 0.020 |
Sit-to-stand (times/30sec) | 18.55 ± 5.37 | 21.40 ± 5.26* | 16.80 ± 4.40 | 17.05 ± 5.62 | 0.012 | 0.154 |
Flexibility | ||||||
Back-scratch (cm) | 3.40 ± 7.30 | 3.60 ± 8.64 | 1.35 ± 8.18 | 1.75 ± 7.88 | 0.828 | 0.001 |
Sit-and-reach (cm) | 7.75 ± 17.60 | 7.35 ± 15.38 | 11.85 ± 8.99 | 11.20 ± 9.05 | 0.829 | 0.001 |
Balance ability | ||||||
Static balance (cm) † | 25.69 ± 3.94 | 25.88 ± 5.10 | 26.33 ± 4.89 | 26.77 ± 3.72 | 0.815 | 0.002 |
Dynamic balance (sec) | 5.10 ± 0.55 | 4.85 ± 0.67 | 5.35 ± 0.75 | 5.30 ± 1.13 | 0.346 | 0.023 |
6MWT (m) | 554.35 ± 59.76 | 584.65 ± 53.27* | 534.40 ± 72.30 | 539.20 ± 84.03 | 0.025 | 0.126 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.-C.; Chiang, C.-H.; Wu, P.-T.; Wu, W.-L.; Chu, I.-H. Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 2565. https://doi.org/10.3390/ijerph17072565
Yu T-C, Chiang C-H, Wu P-T, Wu W-L, Chu I-H. Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan. International Journal of Environmental Research and Public Health. 2020; 17(7):2565. https://doi.org/10.3390/ijerph17072565
Chicago/Turabian StyleYu, Tzu-Cheng, Che-Hsien Chiang, Pei-Tzu Wu, Wen-Lan Wu, and I-Hua Chu. 2020. "Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan" International Journal of Environmental Research and Public Health 17, no. 7: 2565. https://doi.org/10.3390/ijerph17072565
APA StyleYu, T.-C., Chiang, C.-H., Wu, P.-T., Wu, W.-L., & Chu, I.-H. (2020). Effects of Exergames on Physical Fitness in Middle-Aged and Older Adults in Taiwan. International Journal of Environmental Research and Public Health, 17(7), 2565. https://doi.org/10.3390/ijerph17072565