Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Assays
2.3. Exposure and Covariates Measurement
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harborne, J.B. The Flavonoids: Advances in Research Since 1986; Routledge: London, UK, 2017. [Google Scholar]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Le Marchand, L. Cancer preventive effects of flavonoids—A review. Biomed. Pharmacother. 2002, 56, 296–301. [Google Scholar] [CrossRef]
- Kaaks, R.; Berrino, F.; Key, T.; Rinaldi, S.; Dossus, L.; Biessy, C.; Secreto, G.; Amiano, P.; Bingham, S.; Boeing, H.; et al. Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J. Natl. Cancer Inst. 2005, 97, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Colditz, G.A.; Hunter, D.J.; Spiegelman, D.; Barbieri, R.L.; Speizer, F.E. Plasma Sex Steroid Hormone Levels and Risk of Breast Cancer in Postmenopausal Women. J. Natl. Cancer Inst. 1998, 90, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Endogenous Hormones and Breast Cancer Collaborative Group; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Travis, R.C.; Alberg, A.J.; Barricarte, A.; Berrino, F.; Krogh, V.; Sieri, S.; et al. Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 2013, 14, 1009–1019. [Google Scholar] [PubMed]
- Key, T.; Appleby, P.; Barnes, I.; Reeves, G. Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J. Natl. Cancer Inst. 2002, 94, 606–616. [Google Scholar] [PubMed]
- Verheus, M.; van Gils, C.H.; Keinan-Boker, L.; Grace, P.B.; Bingham, S.A.; Peeters, P.H.M. Plasma phytoestrogens and subsequent breast cancer risk. J. Clin. Oncol. 2007, 25, 648–655. [Google Scholar] [CrossRef]
- Taylor, C.K.; Levy, R.M.; Elliott, J.C.; Burnett, B.P. The effect of genistein aglycone on cancer and cancer risk: A review of in vitro, preclinical, and clinical studies. Nutr. Rev. 2009, 67, 398–415. [Google Scholar] [CrossRef]
- Hirose, K.; Imaeda, N.; Tokudome, Y.; Goto, C.; Wakai, K.; Matsuo, K.; Ito, H.; Toyama, T.; Iwata, H.; Tokudome, S.; et al. Soybean products and reduction of breast cancer risk: A case–control study in Japan. Br. J. Cancer 2005, 93, 15–22. [Google Scholar] [CrossRef]
- Sak, K. Epidemiological Evidences on Dietary Flavonoids and Breast Cancer Risk: A Narrative Review. Asian Pac. J. Cancer Prev. 2017, 18, 2309–2328. [Google Scholar]
- Zamora-Ros, R.; Ferrari, P.; Gonzalez, C.A.; Tjønneland, A.; Olsen, A.; Bredsdorff, L.; Overvad, K.; Touillaud, M.; Perquier, F.; Fagherazzi, G.; et al. Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Breast Cancer Res. Treat. 2013, 139, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, A.; Bingham, S.; Setchell, K.D. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am. J. Clin. Nutr. 1994, 60, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.J.; Anderson, K.E.; Grady, J.J.; Nagamani, M. Effects of soya consumption for one month on steroid hormones in premenopausal women: Implications for breast cancer risk reduction. Cancer Epidemiol. Biomark. Prev. 1996, 5, 63–70. [Google Scholar]
- Ye, H.; Ng, H.W.; Sakkiah, S.; Ge, W.; Perkins, R.; Tong, W.; Hong, H. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors. Int. J. Environ. Res. Public Health 2016, 13, 373. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Shaw, I.C. Food flavonoid ligand structure/estrogen receptor-alpha affinity relationships—Toxicity or food functionality? Food Chem. Toxicol. 2019, 129, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Miksicek, R.J. Commonly occurring plant flavonoids have estrogenic activity. Mol. Pharmacol. 1993, 44, 37–43. [Google Scholar] [PubMed]
- Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Hunter, D.J.; Colditz, G.A.; Stampfer, M.J.; Longcope, C.; Speizer, F.E. Alcohol, Height, and Adiposity in Relation to Estrogen and Prolactin Levels in Postmenopausal Women. J. Natl. Cancer Inst. 1995, 87, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Spiegelman, D.; Bertone-Johnson, E.R.; Barbieri, R.L.; Pollak, M.N.; Hankinson, S.E. Reproducibility of Plasma Steroid Hormones, Prolactin, and Insulin-like Growth Factor Levels among Premenopausal Women over a 2-to 3-Year Period. Cancer Epidemiol. Biomark. Prev. 2006, 15, 972–978. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Hankinson, S.E. Collection, Processing, and Storage of Biological Samples in Epidemiologic Studies: Sex Hormones, Carotenoids, Inflammatory Markers, and Proteomics as Examples. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1578–1581. [Google Scholar] [CrossRef] [Green Version]
- Hankinson, S.E.; London, S.J.; Chute, C.G.; Barbieri, R.L.; Jones, L.; Kaplan, L.A.; Sacks, F.M.; Stampfer, M.J. Effect of transport conditions on the stability of biochemical markers in blood. Clin Chem. 1989, 35, 2313–2316. [Google Scholar]
- Eliassen, A.H.; Chen, W.Y.; Spiegelman, D.; Willett, W.C.; Hunter, D.J.; Hankinson, S.E. Use of Aspirin, Other Nonsteroidal Anti-inflammatory Drugs, and Acetaminophen and Risk of Breast Cancer Among Premenopausal Women in the Nurses’ Health Study II. Arch. Intern. Med. 2009, 169, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Tworoger, S.S.; Lee, I.M.; Buring, J.E.; Hankinson, S.E. Plasma Androgen Concentrations and Risk of Incident Ovarian Cancer. Am. J. Epidemiol. 2007, 167, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lukanova, A.; Lundin, E.; Micheli, A.; Arslan, A.; Pietro, F.; Rinaldi, S.; Krogh, V.; Lenner, P.; Shore, R.E.; Biessy, C.; et al. Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int. J. Cancer 2004, 108, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Karlson, E.W.; Chibnik, L.B.; McGrath, M.; Chang, S.-C.; Keenan, B.T.; Costenbader, K.H.; Fraser, P.A.; Tworoger, S.; Hankinson, S.E.; Lee, I.-M.; et al. A prospective study of androgen levels, hormone-related genes and risk of rheumatoid arthritis. Arthritis Res. Ther. 2009, 11, R97. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Eliassen, A.H.; Barbieri, R.L.; Hankinson, S.E. Endogenous Estrogen, Androgen, and Progesterone Concentrations and Breast Cancer Risk Among Postmenopausal Women. J. Natl. Cancer Inst. 2004, 96, 1856–1865. [Google Scholar] [CrossRef]
- Södergard, R.; Bäckström, T.; Shanbhag, V.; Carstensen, H. Calculation of free and bound fractions of testosterone and estradiol-17β to human plasma proteins at body temperature. J. Steroid Biochem. 1982, 16, 801–810. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. USDA National Nutrient Database for Standard Reference; Release 23; U.S. Department of Agriculture: Washington, DC, USA, 2010.
- Petimar, J.; Yue, Y.; Willett, W.C.; Smith-Warner, S.A.; Chan, A.T.; Stampfer, M.; Rosner, B.; Lebwohl, B.; Cassidy, A.; Sun, Q.; et al. Validity of Estimated Intake of Flavonoids, Gluten, and the Whole Foods From Which They Are Derived. Curr. Dev. Nutr. 2018, 2, E05-03. [Google Scholar] [CrossRef]
- Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 2012, 25, 165–172. [Google Scholar] [CrossRef]
- Rice, M.S.; Tworoger, S.S.; Rosner, B.A.; Pollak, M.N.; Hankinson, S.E.; Tamimi, R.M. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, growth hormone, and mammographic density in the Nurses’ Health Studies. Breast Cancer Res. Treat. 2012, 136, 805–812. [Google Scholar] [CrossRef]
- Rosner, B.; Cook, N.; Portman, R.; Daniels, S.; Falkner, B. Determination of blood pressure percentiles in normal-weight children: Some methodological issues. Am. J. Epidemiol. 2008, 167, 653–666. [Google Scholar] [CrossRef]
- Tworoger, S.S.; Missmer, S.A.; Eliassen, A.H.; Spiegelman, D.; Folkerd, E.; Dowsett, M.; Barbieri, R.L.; Hankinson, S.E. The Association of Plasma DHEA and DHEA Sulfate with Breast Cancer Risk in Predominantly Premenopausal Women. Cancer Epidemiol. Biomark. Prev. 2006, 15, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phytother. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef] [PubMed]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Damianaki, A.; Bakogeorgou, E.; Kampa, M.; Notas, G.; Hatzoglou, A.; Panagiotou, S.; Gemetzi, C.; Kouroumalis, E.; Martin, P.M.; Castanas, E. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem. 2000, 78, 429–441. [Google Scholar] [CrossRef]
- Brown, D.M.; Kelly, G.E.; Husband, A.J. Flavonoid compounds in maintenance of prostate health and prevention and treatment of cancer. Mol. Biotechnol. 2005, 30, 253–270. [Google Scholar] [CrossRef]
- Koehler, K.F.; Helguero, L.A.; Haldosén, L.-A.; Warner, M.; Gustafsson, J.-A. Reflections on the discovery and significance of estrogen receptor beta. Endocr. Rev. 2005, 26, 465–478. [Google Scholar] [CrossRef]
- Johnson, K.A.; Vemuri, S.; Alsahafi, S.; Castillo, R.; Cheriyath, V. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth. Nutr. Cancer 2016, 68, 622–633. [Google Scholar] [CrossRef]
- Linseisen, J.; Piller, R.; Hermann, S.; Chang-Claude, J. German Case-Control Study Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study. Int. J. Cancer 2004, 110, 284–290. [Google Scholar] [CrossRef]
- Shike, M.; Doane, A.S.; Russo, L.; Cabal, R.; Reis-Filho, J.S.; Gerald, W.; Cody, H.; Khanin, R.; Bromberg, J.; Norton, L. The effects of soy supplementation on gene expression in breast cancer: A randomized placebo-controlled study. J. Natl. Cancer Inst. 2014, 106, dju189. [Google Scholar] [CrossRef]
- Hui, C.; Qi, X.; Qianyong, Z.; Xiaoli, P.; Jundong, Z.; Mantian, M. Flavonoids, Flavonoid Subclasses and Breast Cancer Risk: A Meta-Analysis of Epidemiologic Studies. PLoS ONE 2013, 8, e54318. [Google Scholar] [CrossRef]
- Boccuzzi, G.; Brignardello, E.; di Monaco, M.; Forte, C.; Leonardi, L.; Pizzini, A. Influence of dehydroepiandrosterone and 5-en-androstene-3 beta, 17 beta-diol on the growth of MCF-7 human breast cancer cells induced by 17 beta-estradiol. Anticancer Res. 1992, 12, 799–803. [Google Scholar] [PubMed]
- Maggiolini, M.; Carpino, A.; Bonofiglio, D.; Pezzi, V.; Rago, V.; Marsico, S.; Picard, D.; Ando, S. The direct proliferative stimulus of dehydroepiandrosterone on MCF7 breast cancer cells is potentiated by overexpression of aromatase. Mol. Cell. Endocrinol. 2001, 184, 163–171. [Google Scholar] [CrossRef]
- Gayosso, V.; Montano, L.F.; Lopez-Marure, R. DHEA-induced antiproliferative effect in MCF-7 cells is androgen- and estrogen receptor-independent. Cancer J. 2006, 12, 160–165. [Google Scholar]
- Watson, R.R. DHEA in Human Health and Aging; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Toth-Fejel, S.; Cheek, J.; Calhoun, K.; Muller, P.; Pommier, R.F. Estrogen and androgen receptors as comediators of breast cancer cell proliferation: Providing a new therapeutic tool. Arch. Surg. 2004, 139, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef] [PubMed]
- Song, W.O.; Chun, O.K. Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J. Nutr. 2008, 138, 1543S–1547S. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Flavonoid Intake (mg/day) | |||
---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |
<170.3 | 170.3–241.8 | 241.9–359.3 | >359.3 | |
n = 497 | n = 496 | n = 498 | n = 498 | |
Mean (SD +) | Mean (SD +) | Mean (SD +) | Mean (SD +) | |
Age, years | 42.3 (4.1) | 42.5 (4.2) | 43.0 (4.0) | 43.0 (3.9) |
Caucasian, % | 98.0 | 99.0 | 98.2 | 98.0 |
Height, inches | 64. 9 (2.7) | 64.8 (2.5) | 65.3 (2.5) | 64.9 (2.7) |
Body mass index (BMI), kg/m2 | 26. 6 (6.7) | 26.1 (7.2) | 25.2 (6.3) | 26.4 (7.5) |
BMI at age 18, kg/m2 | 21.2 (3.2) | 21.3 (3.2) | 20.9 (2.9) | 21.1 (3.0) |
Physical activity, MET*-hours/week | 16.2 (7.2) | 17.7 (17.3) | 20.0 (18.7) | 18.2 (17.2) |
Current smoker, % | 11.3 | 7.9 | 5.8 | 7.0 |
AHEI ** score | 47.9 (9.5) | 52.0 (9.8) | 53.9 (10.8) | 53.3 (10.7) |
Total fruit intake, servings/day | 1.2 (0.7) | 1.95 (0.9) | 2.4 (1.2) | 2.2 (1.5) |
Total vegetable intake, servings/day | 3.1 (1.8) | 3.7 (1.9) | 4.0 (2.1) | 4.0 (2.3) |
Age at menarche <12 years, % | 23.7 | 19.6 | 19.1 | 25.3 |
Usual menstrual cycle pattern regular, % | 93.1 | 89.5 | 92.2 | 92.7 |
Parity | 2.4 (0.96) | 2.3 (0.97) | 2.3 (0.93) | 2.3 (0.92) |
Parous, % | 83.7 | 82.6 | 76.3 | 80.5 |
Age at first birth among parous women, years | 26.4 (4.2) | 26.7 (4.7) | 26.9 (4.4) | 26.7 (4.5) |
Past breastfeeding history, % | 67.8 | 69.2 | 64.5 | 69.5 |
Past oral contraceptive use, % | 86.9 | 83.7 | 83.5 | 86.1 |
Family history of breast cancer, % | 9.3 | 11.1 | 9.0 | 8.2 |
Benign breast disease history (biospy confirmed), % | 16.1 | 16.9 | 18.9 | 16.1 |
Plasma Hormone | n | Median | 10th Pctl–90th Pctl |
---|---|---|---|
Follicular estradiol, pg/mL | 1397 | 46.8 | 22.1–101 |
Luteal estradiol, pg/mL | 1524 | 134 | 72.5–237 |
Follicular free estradiol, pg/mL | 1361 | 0.59 | 0.3–1.18 |
Luteal free estradiol, pg/mL | 1508 | 1.69 | 0.93–2.86 |
Follicular estrone, pg/mL | 1417 | 40.6 | 25–67.7 |
Luteal estrone, pg/mL | 1571 | 84.2 | 51.1–142 |
Follicular estrone sulfate, pg/mL | 444 | 661 | 299–1517 |
Luteal estrone sulfate, pg/mL | 449 | 1454 | 573–3326 |
Luteal progesterone, ng/dL | 1587 | 1396 | 251–2696 |
DHEA *, ng/dL | 476 | 614 | 346–1127 |
DHEAS *, μg/dL | 1240 | 86.8 | 39.5–163 |
Testosterone +, ng/dL | 1956 | 23.5 | 14.2–36.8 |
Free testosterone +, ng/dL | 1898 | 0.20 | 0.1–0.37 |
Androstenedione +, ng/dL | 623 | 100 | 60.2–164 |
Prolactin +, ng/dL | 1300 | 14.5 | 8.24–28.7 |
SHBG +, nmol/L | 1916 | 64.5 | 32.4–116 |
Total Flavonoid Intake, mg/day | ||||||||
---|---|---|---|---|---|---|---|---|
Hormone | n | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Trend 3 | Percentage Difference 4 and 95% Confidence Interval (CI) | |
Range | <170.3 | 170.3–241.8 | 241.9–359.3 | >359.3 | Mean | 95% CI | ||
Median Flavonoid intake | 128.0 | 204.9 | 288.2 | 550.2 | ||||
Follicular estradiol, pg/mL | 1397 | 77.8 | 79.3 | 75.5 | 75.8 | 0.53 | −2.6% | (−13.4%, 9.5%) |
Luteal estradiol, pg/mL | 1524 | 129.8 | 134.9 | 129.1 | 129.6 | 0.65 | −0.1% | (−6.9%, 7.2%) |
Follicular free estradiol, pg/mL | 1361 | 0.79 | 0.82 | 0.75 | 0.78 | 0.60 | −0.9% | (−10.0%, 9.1%) |
Luteal free estradiol, pg/mL | 1508 | 1.58 | 1.68 | 1.59 | 1.59 | 0.60 | 0.4% | (−6.8%, 8.1%) |
Follicular estrone, pg/mL | 1417 | 47.3 | 46.5 | 47.1 | 46.7 | 0.84 | −1.2% | (−8.1%, 6.2%) |
Luteal estrone, pg/mL | 1571 | 81.2 | 81.6 | 82.0 | 79.4 | 0.38 | −2.2% | (−8.3%, 4.3%) |
Follicular estrone sulfate, pg/mL | 444 | 777.1 | 773.2 | 785.1 | 795.1 | 0.77 | 2.3% | (−16.3%, 25.1%) |
Luteal estone sulfate, pg/mL | 449 | 1511.2 | 1379.4 | 1761.3 | 1404.5 | 0.51 | −7.1% | (−24.8%, 14.8%) |
Luteal progesterone, ng/dL | 1587 | 1135.5 | 1112.5 | 1130.8 | 1051.1 | 0.06 | −7.4% | (−14.6%, 0.4%) |
DHEA, ng/dL | 386 | 841.1 | 797.7 | 823.9 | 855.3 | 0.55 | 1.7% | (−11.0%, 16.2%) |
DHEAS, μg/dL | 1083 | 107.0 | 98.4 | 102.7 | 95.1 | 0.02 | −11.1% | (−18.6%, −3.0%) |
Testosterone, ng/dL | 1956 | 24.3 | 24.5 | 24.8 | 24.4 | 0.97 | 0.5% | (−4.2%, 5.4%) |
Free testosterone, ng/dL | 1898 | 0.20 | 0.21 | 0.20 | 0.20 | 0.26 | −2.1% | (−8.6%, 4.9%) |
Androstenedione, ng/dL | 623 | 130.9 | 123.8 | 130.0 | 129.1 | 0.92 | −1.4% | (−9.6%, 7.6%) |
Prolactin, ng/dL | 1300 | 22.0 | 21.9 | 21.7 | 23.1 | 0.25 | 5.1% | (−5.5%, 16.8%) |
SHBG, nmol/L | 1675 | 75.5 | 74.8 | 76.2 | 78.5 | 0.11 | 3.9% | (−1.9%, 10.1%) |
Hormones | Flavonol Intake, mg/day | ||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
2.8–10.9 | 10.9–14.9 | 15.0–21.2 | >21.2 | Mean | 95% CI | ||
Median | 8.6 | 12.9 | 17.5 | 28.5 | |||
Follicular estradiol, pg/mL | 76.9 | 78.0 | 79.7 | 74.1 | 0.50 | −3.7% | (−15.7%, 10.1%) |
Luteal estradiol, pg/mL | 133.2 | 130.8 | 127.0 | 132.2 | 0.93 | −0.7% | (−8.1%, 7.2%) |
Follicular free estradiol, pg/mL | 0.77 | 0.81 | 0.79 | 0.77 | 0.72 | 0.0% | (−9.3%, 10.3%) |
Luteal free estradiol, pg/mL | 1.61 | 1.65 | 1.57 | 1.61 | 0.72 | −0.2% | (−7.8%, 8.0%) |
Follicular estrone, pg/mL | 46.4 | 47.8 | 47.2 | 46.4 | 0.79 | 0.1% | (−7.0%, 7.8%) |
Luteal estrone, pg/mL | 82.1 | 81.7 | 80.3 | 79.9 | 0.38 | −2.8% | (−9.1%, 4.0%) |
Follicular estrone sulfate, pg/mL | 824.9 | 753.4 | 738.9 | 786.1 | 0.89 | −4.7% | (−23.2%, 18.3%) |
Luteal estone sulfate, pg/mL | 1497.9 | 1565.0 | 1608.9 | 1445.1 | 0.55 | −3.5% | (−21.1%, 18.0%) |
Luteal progesterone, ng/dL | 1110.1 | 1146.1 | 1101.2 | 1081.7 | 0.31 | −2.6% | (−10.3%, 5.8%) |
DHEA, ng/dL | 813.0 | 853.1 | 846.7 | 854.6 | 0.61 | 5.1% | (−9.6%, 22.2%) |
DHEAS, μg/dL | 101.3 | 103.3 | 103.0 | 98.2 | 0.34 | −3.1% | (−11.5%, 6.2%) |
Testosterone, ng/dL | 24.3 | 24.8 | 24.7 | 24.3 | 0.80 | 0.0% | (−4.9%, 5.2%) |
Free testosterone, ng/dL | 0.20 | 0.21 | 0.20 | 0.20 | 0.69 | −0.4% | (−7.8%, 7.7%) |
Androstenedione, ng/dL | 128.2 | 130.2 | 131.3 | 129.4 | 0.89 | 0.9% | (−8.2%, 10.9%) |
Prolactin, ng/dL | 22.5 | 20.9 | 22.2 | 23.0 | 0.33 | 2.0% | (−8.4%, 13.6%) |
SHBG, nmol/L | 77.4 | 72.6 | 75.9 | 78.3 | 0.30 | 1.2% | (−5.6%, 8.5%) |
Flavanone Intake, mg/day | |||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
0.05–14.9 | 14.9–27.4 | 27.4–47.4 | >47.4 | Mean | 95% CI | ||
Median | 9.0 | 21.0 | 35.9 | 66.6 | |||
Follicular estradiol, pg/mL | 75.0 | 78.2 | 74.5 | 79.7 | 0.52 | 6.3% | (−7.8%, 22.5%) |
Luteal estradiol, pg/mL | 135.6 | 125.5 | 128.4 | 134.9 | 0.60 | −0.5% | (−8.3%, 8.0%) |
Follicular free estradiol, pg/mL | 0.70 | 0.82 | 0.83 | 0.79 | 0.16 | 11.8% | (1.5%, 23.2%) |
Luteal free estradiol, pg/mL | 1.68 | 1.55 | 1.60 | 1.62 | 0.77 | −3.5% | (−11.0%, 4.7%) |
Follicular estrone, pg/mL | 46.2 | 46.2 | 48.2 | 47.3 | 0.40 | 2.4% | (−4.5%, 9.7%) |
Luteal estrone, pg/mL | 84.7 | 76.6 | 80.0 | 83.3 | 0.62 | −1.7% | (−7.8%, 4.9%) |
Follicular estrone sulfate, pg/mL | 741.2 | 757.5 | 779.6 | 869.8 | 0.11 | 17.4% | (−5.4%, 45.5%) |
Luteal estone sulfate, pg/mL | 1582.9 | 1342.3 | 1479.6 | 1611.8 | 0.50 | 1.8% | (−17.8%, 26.1%) |
Luteal progesterone, ng/dL | 1089.4 | 1110.2 | 1119.5 | 1122.4 | 0.52 | 3.0% | (−5.4%, 12.2%) |
DHEA, ng/dL | 864.0 | 841.6 | 836.3 | 805.5 | 0.30 | −6.8% | (−18.3%, 6.3%) |
DHEAS, μg/dL | 98.0 | 99.2 | 102.3 | 106.9 | 0.04 | 9.0% | (−0.3%, 19.3%) |
Testosterone, ng/dL | 24.6 | 24.4 | 24.2 | 24.9 | 0.63 | 1.0% | (−4.2%, 6.4%) |
Free testosterone, ng/dL | 0.20 | 0.20 | 0.20 | 0.20 | 0.89 | 0.1% | (−6.3%, 7.0%) |
Androstenedione, ng/dL | 128.4 | 128.0 | 132.3 | 129.8 | 0.74 | 1.2% | (−7.7%, 10.8%) |
Prolactin, ng/dL | 22.1 | 21.9 | 22.8 | 21.4 | 0.56 | −3.3% | (−12.0%, 6.3%) |
SHBG, nmol/L | 79.8 | 77.0 | 72.7 | 76.1 | 0.14 | −4.7% | (−10.5%, 1.4%) |
Flavone Intake, mg/d | |||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
0.1–1.1 | 1.1–1.6 | 1.6–2.3 | >2.3 | Mean | 95% CI | ||
Median | 0.8 | 1.3 | 1.9 | 3.0 | |||
Follicular estradiol, pg/mL | 81.7 | 75.2 | 69.7 | 82.3 | 0.82 | 0.7% | (−13.5%, 17.3%) |
Luteal estradiol, pg/mL | 133.4 | 125.5 | 127.8 | 136.1 | 0.35 | 2.0% | (−6.4%, 11.2%) |
Follicular free estradiol, pg/mL | 0.74 | 0.82 | 0.77 | 0.81 | 0.24 | 9.5% | (−0.7%, 20.9%) |
Luteal free estradiol, pg/mL | 1.67 | 1.54 | 1.59 | 1.63 | 0.98 | −2.0% | (−10.5%, 7.4%) |
Follicular estrone, pg/mL | 47.0 | 46.3 | 46.0 | 48.4 | 0.35 | 2.9% | (−4.0%, 10.3%) |
Luteal estrone, pg/mL | 83.4 | 77.4 | 78.9 | 84.2 | 0.35 | 0.9% | (−5.7%, 7.9%) |
Follicular estrone sulfate, pg/mL | 747.9 | 793.5 | 794.3 | 810.1 | 0.50 | 8.3% | (−10.5%, 31.1%) |
Luteal estone sulfate, pg/mL | 1434.7 | 1563.9 | 1473.7 | 1694.5 | 0.12 | 18.1% | (−2.7%, 43.4%) |
Luteal progesterone, ng/dL | 1070.2 | 1118.1 | 1114.1 | 1135.8 | 0.23 | 6.1% | (−2.7%, 15.8%) |
DHEA, ng/dL | 892.3 | 856.0 | 813.2 | 789.4 | 0.06 | −11.5% | (−22.4%, 0.9%) |
DHEAS, μg/dL | 97.6 | 100.9 | 102.3 | 105.5 | 0.10 | 8.1% | (−1.4%, 18.5%) |
Testosterone, ng/dL | 24.7 | 24.1 | 24.4 | 24.9 | 0.57 | 0.8% | (−4.3%, 6.2%) |
Free testosterone, ng/dL | 0.20 | 0.20 | 0.20 | 0.20 | 0.92 | −0.5% | (−7.1%, 6.5%) |
Androstenedione, ng/dL | 128.7 | 128.9 | 133.6 | 128.7 | 0.94 | 0.0% | (−9.1%, 10.0%) |
Prolactin, ng/dL | 22.2 | 22.1 | 22.5 | 21.8 | 0.66 | −2.2% | (−11.0%, 7.4%) |
SHBG, nmol/L | 79.7 | 76.2 | 73.1 | 75.9 | 0.18 | −4.8% | (−11.0%, 1.9%) |
Flavan-3-ol Intake, mg/day | |||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
1.84–13.8 | 13.8–23.2 | 23.2–47.3 | >47.3 | Mean | 95% CI | ||
Median | 10.2 | 17.5 | 31.9 | 92.5 | |||
Follicular estradiol, pg/mL | 77.9 | 74.9 | 82.3 | 75.3 | 0.62 | −3.3% | (−14.2%, 9.0%) |
Luteal estradiol, pg/mL | 133.1 | 127.3 | 132.9 | 127.5 | 0.38 | −4.2% | (−10.9%, 3.0%) |
Follicular free estradiol, pg/mL | 0.81 | 0.79 | 0.75 | 0.77 | 0.43 | −4.7% | (−14.0%, 5.6%) |
Luteal free estradiol, pg/mL | 1.62 | 1.58 | 1.64 | 1.58 | 0.61 | −2.3% | (−9.4%, 5.4%) |
Follicular estrone, pg/mL | 47.3 | 47.1 | 46.2 | 47.0 | 0.95 | −0.7% | (−7.9%, 7.1%) |
Luteal estrone, pg/mL | 81.1 | 81.0 | 83.4 | 78.8 | 0.23 | −2.9% | (−8.7%, 3.4%) |
Follicular estrone sulfate, pg/mL | 774.6 | 762.4 | 722.1 | 820.0 | 0.37 | 5.9% | (−12.9%, 28.7%) |
Luteal estone sulfate, pg/mL | 1435.9 | 1558.6 | 1641.4 | 1471.5 | 0.75 | 2.5% | (−16.1%, 25.2%) |
Luteal progesterone, ng/dL | 1130.2 | 1121.9 | 1131.1 | 1044.5 | 0.03 | −7.6% | (−14.8%, 0.2%) |
DHEA, ng/dL | 814.2 | 817.5 | 823.9 | 897.8 | 0.11 | 10.3% | (−4.5%, 27.3%) |
DHEAS, μg/dL | 107.5 | 100.8 | 99.1 | 95.4 | 0.01 | −11.3% | (−18.3%, −3.7%) |
Testosterone, ng/dL | 24.2 | 24.6 | 24.9 | 24.1 | 0.48 | −0.5% | (−5.2%, 4.3%) |
Free testosterone, ng/dL | 0.20 | 0.21 | 0.20 | 0.20 | 0.49 | −0.4% | (−7.2%, 6.8%) |
Androstenedione, ng/dL | 128.9 | 126.1 | 129.9 | 131.2 | 0.50 | 1.8% | (−6.3%, 10.5%) |
Prolactin, ng/dL | 22.22 | 21.60 | 21.36 | 23.07 | 0.23 | 3.8% | (−6.4%, 15.1%) |
SHBG, nmol/L | 76.2 | 72.2 | 77.7 | 78.1 | 0.10 | 2.5% | (−3.4%, 8.8%) |
Anthocyanin Intake, mg/day | |||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
0.24–5.4 | 5.4–10.2 | 10.2–17.2 | >17.2 | Mean | 95% CI | ||
Median | 3.5 | 7.7 | 13.4 | 23.5 | |||
Follicular estradiol, pg/mL | 80.7 | 74.8 | 75.6 | 76.5 | 0.61 | −5.3% | (−18.5%, 10.1%) |
Luteal estradiol, pg/mL | 128.3 | 135.0 | 131.3 | 127.7 | 0.51 | −0.5% | (−8.0%, 7.6%) |
Follicular free estradiol, pg/mL | 0.80 | 0.79 | 0.78 | 0.74 | 0.14 | −7.3% | (−16.5%, 2.9%) |
Luteal free estradiol, pg/mL | 1.60 | 1.66 | 1.61 | 1.55 | 0.22 | −3.3% | (−11.1%, 5.2%) |
Follicular estrone, pg/mL | 46.8 | 47.8 | 47.9 | 44.4 | 0.09 | −5.0% | (−11.7%, 2.1%) |
Luteal estrone, pg/mL | 76.8 | 84.3 | 82.0 | 80.0 | 0.78 | 4.1% | (−2.3%, 10.9%) |
Follicular estrone sulfate, pg/mL | 816.0 | 843.8 | 789.2 | 678.3 | 0.02 | −16.9% | (−32.5%, 2.4%) |
Luteal estone sulfate, pg/mL | 1375.6 | 1733.9 | 1491.5 | 1454.5 | 0.69 | 5.7% | (−11.8%, 26.7%) |
Luteal progesterone, ng/dL | 1074.6 | 1156.7 | 1123.6 | 1080.7 | 0.63 | 0.6% | (−7.7%, 9.5%) |
DHEA, ng/dL | 922.7 | 841.1 | 822.3 | 757.0 | 0.003 | −18.0% | (−27.9%, −6.7%) |
DHEAS, μg/dL | 99.4 | 104.3 | 100.1 | 100.4 | 0.85 | 1.0% | (−8.3%, 11.3%) |
Testosterone, ng/dL | 24.3 | 24.4 | 24.4 | 25.1 | 0.19 | 3.3% | (−1.8%, 8.6%) |
Free testosterone, ng/dL | 0.20 | 0.20 | 0.21 | 0.20 | 0.41 | −2.8% | (−9.6%, 4.5%) |
Androstenedione, ng/dL | 132.4 | 130.8 | 131.8 | 125.0 | 0.18 | −5.6% | (−13.6%, 3.2%) |
Prolactin, ng/dL | 22.0 | 23.6 | 21.7 | 21.6 | 0.31 | −1.9% | (−11.4%, 8.6%) |
SHBG, nmol/L | 76.5 | 74.9 | 76.4 | 77.4 | 0.48 | 1.2% | (−5.1%, 7.9%) |
Isoflavone Intake, mg/day | |||||||
Quartile1 | Quartile2 | Quartile3 | Quartile4 | p-Trend | Percentage Difference and 95% CI | ||
0.04–0.27 | 0.27–0.43 | 0.43–0.88 | >0.88 | Mean | 95% CI | ||
Median | 0.2 | 0.3 | 0.5 | 2.2 | |||
Follicular estradiol, pg/mL | 75.3 | 77.6 | 80.4 | 76.4 | 0.84 | 1.5% | (−12.5%, 17.9%) |
Luteal estradiol, pg/mL | 129.1 | 135.4 | 131.6 | 126.9 | 0.20 | −1.7% | (−8.6%, 5.7%) |
Follicular free estradiol, pg/mL | 0.78 | 0.77 | 0.81 | 0.78 | 0.93 | 1.1% | (−8.4%, 11.5%) |
Luteal free estradiol, pg/mL | 1.62 | 1.65 | 1.61 | 1.54 | 0.10 | −4.8% | (−12.5%, 3.7%) |
Follicular estrone, pg/mL | 47.6 | 45.1 | 48.4 | 46.3 | 0.61 | −2.9% | (−9.2%, 3.9%) |
Luteal estrone, pg/mL | 80.8 | 81.9 | 81.7 | 79.7 | 0.41 | −1.4% | (−7.4%, 5.0%) |
Follicular estrone sulfate, pg/mL | 700.9 | 833.7 | 817.9 | 881.1 | 0.12 | 25.7% | (3.6%, 52.6%) |
Luteal estone sulfate, pg/mL | 1481.1 | 1478.6 | 1554.6 | 1600.4 | 0.44 | 8.1% | (−13.0%, 34.2%) |
Luteal progesterone, ng/dL | 1067.1 | 1105.0 | 1156.1 | 1134.8 | 0.39 | 6.3% | (−2.2%, 15.7%) |
DHEA, ng/dL | 867.7 | 773.8 | 904.5 | 775.2 | 0.09 | −10.7% | (−21.4%, 1.5%) |
DHEAS, μg/dL | 93.5 | 102.7 | 109.0 | 105.4 | 0.14 | 12.7% | (3.5%, 22.8%) |
Testosterone, ng/dL | 24.7 | 23.8 | 25.2 | 24.1 | 0.42 | −2.4% | (−7.2%, 2.7%) |
Free testosterone, ng/dL | 0.21 | 0.19 | 0.21 | 0.20 | 0.35 | −4.2% | (−11.5%, 3.7%) |
Androstenedione, ng/dL | 131.0 | 122.4 | 132.4 | 130.0 | 0.79 | −0.8% | (−9.3%, 8.5%) |
Prolactin, ng/dL | 22.9 | 21.5 | 21.7 | 22.2 | 0.96 | −3.0% | (−12.4%, 7.3%) |
SHBG, nmol/L | 75.9 | 77.2 | 74.9 | 76.9 | 0.66 | 1.3% | (−4.8%, 7.8%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Hankinson, S.E.; Smith-Warner, S.A.; Wang, M.; Eliassen, A.H. Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women. Nutrients 2019, 11, 2669. https://doi.org/10.3390/nu11112669
Wu Y, Hankinson SE, Smith-Warner SA, Wang M, Eliassen AH. Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women. Nutrients. 2019; 11(11):2669. https://doi.org/10.3390/nu11112669
Chicago/Turabian StyleWu, You, Susan E. Hankinson, Stephanie A. Smith-Warner, Molin Wang, and A. Heather Eliassen. 2019. "Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women" Nutrients 11, no. 11: 2669. https://doi.org/10.3390/nu11112669
APA StyleWu, Y., Hankinson, S. E., Smith-Warner, S. A., Wang, M., & Eliassen, A. H. (2019). Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women. Nutrients, 11(11), 2669. https://doi.org/10.3390/nu11112669