Quantifying Bicycle Network Connectivity in Lisbon Using Open Data †
Abstract
:1. Introduction
2. Background
3. PeopleForBikes “Bike Network Analysis Score” Approach
4. Data and Methods
4.1. Data Acquisition and Preprocessing
4.2. Biking Network Stress Levels Classification
4.3. Bike Network Analysis (BNA)
4.4. BNA Scoring
5. Results and Discussion
5.1. Low-Stress Biking Network
5.2. Lisbon’s BNA Score
6. Future Research
7. Conclusions and Limitations
7.1. Conclusions
7.2. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BNA | Bike Network Analysis |
GIS | Geographic Information Systems |
PfB | PeopleForBikes |
LTS | Level of Traffic Stress |
OSM | OpenStreetMap |
CML | Camara Municipal de Lisboa |
ETRS89 | European Terrestrial Reference System 1989 |
DTM | Digital Terrain Model |
Appendix A
References
- Banister, D. Cities, mobility and climate change. J. Transp. Geogr. 2011, 19, 1538–1546. [Google Scholar] [CrossRef]
- Fraser, S.D.; Lock, K. Cycling for transport and public health: A systematic review of the effect of the environment on cycling. Eur. J. Public Health 2011, 21, 738–743. [Google Scholar] [CrossRef] [PubMed]
- De Hartog, J.J.; Boogaard, H.; Nijland, H.; Hoek, G.; de Hartog, J.J.; Boogaard, H.; Nijland, H.; Hoek, G. Do the health benefits of cycling outweigh the risks? Environ. Health Perspect. 2010, 118, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Ferreira, J.; Monteiro, A.; Costa, S.; Pereira, M.C.; Madureira, J.; Mendes, A.; Teixeira, J.P. Air pollution: A public health approach for Portugal. Sci. Total Environ. 2018, 643, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Carley, M.; Christie, I.; Christie, I. Managing Sustainable Development; Routledge: London, UK, 2017. [Google Scholar]
- Bopp, M.; Sims, D.; Piatkowski, D.P. Bicycling for Transportation—An Evidence-Base for Communities, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kosha, T.; Rudolph, F. The Role of Walking and Cycling in Reducing Congestion: A Portfolio of Measures; Technical Report; FLOW Project: Brussels, Belgium, 2016. [Google Scholar]
- de Manuel Jerez, E.; Gonzalez Arriero, C.; Donadei, M. Las redes de Movilidad Urbana Sostenible y la reactivación del Espacio Público: Alcosa. Habitat y Sociedad 2016, 9, 97–131. [Google Scholar] [CrossRef]
- Gira Bicicletas de Lisboa. Sobre a Gira. Available online: https://www.gira-bicicletasdelisboa.pt/sobre-a-gira/ (accessed on 11 November 2018).
- Camara Municipal de Lisboa. Mobilidade Ciclavel. Available online: http://www.cm-lisboa.pt/viver/mobilidade/mobilidade-ciclavel (accessed on 21 February 2018).
- Marrana, J.; Serdoura, F. Cycling Policies and Strategies: The Case of Lisbon. Int. J. Res. Chem. Metall. Civ. Eng. 2018, 4. [Google Scholar] [CrossRef]
- Camara Municipal de Lisboa. Mobilidade Sustentavel e Prioridade da Cidade. 2016. Available online: http://www.cm-lisboa.pt/no_cache/noticias/detalhe/article/mobilidade-sustentavel-e-prioridade-da-cidade (accessed on 10 February 2018).
- Silva, M.M.d. Mobilidade (In)Sustentável em Lisboa. 2017. Available online: https://jornaleconomico.sapo.pt/noticias/mobilidade-insustentavel-em-lisboa-160590 (accessed on 10 November 2018).
- Susete, F. Lisboa vai ter 200 km Para Pedalar e Quer ir de Oeiras a Vila Franca. 2016. Available online: https://www.dn.pt/sociedade/interior/lisboa-vai-ter-200-km-para-pedalar-e-quer-ir-de-oeiras-a-vila-franca-5400639.html (accessed on 10 November 2018).
- André, M.R. O Plano Semi-Escondido da Camara Para Tornar Lisboa Ciclavel Ate 2020. 2018. Available online: https://shifter.sapo.pt/2018/01/rede-ciclavel-lisboa/ (accessed on 10 November 2018).
- City as a Platform. Rede Ciclavel. 2018. Available online: https://lisboa.city-platform.com/app/?a=redeciclavel (accessed on 10 November 2018).
- Baratto, R. Lisboa Planeja Ampliar Sua Rede de Ciclovias Devido ao Aumento de Ciclistas. 2016. Available online: https://www.archdaily.com.br/br/792640/lisboa-planeja-ampliar-sua-rede-de-ciclovias-devido-ao-aumento-de-ciclistas (accessed on 19 October 2018).
- Dietrich, D.; Gray, J.; McNamara, T.; Poikola, A.; Pollock, R.; Tait, J.; Zijlstra, T. The Open Data Handbook; Technical Report; Open Knowledge Foundation: Cambridge, UK, 2018. [Google Scholar]
- European Data Portal. Benefits of Open Data. 2018. Available online: https://www.europeandataportal.eu/en/using-data/benefits-of-open-data (accessed on 19 October 2018).
- Manum, B.; Nordström, T. Integrating Bicycle Network Analysis in Urban Design: Improving bikeability in Trondheim by combining space syntax and GIS-methods using the place syntax tool. In Proceedings of the 9th International Space Syntax Symposium, Seoul, Korea, 31 October–3 November 2013; p. 14. [Google Scholar]
- Cooper, C.H. Using spatial network analysis to model pedal cycle flows, risk and mode choice. J. Transp. Geogr. 2017, 58, 157–165. [Google Scholar] [CrossRef]
- Twadell, H.; Rose, E.; Broach, J.; Dill, J.; Clifton, K.; Lust, C.; Voros, K.; Louch, H.; David, E. Guidebook for Measuring Multimodal Network Connectivity; Technical Report February; Federal Highway Administration: Portland, OR, USA, 2018. [Google Scholar]
- Sorton, A.; Walsh, T. Bicycle Stress Level as a Tool to Evaluate Urban and Suburban Bicycle Compatibility. Transp. Res. Rec. 1994, 3, 17–24. [Google Scholar]
- Geller, R. Four Types of Cyclists; Technical Report; Portland Office of Transportation: Portland, OR, USA, 2006. [Google Scholar]
- Mekuria, M.C.; Furth, P.G.; Nixon, H. Low-Stress Bicycling and Network Connectivity Low-Stress Bicycling and Network Connectivity; Technical Report; Mineta Transportation Institute: San Jose, CA, USA, 2012. [Google Scholar]
- Dill, J.; McNeil, N. Revisiting the Four Types of Cyclists. Transp. Res. Rec. J. Transp. Res. Board 2016, 2587, 90–99. [Google Scholar] [CrossRef]
- Furth, P.G.; Mekuria, M.C.; Nixon, H. Network Connectivity for Low-Stress Bicycling. Transp. Res. Rec. J. Transp. Res. Board 2016, 2587, 41–49. [Google Scholar] [CrossRef]
- Lowry, M.B.; Furth, P.; Hadden-Loh, T. Prioritizing new bicycle facilities to improve low-stress network connectivity. Transp. Res. Part A Policy Pract. 2016, 86, 124–140. [Google Scholar] [CrossRef]
- Lowry, M.; Hadden, T. Quantifying bicycle network connectivity. Prev. Med. 2017, 95, S134–S140. [Google Scholar] [CrossRef] [PubMed]
- Boettge, B.; Hall, D.; Crawford, T.; Boettge, B.; Hall, D.M.; Crawford, T. Assessing the Bicycle Network in St. Louis: A PlaceBased User-Centered Approach. Sustainability 2017, 9, 241. [Google Scholar] [CrossRef]
- PeopleForBikes. Methodology. 2014. Available online: https://peopleforbikes.org/methodology-participation-study/ (accessed on 1 November 2018).
- Abad, L.; Van der Meer, L. Bike Network Analysis Lisbon. In Proceedings of the Workshop Open Data for Open Cities V 2.0, Lund, Sweden, 12 June 2018; p. 36. [Google Scholar]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Mantas, A.I.J.S. (I)mobilidades em Espaço Urbano: Representações e Práticas em torno da Deslocação Pedonal e Velocipédica em Portugal. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2015. (In Portuguese). [Google Scholar]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Heinen, E.; van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Vandenbulcke, G.; Dujardin, C.; Thomas, I.; Geus, B.d.; Degraeuwe, B.; Meeusen, R.; Panis, L.I. Cycle commuting in Belgium: Spatial determinants and ’re-cycling’ strategies. Transp. Res. Part A Policy Pract. 2011, 45, 118–137. [Google Scholar] [CrossRef]
- Jestico, B.; Nelson, T.; Winters, M. Mapping ridership using crowdsourced cycling data. J. Transp. Geogr. 2016, 52, 90–97. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R. Cycling towards a more sustainable transport future. Transp. Rev. 2017, 37, 689–694. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Indicator 3: Sustainable Urban Mobility. Application form for the European Green Capital Award 2016; Technical Report; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Moura, F.; Da Silva, J.M.; Picado Santos, L. Growing from incipient to potentially large cycle networks: Screening the road network of the consolidated urban area of Lisbon. Eur. J. Transp. Infrastruct. Res. 2017, 17, 170–190. [Google Scholar]
- Boldry, J.; Anderson, M.; Roskowski, M. Defining Connected Bike Networks; Technical Report May; Pedestrian and Bicycle Information Center: Chapel Hill, NC, USA, 2017. [Google Scholar]
Type of Segment | Maximum Speed | Residential Area | Number of Lanes | Slope | Bicycle Tag | Stress Level |
---|---|---|---|---|---|---|
Municipality designated cycleway | ——– | ——– | ——– | ——– | ——– | Low |
OSM tagged cycleway | ——– | ——– | ——– | ——– | ——– | Low |
Shared lanes | ≤35 km/h | Yes | ——– | ——– | ——– | Low |
≤35 km/h | No | 1 | <10% | ——– | Low | |
>35 km/h | No | ——– | ——– | ——– | High | |
Motorized road network (road, primary, secondary and tertiary segments and links) | ≥50 km/h | No | >1 | ——– | ——– | High |
≥50 km/h | No | 1 | <10% | ——– | Low | |
<60 km/h | ||||||
≥50 km/h | No | 1 | >10% | ——– | High | |
<60 km/h | ||||||
≤30 km/h | No | 1 | <10% | ——– | Low | |
Residential roads (unclassified, residential, living street) | >40 km/h | ——– | ——– | ——– | ——– | High |
≤40 km/h | ——– | ——– | <10% | ——– | Low | |
Pedestrian segments and foot ways | ——– | ——– | ——– | ——– | ——– | High |
Roundabouts segments without bike path | ——– | ——– | ——– | ——– | ——– | High |
Service lanes (public transport) | ≤30 km/h | ——– | ——– | <10% | ——– | Low |
>30 km/h | ——– | ——– | ——– | ——– | High | |
Paths | ——– | ——– | ——– | ——– | ——– | Low |
Tracks | ——– | ——– | ——– | ——– | ——– | High |
Remaining unclassified segments | ——– | ——– | ——– | >10% | ——– | High |
——– | ——– | ——– | ——– | Yes Designated Designated | Low | |
——– | ——– | ——– | ——– | No Dismount | High |
Scoring Process | Criteria | General Methodology |
---|---|---|
A | First low stress destination = 30 points Second low stress destination = 20 points Third low stress destination = 20 points | The maximum amount of points is 100. The points are given in a cumulative form, considering the number of destinations that the low stress network allows to reach within a biking distance of 6 km. If all the destinations can be reached, then 100 points are granted. If more destinations can be reached than defined in the criteria on the left, extra points are given based on a ratio: No. of extra destinations that can be reached by the low stress network/total number of extra destinations within a distance of 6 km, represented by a circular buffer around the concerned node. |
B | First low stress destination = 40 points Second low stress destination = 20 points Third low stress destination = 10 points | |
C | First low stress destination = 70 points | |
D | First low stress destination = 60 points Second low stress destination = 20 points |
Category | W | Type of Destination | W | Scoring Process |
---|---|---|---|---|
Opportunity | 40 | School | 30 | A |
College | 30 | C | ||
University | 25 | C | ||
Library | 15 | B | ||
Core services | 40 | Doctors + Clinics | 20 | B |
Dentist | 10 | B | ||
Hospital | 20 | C | ||
Pharmacies | 15 | B | ||
Supermarket | 25 | D | ||
Social facilities | 10 | C | ||
Recreation | 20 | Nature reserve | 50 | A |
Park | 50 | A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad, L.; Van der Meer, L. Quantifying Bicycle Network Connectivity in Lisbon Using Open Data. Information 2018, 9, 287. https://doi.org/10.3390/info9110287
Abad L, Van der Meer L. Quantifying Bicycle Network Connectivity in Lisbon Using Open Data. Information. 2018; 9(11):287. https://doi.org/10.3390/info9110287
Chicago/Turabian StyleAbad, Lorena, and Lucas Van der Meer. 2018. "Quantifying Bicycle Network Connectivity in Lisbon Using Open Data" Information 9, no. 11: 287. https://doi.org/10.3390/info9110287
APA StyleAbad, L., & Van der Meer, L. (2018). Quantifying Bicycle Network Connectivity in Lisbon Using Open Data. Information, 9(11), 287. https://doi.org/10.3390/info9110287