Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Literature Review on the Financing of Large-Scaled Projects
2.2. Literature Review on Balance Scorecard Approach
2.3. Literature Review on Fuzzy Multi-Criteria Decision-Making Methods
3. Methodology
3.1. IT2 Fuzzy DEMATEL
3.2. IT2 Fuzzy QUALIFLEX
4. An Analysis on Energy Investment Projects
4.1. Identifying the Dimensions and Criteria
4.2. Weighting the Dimensions and Criteria
4.3. Ranking the Alternatives
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahbaz, M.; Balsalobre-Lorente, D.; Sinha, A. Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J. Clean. Prod. 2019, 217, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Diaz, G.; Inzunza, A.; Moreno, R. The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in long-term energy planning studies. Renew. Sustain. Energy Rev. 2019, 112, 797–812. [Google Scholar] [CrossRef]
- Arabpour, A.; Besmi, M.R.; Maghouli, P. Transmission Expansion and Reactive Power Planning Considering Wind Energy Investment Using A Linearized AC Model. J. Electr. Eng. Technol. 2019, 14, 1035–1043. [Google Scholar] [CrossRef]
- Shiraishi, K.; Shirley, R.G.; Kammen, D.M. Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh. Appl. Energy 2019, 235, 1457–1467. [Google Scholar] [CrossRef]
- He, L.; Zhang, L.; Zhong, Z.; Wang, D.; Wang, F. Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. J. Clean. Prod. 2019, 208, 363–372. [Google Scholar] [CrossRef]
- Hall, S.; Foxon, T.J.; Bolton, R. Investing in low-carbon transitions: Energy finance as an adaptive market. Clim. Policy 2017, 17, 280–298. [Google Scholar] [CrossRef]
- Kozlova, M.; Fleten, S.E.; Hagspiel, V. Investment timing and capacity choice under rate-of-return regulation for renewable energy support. Energy 2019, 174, 591–601. [Google Scholar] [CrossRef]
- Alipour, N.; Sangari, M.S.; Nazari-Shirkouhi, S. Investigating Green Human Resource Practices in the Healthcare Sector: A Joint Application of Balanced Scorecard and SIR Method. In Proceedings of the 2019 15th Iran International Industrial Engineering Conference (IIIEC), Yazd, Iran, 23–24 January 2019; pp. 283–288. [Google Scholar]
- Cavallaro, F.; Zavadskas, E.K.; Streimikiene, D.; Mardani, A. Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights. Technol. Forecast. Soc. Chang. 2019, 140, 258–270. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Yun, S.; Lee, J.; Lee, S. Technology development strategies and policy support for the solar energy industry under technological turbulence. Energy Policy 2019, 124, 206–214. [Google Scholar] [CrossRef]
- Kaplan, R.S.; Norton, D.P. The Balanced Scorecard—Measures That Drive Performance. Harv. Bus. Rev. 1992, 70, 71–79. [Google Scholar] [PubMed]
- Khan, A.; Maity, K.; Jhodkar, D. An Integrated Fuzzy-MOORA Method for the Selection of Optimal Parametric Combination in Turing of Commercially Pure Titanium. In Optimization of Manufacturing Processes; Springer: Cham, Switzerland, 2020; pp. 163–184. [Google Scholar]
- Tian, G.; Liu, X.; Zhang, M.; Yang, Y.; Zhang, H.; Lin, Y.; Ma, F.; Wang, X.; Qu, T.; Li, Z. Selection of take-back pattern of vehicle reverse logistics in China via Grey-DEMATEL and Fuzzy-VIKOR combined method. J. Clean. Prod. 2019, 220, 1088–1100. [Google Scholar] [CrossRef]
- Mora, E.B.; Spelling, J.; van der Weijde, A.H.; Pavageau, E.M. The effects of mean wind speed uncertainty on project finance debt sizing for offshore wind farms. Appl. Energy 2019, 252, 113419. [Google Scholar] [CrossRef]
- Dell, R.W.; Hendrickson, S.H.; Hadley, S.W.; Chinthavali, S. The geography of project finance in US electricity generation. Electr. J. 2017, 30, 8–17. [Google Scholar] [CrossRef]
- Srivastava, V. Project finance bank loans and PPP funding in India: A risk management perspective. J. Bank. Regul. 2017, 18, 14–27. [Google Scholar] [CrossRef]
- Ogino, K. Conflicts of decision-making processes between Clean Development Mechanism and project financing. Dev. Pract. 2016, 26, 1083–1093. [Google Scholar] [CrossRef]
- Oinarov, A.R.; Eshimova, D.; Adilbekova, B. Public policy on public-private project financing in Kazakhstan. J. Asian Public Policy 2019, 12, 228–256. [Google Scholar] [CrossRef]
- Cruz, C.O.; Sarmento, J.M. The price of project finance loans for highways. Res. Transp. Econ. 2018, 70, 161–172. [Google Scholar] [CrossRef]
- Moore, M.C. Project permitting, finance, and economics for geothermal power generation. In Geothermal Power Generation; Woodhead Publishing: Shaston/Cambridge, UK, 2016; pp. 499–533. [Google Scholar]
- Cooper, I.A.; Nyborg, K.G. Consistent valuation of project finance and LBOs using the flows-to-equity method. Eur. Financ. Manag. 2018, 24, 34–52. [Google Scholar] [CrossRef]
- Montgomery, N.; Squires, G.; Syed, I. Disruptive potential of real estate crowdfunding in the real estate project finance industry: A literature review. Prop. Manag. 2018, 36, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Sainati, T.; Locatelli, G.; Smith, N. Project financing in nuclear new build, why not? The legal and regulatory barriers. Energy Policy 2019, 129, 111–119. [Google Scholar] [CrossRef]
- Rode, J.; Pinzon, A.; Stabile, M.C.; Pirker, J.; Bauch, S.; Iribarrem, A.; Sammon, P.; Llerena, C.A.; Alves, L.M.; Orihuela, C.E.; et al. Why ‘blended finance’could help transitions to sustainable landscapes: Lessons from the Unlocking Forest Finance project. Ecosyst. Serv. 2019, 37, 100917. [Google Scholar] [CrossRef]
- Subramanian, K.V.; Tung, F. Law and project finance. J. Financ. Intermediation 2016, 25, 154–177. [Google Scholar] [CrossRef]
- Mann, J.B.; Howe, M. Sunny and Windy--Tax Credits and Renewable Project Finance. J. Tax. invest. 2016, 33, 25–44. [Google Scholar]
- Parra, C.F.R.; Polania, A.M.R. Direct Agreements: The Missing Piece to Boost Colombian Project Finance. Const. L. Int'l 2017, 12, 44. [Google Scholar]
- Thierie, W.; De Moor, L. Loan tenor in project finance. Int. J. Manag. Proj. Bus. 2018, 12. [Google Scholar] [CrossRef]
- Hempelmann, F.; Engelen, A. Integration of finance with marketing and R D in new product development: The role of project stage. J. Prod. Innov. Manag. 2015, 32, 636–654. [Google Scholar] [CrossRef]
- Ahiabor, F.S.; James, G.A. Domestic lead arranger certification and the pricing of project finance loans. Int. J. Financ. Econ. 2019, 24, 150–167. [Google Scholar] [CrossRef]
- Pacudan, R. Implications of applying solar industry best practice resource estimation on project financing. Energy Policy 2016, 95, 489–497. [Google Scholar] [CrossRef]
- Hamman, E. The influence of environmental NGOs on project finance: A case study of activism, development and Australia’s Great Barrier Reef. J. Sustain. Financ. invest. 2016, 6, 51–66. [Google Scholar] [CrossRef]
- Gorshkov, R.; Epifanov, V. The mechanism of the project financing in the construction of underground structures. Procedia Eng. 2016, 165, 1211–1215. [Google Scholar] [CrossRef]
- Jackowicz, K.; Mielcarz, P.; Wnuczak, P. Fair value, equity cash flow and project finance valuation: Ambiguities and a solution. Manag. Financ. 2017, 43, 914–927. [Google Scholar] [CrossRef]
- Rocha, C.H.; de Britto, P.A.P. Project Finance and Concession Pricing Models: An Application to Brazilian Ports. Lat. Am. Bus. Rev. 2015, 16, 127–141. [Google Scholar] [CrossRef]
- Geroe, S. Non-recourse project financing for concentrated solar thermal power. Util. Policy 2019, 60, 100937. [Google Scholar] [CrossRef]
- Campanella, F.; Serino, L.; Nelli, T.; Graziano, D. Macroeconomics Effects on Project Finance Performances and Sustainability. Int. Bus. Res. 2018, 11, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, V.; Hellowell, M.; Casalini, F. Issues and Trends in Project Finance for Public Infrastructure. In Structured Finance; Springer: Cham, Switzerland, 2017; pp. 127–152. [Google Scholar]
- Yang, M.; Yu, X. Energy Efficiency Project Finance. In Energy Efficiency; Springer: London, UK, 2015; pp. 73–95. [Google Scholar]
- Magni, C.A. An average-based accounting approach to capital asset investments: The case of project finance. Eur. Account. Rev. 2016, 25, 275–286. [Google Scholar] [CrossRef]
- Steffen, B. The importance of project finance for renewable energy projects. Energy Econ. 2018, 69, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Thierie, W.; De Moor, L. Determinants of bank loan spread in project finance. Int. J. Manag. Proj. Bus. 2019, 12, 161–186. [Google Scholar] [CrossRef]
- Müllner, J. International project finance: Review and implications for international finance and international business. Manag. Rev. Q. 2017, 67, 97–133. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Peña-Mora, F.; Wang, X.R.; Shen, C.Q.; Riaz, Z. Social impact project finance: An innovative and sustainable infrastructure financing framework. Procedia Eng. 2015, 123, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Jong, C.H.; Park, M.J. Impact of Interest and FX Rate on Breach of DSCR in Project Finance. Int. J. Syst. Dyn. Appl. (IJSDA) 2017, 6, 84–101. [Google Scholar] [CrossRef] [Green Version]
- De Marco, A.; Mangano, G. Risk factors influencing the debt leverage of project financing initiatives in the energy industry. Int. J. Energy Sect. Manag. 2017, 11, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Kim, S.T. Price volatility and risk management of oil and gas companies: Evidence from oil and gas project finance deals. Energy Econ. 2018, 76, 594–605. [Google Scholar] [CrossRef]
- Ma, T. Basel III and the future of project finance funding. Mich. Bus. Entrep. L Rev. 2016, 6, 109. [Google Scholar]
- Park, D.J. Remembering Financial Crises: The Risk Implications of the Rise of Institutional Investors in Project Finance. Mich. L Rev. 2018, 117, 383. [Google Scholar]
- Xu, L.; Deng, Y.; Yuan, Y.; Mancl, K. Energy Finance in Promoting Renewable Energy Sustainable Development in China: The Channels and Means of Financing. In International Conference on Management Science and Engineering Management; Springer: Cham, Switzerland, 2017; pp. 538–546. [Google Scholar]
- Baker, L. The evolving role of finance in South Africa’s renewable energy sector. Geoforum 2015, 64, 146–156. [Google Scholar] [CrossRef]
- Yoshino, N.; Taghizadeh-Hesary, F. Alternatives to private finance: Role of fiscal policy reforms and energy taxation in development of renewable energy projects. In Financing for Low-Carbon Energy Transition; Springer: Singapore, 2018; pp. 335–357. [Google Scholar]
- Ng, T.H.; Tao, J.Y. Bond financing for renewable energy in Asia. Energy Policy 2016, 95, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Laureti, T.; Montero, J.M.; Fernández-Avilés, G. A local scale analysis on influencing factors of NOx emissions: Evidence from the Community of Madrid, Spain. Energy Policy 2014, 74, 557–568. [Google Scholar] [CrossRef]
- Yoshino, N.; Taghizadeh-Hesary, F. Alternatives to Bank Finance: Role of Carbon Tax and Hometown Investment Trust Funds in Developing Green Energy Projects in Asia; ADBI Working Paper No. 761; Asian Development Bank Institute: Tokyo, Japan, 2017. [Google Scholar]
- Gallagher, K.P.; Kamal, R.; Wang, Y.; Chen, Y. Fueling Growth and Financing Risk: The Benefits and Risks of China’s Development Finance in the Global Energy Sector; Global Economic Governance Initiative: Boston, MA, USA, 2016. [Google Scholar]
- Lee, C.W.; Zhong, J. Financing and risk management of renewable energy projects with a hybrid bond. Renew. Energy 2015, 75, 779–787. [Google Scholar] [CrossRef]
- Massingham, R.; Massingham, P.R.; Dumay, J. Improving integrated reporting: A new learning and growth perspective for the balanced scorecard. J. Intellect. Cap. 2019, 20, 60–82. [Google Scholar] [CrossRef]
- Dimitropoulos, P.; Kosmas, I.; Douvis, I. Implementing the balanced scorecard in a local government sport organization: Evidence from Greece. Int. J. Product. Perform. Manag. 2017, 66, 362–379. [Google Scholar] [CrossRef]
- Yao, J.; Liu, J. E-Government Project Evaluation: A Balanced Scorecard Analysis. J. Electron. Commer. Organ. (JECO) 2016, 14, 11–23. [Google Scholar] [CrossRef]
- Ndevu, Z.J.; Muller, K. Operationalising performance management in local government: The use of the balanced scorecard. SA J. Hum. Resour. Manag. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Ge, L. Exploration of Balanced Scorecard-Based Government Performance Management in China. In Proceedings of the 2016 International Conference on Public Management, Kumming, China, 15–17 July 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Wang, Y.; Tian, L.; Chen, Z. A Reputation Bootstrapping Model for E-Commerce Based on Fuzzy DEMATEL Method and Neural Network. IEEE Access 2019, 7, 52266–52276. [Google Scholar] [CrossRef]
- Ćwiklicki, M. Applying Balanced Scorecard in Non-Government Organizations. In Decision Management: Concepts, Methodologies, Tools, and Applications; IGI Global: PA, USA, 2017; pp. 902–923. [Google Scholar]
- Elkhouty, S.M.; Ibrahim, M.M.; ElFrargy, M.M.; Kotb, A.S. Measuring the effectiveness of banking risk balanced scorecard in enhancing bank value. Int. J. Econo. Financ. 2015, 7, 139–152. [Google Scholar]
- Sardjono, W.; Pujadi, T. Performance evaluation of systems Managed File Transfer in banking industry using IT Balanced Scorecard. In Proceedings of the 2016 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, 16–18 November 2016; pp. 12–16. [Google Scholar]
- Dinçer, H.; Yüksel, S. Comparative evaluation of BSC-based new service development competencies in Turkish banking sector with the integrated fuzzy hybrid MCDM using content analysis. Int. J. Fuzzy Syst. 2018, 20, 2497–2516. [Google Scholar] [CrossRef]
- Dong, J.; Xue, G.; Li, X. Value Evaluation of Integrated Energy Services Based on Balanced Scorecard. In Proceedings of the International Conference on Humanities and Social Science 2016, Guangzhou, China, 8–10 January 2016; Atlantis Press: Paris, France. [Google Scholar]
- Dincer, H.; Yüksel, S.; Martinez, L. Balanced scorecard-based Analysis about European Energy Investment Policies: A hybrid hesitant fuzzy decision-making approach with Quality Function Deployment. Expert Syst. Appl. 2019, 115, 152–171. [Google Scholar] [CrossRef]
- Kahla, F. Implementation of a balanced scorecard for hybrid business models–an application for citizen renewable energy companies in Germany. Int. J. Energy Sect. Manag. 2017, 11, 426–443. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach. Energy 2019, 175, 1259–1270. [Google Scholar] [CrossRef]
- Chou, Y.C.; Yen, H.Y.; Dang, V.T.; Sun, C.C. Assessing the Human Resource in Science and Technology for Asian Countries: Application of Fuzzy AHP and Fuzzy TOPSIS. Symmetry 2019, 11, 251. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Prasher, A. Measuring healthcare service quality from patients’ perspective: Using Fuzzy AHP application. Total. Q. Manag. Bus. Excell. 2019, 30, 284–300. [Google Scholar] [CrossRef]
- Yildiz, N.; Kahraman, C. Evaluation of Social Sustainable Development Factors Using Buckley’s Fuzzy AHP Based on Z-Numbers. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2019; pp. 770–778. [Google Scholar]
- Alilou, H.; Rahmati, O.; Singh, V.P.; Choubin, B.; Pradhan, B.; Keesstra, S.; Ghiasi, S.S.; Sadeghi, S.H. Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. J. Environ. Manag. 2019, 232, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, H.; Kabak, Ö. Analysis of Relation between Human Development and Competitiveness Using Fuzzy ANP and DEA. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2019; pp. 859–866. [Google Scholar]
- Lo, H.W.; Liou, J.J.; Tzeng, G.H. Comments on “Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: A case study in small-and-medium enterprises”. J. Clean. Prod. 2019, 228, 1011–1012. [Google Scholar] [CrossRef]
- Wang, C.; Qi, Y.; Liu, Y.; Wang, F. Performance Evaluation of Government Crisis Management Based on Balanced Scorecard under Informatization. In International Conference on Management Science and Engineering Management; Springer: Cham, Switzerland, 2018; pp. 567–578. [Google Scholar]
- Goyal, S.; Routroy, S.; Singhal, A. Analyzing environment sustainability enablers using fuzzy DEMATEL for an Indian steel manufacturing company. J. Eng. Des. Technol. 2019, 17, 300–329. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Canbolat, Z.N.; Pınarbaşı, F. Data Mining-Based Evaluating the Customer Satisfaction for the Mobile Applications: An Analysis on Turkish Banking Sector by Using IT2 Fuzzy DEMATEL. In Tools and Techniques for Implementing International E-Trading Tactics for Competitive Advantage; IGI Global: PA, USA, 2020; pp. 320–339. [Google Scholar]
- Pandey, M.; Litoriya, R.; Pandey, P. Identifying Causal Relationships in Mobile App Issues: An Interval Type-2 Fuzzy DEMATEL Approach. Wirel. Pers. Commun. 2019, 108, 683–710. [Google Scholar] [CrossRef]
- Tang, Z.; Dinçer, H. Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies. Sustainability 2019, 11, 3514. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, M.; Zhang, J.; Saidur, R.; Sun, H.; Sait, S.M. Economic assessment and ranking of wind power potential using fuzzy-TOPSIS approach. Environ. Sci. Pollut. Res. 2019, 26, 22494–22511. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, Y.; Xu, Z.; Jamaldeen, A. Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl. Soft Comput. 2019, 78, 583–594. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F.; Guneri, A.F. Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry. J. Saf. Res. 2019, 69, 135–153. [Google Scholar] [CrossRef]
- Arabsheybani, A.; Paydar, M.M.; Safaei, A.S. An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier's risk. J. Clean. Prod. 2018, 190, 577–591. [Google Scholar] [CrossRef]
- Gürbüz, F.; Erdinç, G. Selecting The Best Hotel Using The Fuzzy-Moora Method With a New Combined Weight Approach. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–8. [Google Scholar]
- Demirel, H.; Akyuz, E.; Celik, E.; Alarcin, F. An interval type-2 fuzzy QUALIFLEX approach to measure performance effectiveness of ballast water treatment (BWT) system on-board ship. Ships Offshore Struct. 2019, 14, 675–683. [Google Scholar] [CrossRef]
- Dong, J.Y.; Chen, Y.; Wan, S.P. A cosine similarity based QUALIFLEX approach with hesitant fuzzy linguistic term sets for financial performance evaluation. Appl. Soft Comput. 2018, 69, 316–329. [Google Scholar] [CrossRef]
- Liang, W.; Dai, B.; Zhao, G.; Wu, H. Assessing the Performance of Green Mines via a Hesitant Fuzzy ORESTE–QUALIFLEX Method. Mathematics 2019, 7, 788. [Google Scholar] [CrossRef] [Green Version]
- Dincer, H.; Yuksel, S. IT2-based fuzzy hybrid decision making approach to soft computing. IEEE Access 2019, 7, 15932–15944. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Korsakienė, R.; Raišienė, A.G.; Bilan, Y. IT2 hybrid decision-making approach to performance measurement of internationalized firms in the baltic states. Sustainability 2019, 11, 296. [Google Scholar] [CrossRef]
- Chen, S.M.; Lee, L.W.; Shen, V.R. Weighted fuzzy interpolative reasoning systems based on interval type-2 fuzzy sets. Inf. Sci. 2013, 248, 15–30. [Google Scholar] [CrossRef]
BSC Perspectives | Energy Project Evaluation Dimensions | Criteria | References |
---|---|---|---|
Finance | Project Performance | Investment Cost | Srivastava [17]; Oinarov et al. [19] |
Return on Investment | Mora et al. [15]; Dell et al. [16] | ||
Customer | Corporate Reputation | Financial Reputation | Thierie and Moor [29]; Subramanian and Tung [26] |
Market Reputation | Ahiabor and James [31]; Pacudan [32] | ||
Internal Process | Operational Effectiveness | Technical and Organizational Effectiveness | Rode et al. [25]; Montgomery et al. [23] |
Financial Effectiveness | Cruz and Sarmento [20]; Sainati et al. [24] | ||
Learning and Growth | Competitive Structure | Growth Potential | Parra and Polanía [28]; Mann and Howe [27] |
Market Risks | Müllner [44] |
Criteria | Alternatives | IT2TrFNs |
---|---|---|
Absolutely Low (AL) | Absolutely Poor (AP) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) |
Very Low (VL) | Very Poor (VP) | ((0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.02, 0.07; 1.0)) |
Low (L) | Poor (P) | ((0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)) |
Medium Low (ML) | Medium Poor (MP) | ((0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42; 1.0)) |
Medium (M) | Fair (F) | ((0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)) |
Medium High (MH) | Medium Good (MG) | ((0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)) |
High (H) | Good (G) | ((0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)) |
Very High (VH) | Very Good (VG) | ((0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)) |
Absolutely High (AH) | Absolutely Good (AG) | ((1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0; 1.0)) |
C1 | C2 | C3 | C4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | |
C1 | - | - | - | H | H | M | M | M | ML | M | M | M |
C2 | M | M | ML | - | - | - | M | M | ML | M | M | M |
C3 | M | M | MH | ML | M | M | - | - | - | L | ML | L |
C4 | MH | M | ML | M | L | ML | ML | M | ML | - | - | - |
C5 | VH | H | VH | H | H | VH | H | VH | H | VH | MH | AH |
C6 | M | ML | H | H | H | MH | H | H | MH | H | M | H |
C7 | MH | MH | H | MH | M | M | ML | ML | M | VL | M | M |
C8 | M | MH | M | MH | M | MH | M | M | ML | M | M | MH |
C5 | C6 | C7 | C8 | |||||||||
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | |
C1 | ML | ML | L | ML | M | M | ML | ML | L | M | ML | M |
C2 | ML | ML | VL | M | ML | ML | ML | ML | M | M | M | M |
C3 | M | ML | VL | M | ML | M | L | ML | ML | L | VL | M |
C4 | ML | M | ML | ML | M | M | VH | M | M | M | ML | M |
C5 | - | - | - | H | VH | VH | AH | VH | VH | VH | VH | H |
C6 | VL | M | ML | - | - | - | MH | H | MH | MH | H | H |
C7 | VL | M | L | ML | M | M | - | - | - | M | M | M |
C8 | ML | M | L | M | ML | ML | ML | ML | M | - | - | - |
Criteria/Alternatives | State-Owned Banks | Private Banks | Foreign Banks | ||||||
---|---|---|---|---|---|---|---|---|---|
(Alternative 1) | (Alternative 2) | (Alternative 3) | |||||||
DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | DM1 | DM2 | DM3 | |
Investment Cost | G | G | VG | G | G | G | G | G | G |
(Criterion 1) | |||||||||
Return on Investment | MG | F | G | G | VG | AG | G | VG | G |
(Criterion 2) | |||||||||
Financial Reputation | F | MG | MG | G | VG | G | VG | G | VG |
(Criterion 3) | |||||||||
Market Reputation | MG | MG | MG | VG | VG | G | VG | G | VG |
(Criterion 4) | |||||||||
Technical and Organizational Effectiveness | F | G | MG | VG | VG | AG | G | G | AG |
(Criterion 5) | |||||||||
Financial Effectiveness | G | G | MG | G | VG | G | G | G | VG |
(Criterion 6) | |||||||||
Growth Potential | VG | G | VG | VG | VG | G | G | G | G |
(Criterion 7) | |||||||||
Market Risks | F | G | F | G | MG | VG | G | MG | G |
(Criterion 8) |
C1 | C2 | C3 | C4 | |
---|---|---|---|---|
C1 | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.66, 0.69, 0.72, 0.90; 0.80), (0.59, 0.66, 0.81, 0.86; 1.00)) | ((0.35, 0.39, 0.47, 0.50; 0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.40, 0.45, 0.54, 0.57; 0.80), (0.32, 0.41, 0.58, 0.65; 1.00)) |
C2 | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.40, 0.45, 0.54, 0.57;0.80), (0.32, 0.41, 0.58, 0.65; 1.00)) |
C3 | ((0.49, 0.53, 0.61, 0.64;0.80), (0.41, 0.48, 0.65, 0.72; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.14, 0.17, 0.22, 0.24; 0.80), (0.08, 0.14, 0.24, 0.29; 1.00)) |
C4 | ((0.43, 0.46, 0.54, 0.57;0.80), (0.36, 0.42, 0.58, 0.64; 1.00)) | ((0.24, 0.28, 0.34, 0.37;0.80), (0.18, 0.24, 0.37, 0.43; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) |
C5 | ((0.89, 0.93, 0.96, 0.96; 0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) | ((0.87, 0.89, 0.92, 0.93;0.80), (0.84, 0.87, 0.93, 0.95; 1.00)) |
C6 | ((0.47, 0.51, 0.58, 0.61; 0.80), (0.40, 0.47, 0.61, 0.68; 1.00)) | ((0.74, 0.77, 0.84, 0.87;0.80), (0.67, 0.73, 0.88, 0.93; 1.00)) | ((0.74, 0.77, 0.84, 0.87;0.80), (0.67, 0.73, 0.88, 0.93; 1.00)) | ((0.66, 0.69, 0.72, 0.90;0.80), (0.59, 0.66, 0.81, 0.86; 1.00)) |
C7 | ((0.69, 0.72, 0.80, 0.83;0.80), (0.63, 0.68, 0.84, 0.90;1.00)) | ((0.49, 0.53, 0.61, 0.64;0.80), (0.41, 0.48, 0.65, 0.72; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.27, 0.30, 0.36, 0.40;0.80), (0.21, 0.27, 0.39, 0.46; 1.00)) |
C8 | ((0.49, 0.53, 0.61, 0.64;0.80), (0.41, 0.48, 0.65, 0.72; 1.00)) | ((0.57, 0.60, 0.68, 0.72;0.80), (0.49, 0.56, 0.73, 0.79; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.49, 0.53, 0.61, 0.64;0.80), (0.41, 0.48, 0.65, 0.72; 1.00)) |
C5 | C6 | C7 | C8 | |
C1 | ((0.18, 0.21, 0.27, 0.30;0.80), (0.13, 0.18, 0.30, 0.36; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.18, 0.21, 0.27, 0.30;0.80), (0.13, 0.18, 0.30, 0.36; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) |
C2 | ((0.16, 0.17, 0.22, 0.26;0.80), (0.11, 0.15, 0.25, 0.30; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.40, 0.45, 0.54, 0.57;0.80), (0.32, 0.41, 0.58, 0.65; 1.00)) |
C3 | ((0.21, 0.24, 0.29, 0.33;0.80), (0.16, 0.21, 0.32, 0.38; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.18, 0.21, 0.27, 0.30;0.80), (0.13, 0.18, 0.30, 0.36; 1.00)) | ((0.17, 0.19, 0.24, 0.27;0.80), (0.12, 0.17, 0.26, 0.32; 1.00)) |
C4 | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.58, 0.63, 0.69, 0.71;0.80), (0.52, 0.60, 0.72, 0.77; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) |
C5 | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.89, 0.93, 0.96, 0.96; 0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) | ((0.97, 0.99,1.00,1.00;0.80), (0.95, 0.99,1.00,1.00; 1.00)) | ((0.89, 0.93, 0.96, 0.96; 0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) |
C6 | ((0.21, 0.24, 0.29, 0.33;0.80), (0.16, 0.21, 0.32, 0.38; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.69, 0.72, 0.80, 0.83;0.80), (0.63, 0.68, 0.84, 0.90; 1.00)) | ((0.74, 0.77, 0.84, 0.87;0.80), (0.67, 0.73, 0.88, 0.93; 1.00)) |
C7 | ((0.17, 0.19, 0.24, 0.27;0.80), (0.12, 0.17, 0.26, 0.32; 1.00)) | ((0.35, 0.39, 0.47, 0.50;0.80), (0.27, 0.35, 0.51, 0.57; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) | ((0.40, 0.45, 0.54, 0.57;0.80), (0.32, 0.41, 0.58, 0.65; 1.00)) |
C8 | ((0.24, 0.28, 0.34, 0.37;0.80), (0.18, 0.24, 0.37, 0.43; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.29, 0.32, 0.40, 0.43;0.80), (0.22, 0.28, 0.43, 0.50; 1.00)) | ((0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)) |
Balanced Scorecard Perspectives | Energy Project Evaluation Dimensions | Dimension Weights | Criteria | Local Weights | Global Weights |
---|---|---|---|---|---|
Finance | Project Performance (Dimension 1) | 0.248 | Investment Cost | 0.503 | 0.125 |
(Criterion 1) | |||||
Return on Investment | 0.497 | 0.123 | |||
(Criterion 2) | |||||
Customer | Corporate Reputation (Dimension 2) | 0.223 | Financial Reputation | 0.471 | 0.105 |
(Criterion 3) | |||||
Market Reputation | 0.529 | 0.118 | |||
(Criterion 4) | |||||
Internal Process | Operational Effectiveness (Dimension 3) | 0.278 | Technical and Organizational Effectiveness | 0.511 | 0.142 |
(Criterion 5) | |||||
Financial Effectiveness | 0.489 | 0.136 | |||
(Criterion 6) | |||||
Learning and Growth | Competitive Structure (Dimension 4) | 0.250 | Growth Potential | 0.461 | 0.115 |
(Criterion 7) | |||||
Market Risks | 0.539 | 0.135 | |||
(Criterion 8) |
State-Owned Banks | Private Banks | Foreign Banks | |
---|---|---|---|
(Alternative 1) | (Alternative 2) | (Alternative 3) | |
C1 | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) | ((0.78, 0.82, 0.89, 0.91;0.80), (0.72, 0.78, 0.92, 0.97; 1.00)) | ((0.78, 0.82, 0.89, 0.91;0.80), (0.72, 0.78, 0.92, 0.97; 1.00)) |
C2 | ((0.61, 0.65, 0.73, 0.76;0.80), (0.54, 0.61, 0.77, 0.83; 1.00)) | ((0.91, 0.93, 0.96, 0.97;0.80), (0.88, 0.92, 0.97, 0.99; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) |
C3 | ((0.57, 0.60, 0.68, 0.72;0.80), (0.49, 0.56, 0.73, 0.79; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) | ((0.89, 0.93, 0.96, 0.96;0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) |
C4 | ((0.65, 0.67, 0.76, 0.79;0.80), (0.58, 0.63, 0.80, 0.86; 1.00)) | ((0.89, 0.93, 0.96, 0.96;0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) | ((0.89, 0.93, 0.96, 0.96;0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) |
C5 | ((0.61, 0.65, 0.73, 0.76;0.80), (0.54, 0.61, 0.77, 0.83; 1.00)) | ((0.97, 0.99,1.00,1.00;0.80), (0.95, 0.99,1.00,1.00; 1.00)) | ((0.86, 0.88, 0.92, 0.94;0.80), (0.81, 0.85, 0.95, 0.98; 1.00)) |
C6 | ((0.74, 0.77, 0.84, 0.87;0.80), (0.67, 0.73, 0.88, 0.93; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) | ((0.84, 0.87, 0.92, 0.94;0.80), (0.79, 0.85, 0.95, 0.98; 1.00)) |
C7 | ((0.89, 0.93, 0.96, 0.96;0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) | ((0.89, 0.93, 0.96, 0.96;0.80), (0.86, 0.91, 0.97, 0.99; 1.00)) | ((0.78, 0.82, 0.89, 0.91;0.80), (0.72, 0.78, 0.92, 0.97; 1.00)) |
C8 | ((0.53, 0.57, 0.65, 0.68;0.80), (0.45, 0.53, 0.69, 0.76; 1.00)) | ((0.79, 0.82, 0.88, 0.90;0.80), (0.74, 0.80, 0.91, 0.94; 1.00)) | ((0.74, 0.77, 0.84, 0.87;0.80), (0.67, 0.73, 0.88, 0.93; 1.00)) |
((−7.54, −6.65, −4.91, −4.19; 0.80), (−5.14, −5.61, −8.25, −10.49; 1.00)) | ((−6.39, −5.55, −3.88, −3.18; 0.80), (−10.62, −7.75, −3.55, −2.14; 1.00)) | ((0.71, 0.87, 1.26, 1.45; 0.80), (0.45, 0.80, 1.77, 2.42; 1.00)) | ((−13.23, −11.33, −7.53, −5.91; 0.80), (−15.31, −12.56, −10.03; −10.20; 1.00)) | −22.28 | |
((−6.39, −5.55, −3.88, −3.18; 0.80), (−10.62, −7.75, −3.55, −2.14; 1.00)) | ((−7.54, −6.65, −4.91, −4.19; 0.80), (−12.26, −9.13, −4.73, −3.37; 1.00)) | ((−1.45, −1.26, −0.87, −0.71; 0.80), (−2.42, −1.77, −0.80, −0.45; 1.00)) | ((−15.39, −13.46, −9.66, −8.07; 0.80), (−25.30, −18.65, −9.07, −5.95; 1.00)) | −27.32 | |
((4.19, 4.91, 6.65, 7.54; 0.80), (3.37, 4.73, 9.13, 12.26; 1.00)) | ((0.71, 0.87, 1.26, 1.45; 0.80), (0.45, 0.80, 1.77, 2.42; 1.00)) | ((−6.39, −5.55, −3.88, −3.18; 0.80), (−10.62, −7.75, −3.55, −2.14; 1.00)) | ((−1.50, 0.23, 4.03, 5.82; 0.80), (−6.80, −2.22, 7.35, 12.55; 1.00)) | 5.04 | |
((0.71, 0.87, 1.26, 1.45; 0.80), (0.45, 0.80, 1.77, 2.42; 1.00)) | ((4.19, 4.91, 6.65, 7.54; 0.80), (3.37, 4.73, 9.13, 12.26; 1.00)) | ((3.18, 3.88, 5.55, 6.39; 0.80), (2.14, 3.55, 7.75, 10.62; 1.00)) | ((8.07, 9.66, 13.46, 15.39; 0.80), (5.95, 9.07, 18.65, 25.30; 1.00)) | 27.32 | |
((3.18, 3.88, 5.55, 6.39; 0.80), (2.14, 3.55, 7.75, 10.62; 1.00)) | ((−1.45, −1.26, −0.87, −0.71; 0.80), (−2.42, −1.77, −0.80, −0.45; 1.00)) | ((−7.54, −6.65, −4.91, −4.19; 0.80), (−12.26, −9.13, −4.73, −3.37; 1.00)) | ((−5.82, −4.03, −0.23, 1.50; 0.80), (−12.55, −7.35, 2.22, 6.80; 1.00)) | −5.04 | |
((−1.45, −1.26, −0.87, −0.71; 0.80), (−2.42, −1.77, −0.80, −0.45; 1.00)) | ((3.18, 3.88, 5.55, 6.39; 0.80), (2.14, 3.55, 7.55, 10.62; 1.00)) | ((4.19, 4.91, 6.65, 7.54; 0.80), (3.37, 4.73, 9.13, 12.26; 1.00)) | ((5.91, 7.53, 11.33, 13.23; 0.80), (3.08, 6.51, 16.08, 22.43; 1.00)) | 22.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Zhou, P.; Yüksel, S.; Dinçer, H.; Uluer, G.S. Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach. Energies 2020, 13, 82. https://doi.org/10.3390/en13010082
Zhou P, Zhou P, Yüksel S, Dinçer H, Uluer GS. Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach. Energies. 2020; 13(1):82. https://doi.org/10.3390/en13010082
Chicago/Turabian StyleZhou, Pengran, Pengfei Zhou, Serhat Yüksel, Hasan Dinçer, and Gülsüm Sena Uluer. 2020. "Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach" Energies 13, no. 1: 82. https://doi.org/10.3390/en13010082
APA StyleZhou, P., Zhou, P., Yüksel, S., Dinçer, H., & Uluer, G. S. (2020). Balanced Scorecard-Based Evaluation of Sustainable Energy Investment Projects with IT2 Fuzzy Hybrid Decision Making Approach. Energies, 13(1), 82. https://doi.org/10.3390/en13010082