Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky–Novikov Type Symmetry Algebras and Related Hamiltonian Operators †
Abstract
:1. Introduction
2. General Setting
2.1. Pre-Lie Algebraic Structures and Related Hamiltonian Operators
2.2. Lie–Poisson Brackets, Skew-Symmetric Derivations and Balinsky–Novikov Type Algebraic Structures
3. Weak and Weakly Deformed Balinsky–Novikov Type Algebras
3.1. A Weak Balinsky–Novikov Type Symmetry Algebra
3.2. A Weakly Deformed Balinsky–Novikov Type Symmetry Algebra
4. The Riemann Type Reduced Pre-Lie Algebra Isomorphism and Related Algebraic Properties
A General Riemann Type Pre-Lie Algebra Structure
- (i)
- A is associative and ,
- (ii)
- ,
- (iii)
- (in particular, if , then A is commutative),
- (iv)
- if A has unity, then (in particular, in , then A is commutative),
- (v)
- if , then for any .
- (i)
- if , then for any (in particular, if A is finite-dimensional, then A is nilpotent),
- (ii)
- if is nonzero proper in A, then A is nilpotent with NI (and so A is at most 2-step Lie nilpotent).
5. The Balinsky–Novikov Algebra and Its Fermionic Modification
- (1)
- Suppose that N is non-commutative and . If N is simple (respectively prime), then it contains a commutative Lie ideal A that contains every commutative Lie ideal of N and is a simple (respectively prime) Lie algebra.
- (2)
- If is a simple (respectively prime or semiprime) Lie algebra, then N is a simple (respectively prime or semiprime) BNA.
- (i)
- the Lie algebra is a sum of a subalgebra and an ideal , where and are isomorphic, where and is at most 2-step Lie nilpotent,
- (ii)
- if , then and .
6. Elementary Properties of Fermionic BNA’s
7. Lie Structure of Semiprime BNA’s
- (i)
- the left annihilator of A in N is an ideal of N,
- (ii)
- if , then is an ideal of N and ,
- (iii)
- if , then or U contains a non-central ideal of N,
- (iv)
- if , then is an ideal of N,
- (v)
- is a Lie ideal of N and ,
- (vi)
- is a Lie ideal of N,
- (vii)
- is an ideal of N,
- (viii)
- the centralizer of A is an ideal of N,
- (ix)
- is a Lie ideal of N,
- (x)
- if N is prime, then or it is an associative and commutative domain.
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chapoton, F.; Livernet, M. Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395–408. [Google Scholar] [CrossRef]
- Szczesny, M. Pre-Lie algebras and indicence categories of colored rooted trees. arXiv, 2010; arXiv:1007.4784v1. [Google Scholar]
- Vinberg, E.B. The theory of homogeneous convex cones. Transl. Moscow Math. Soc. 1963, 12, 340403. [Google Scholar]
- Matsushima, Y. Affine structures on complex manifolds. Osaka J. Math. 1968, 5, 215–222. [Google Scholar]
- Gerstenhaber, M. The cohomology structure of an associative ring. Ann. Math. 1963, 78, 267–288. [Google Scholar] [CrossRef]
- Kreimer, D. On the Hopf algebra structure of perturbative quantum field theory. Adv. Theor. Math. Phys. 1998, 2, 303–334. [Google Scholar] [CrossRef]
- Kremnizer, K.; Szczesny, M. Feynman graphs, rooted trees, and Ringel-Hall algebras. Commun. Math. Phys. 2009, 289, 561–577. [Google Scholar] [CrossRef]
- Moser, J. Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 1975, 16, 197–220. [Google Scholar] [CrossRef]
- Moser, J. Integrable Hamiltonian Systems and Spectral Theory; Edizioni della Normale, Publ. Scuola Normale Superiore; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Moser, J.; Zehnder, E. Notes on Dynamical Systems; Courant Lecture Notes in Math; American Mathematical Society, Courant Institute of Mathematical Sciences: New York, NY, USA, 2005. [Google Scholar]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific Publisher: Singapore, 2011. [Google Scholar]
- Blackmore, D.; Prykarpatsky, Y.A.; Bogolubov, N.N.; Prykarpatski, A.K. Integrability of and differential– algebraic structures for spatially 1D hydrodynamical systems of Riemann type. Chaos Solit. Fractals 2014, 59, 59–81. [Google Scholar] [CrossRef]
- Blaszak, M. Bi-Hamiltonian Dynamical Systems; Springer: New York, NY, USA, 1998. [Google Scholar]
- Faddeev, L.D.; Takhtadjan, L.A. Hamiltonian Methods in the Theory of Solitons; Springer: New York, NY, USA; Berlin, Germany, 1986. [Google Scholar]
- Olver, P. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer-Verlag: New York, NY, USA, 1993. [Google Scholar]
- Dorfman, I. Dirac Structures and Integrability of Nonlinear Evolution Equations; Wiley: Chichester, UK, 1993. [Google Scholar]
- Gel’fand, I.M.; Dorfman, I.Y. Hamiltonian operators and algebraic structures related to them (Russian). Funktsional. Anal. Prilozhen. 1979, 13, 13–30. [Google Scholar]
- Dubrovin, B.A.; Novikov, S.P. Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method. Sov. Math. Dokl. 1983, 27, 665–669. [Google Scholar]
- Dubrovin, B.A.; Novikov, S.P. On Poisson brackets of hydrodynamic type. Sov. Math. Dokl. 1984, 30, 651–654. [Google Scholar]
- Balinsky, A.A.; Novikov, S.P. Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 1985, 32, 228–231. [Google Scholar]
- Artemovych, O.D.; Blackmore, D.; Prykarpatski, A.K. Poisson brackets, Novikov-Leibniz structures and integrable Riemann hydrodynamic systems. J. Nonlinear Math. Phys. 2017, 24, 41–72. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Artemovych, O.D.; Popowicz, Z.; Pavlov, M.V. Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg–de Vries hydrodynamical equations. J. Phys. A Math. Theory 2010, 43, 295205. [Google Scholar] [CrossRef] [Green Version]
- Prykarpatsky, Y.A.; Artemovych, O.D.; Pavlov, M.V.; Pryparpatsky, A.K. Diffrential-algebraic and bi-Hamiltonian integrability analysis of the Riemann hierarchy revisited. J. Math. Phys. 2012, 53, 103521. [Google Scholar] [CrossRef]
- Bai, C.; Meng, D. Addendum: invariant bilinear forms. J. Phys. A 2001, 34, 8193–8197. [Google Scholar] [CrossRef]
- Bai, C.; Meng, D. Transitive Novikov algebras on four-dimensional nilpotent Lie algebras. Int. J. Theoret. Phys. 2001, 40, 1761–1768. [Google Scholar] [CrossRef]
- Bai, C.; Meng, D. The classification of Novikov algebras in low dimensions. J. Phys. A 2001, 34, 1581–1594. [Google Scholar] [CrossRef]
- Bai, C.; Meng, D. On fermionic Novikov algebras. J. Phys. A Math. Gen. 2002, 35, 10053–10063. [Google Scholar] [CrossRef]
- Bai, C.; Meng, D.; He, L. On the Novikov algebra structures adapted to the automorphism structure in a Lie group. J. Geom. Phys. 2003, 45-2, 105–115. [Google Scholar] [CrossRef]
- Osborn, J.M. Novikov algebras, Nova J. Algebra Geom. 1992, 1, 1–13. [Google Scholar]
- Strachan, I.A.B.; Szablikowski, B.M. Novikov Algebras and a classification of multicomponent Camassa- Holm equations. Stud. Appl. Math. 2014, 133, 84–117. [Google Scholar] [CrossRef]
- Holm, D.D.; Ivanov, R.I. Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J. Phys. A 2010, 43, 492001. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, L.V. Interpolating differential reductions of multidimensional integrable hierarchies. TMF 2011, 167, 354–363. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Dryuma, V.S.; Manakov, S.V. Dunajski generalization of the second heavenly equation: Dressing method and the hierarchy. J. Phys. A Math. Theory 2007, 40, 14383–14393. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Konopelchenko, B.G. On the heavenly equation and its reductions. J. Phys. A Math. Gen. 2006, 39, 11793–11802. [Google Scholar] [CrossRef]
- Doubrov, B.; Ferapontov, E.V. On the integrability of symplectic Monge-Ampère equations. J. Geom. Phys. 2010, 60, 1604–1616. [Google Scholar] [CrossRef]
- Dunajski, M. Anti-self-dual four-manifolds with a parallel real spinor. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2002, 458, 1205–1222. [Google Scholar] [CrossRef]
- Konopelchenko, B.G. Grassmanians Gr(N−1,N+1), closed differential N−1 forms and N-dimensional integrable systems. arXiv, 2013; arXiv:1208.6129v2. [Google Scholar]
- Krasil’shchik, I. A natural geometric construction underlying a class of Lax pairs. Lobachevskii J. Math. 2016, 37, 61–66. [Google Scholar] [CrossRef]
- Sergyeyev, A. A simple construction of recursion operators for multidimensional dispersionless integrable systems. J. Math. Anal. Appl. 2017, 454, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, K.; Takebe, T. SDiff(2) Toda equation—Hierarchy, Tau function, and symmetries. Lett. Math. Phys. 1991, 23, 205–214. [Google Scholar] [CrossRef]
- Takasaki, K.; Takebe, T. Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 1995, 7, 743–808. [Google Scholar] [CrossRef]
- Zakharevich, I. Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs. arXiv, 2000; arXiv:math-ph/0006001. [Google Scholar]
- Hentosh, O.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K. Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle. J. Geom. Phys. 2017, 120, 208–227. [Google Scholar] [CrossRef]
- Sergyeyev, A. New integrable (3+1)-dimensional systems and contact geometry. arXiv, 2017arXiv:1401.2122v4.
- Schief, W.K. Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation. Phys. Lett. A 1996, 223, 55–62. [Google Scholar] [CrossRef]
- Schief, W.K. Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link. In Symmetries And Integrability of Difference Equations; London Mathematical Society, Lecture Note Series 255; Clarkson, P., Nijhoff, F., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 137–148. [Google Scholar]
- Sergyeyev, A.; Szablikowski, B.M. Central extensions of cotangent universal hierarchy: (2 + 1)-dimensional bi-Hamiltonian systems. Phys. Lett. A 2008, 372, 7016–7023. [Google Scholar] [CrossRef]
- Szablikowski, B. Hierarchies of Manakov–Santini Type by Means of Rota-Baxter and Other Identities. SIGMA 2016, 12, 022. [Google Scholar] [CrossRef]
- Blackmore, D.; Hentosh, O.E.; Prykarpatski, A. The Novel Lie-Algebraic Approach to Studying Integrable Heavenly Type Multi-Dimensional Dynamical Systems. J. Gener. Lie Theory Appl. 2017, 11. [Google Scholar] [CrossRef]
- Prykarpatski, A.K.; Hentosh, O.E.; Prykarpatsky, Y.A. Geometric Structure of the Classical Lagrange- d’Alambert Principle and its Application to Integrable Nonlinear Dynamical Systems. Mathematics 2017, 5, 75. [Google Scholar] [CrossRef]
- Błaszak, M.; Szum, A. Lie algebraic approach to the construction of (2 + 1)-dimensional lattice-field and field integrable Hamiltonian equations. J. Math. Phys. 2001, 35, 4088–4116. [Google Scholar] [CrossRef]
- Błaszak, M.; Szum, A.; Prykarpatsky, A. Central extension approach to integrable field and lattice-field systems in (2 + 1)-dimensions. Rep. Math. Phys. 1999, 37, 27–32. [Google Scholar] [CrossRef]
- Cieśliński, J.; Prykarpatski, A.K. Discrete approximations on functional classes for the integrable nonlinear Schrödinger dynamical system: A symplectic finite-dimensional reduction approach. J. Math. Anal. Appl. 2015, 430, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Cieśliński, J.; Prykarpatski, A.K. The discrete nonlinear Schrödinger type hierarchy, its finite-dimensional reduction analysis and numerical integrability scheme. Nonlinear Oscillations 2017, 20, 228–265. [Google Scholar]
- Benoist, Y. Une nilvariete non-affine. J. Differ. Geom. 1995, 41, 21–52. [Google Scholar] [CrossRef]
- Burde, D. Affine structures on nilmanifolds. Int. J. Math. 1996, 7, 599–616. [Google Scholar] [CrossRef]
- Kim, H. Complete left-invariant affine structures on nilpotent Lie groups. J. Differ. Geom. 1986, 24, 373–394. [Google Scholar] [CrossRef]
- Perea, A.M. Flat left-invariant connections adapted to the automorphism structure of a Lie group. J. Differ. Geom. 1981, 16, 445–474. [Google Scholar] [CrossRef]
- Zelmanov, E. A class of local translation-invariant Lie algebras (Russian). Dokl. Akad. Nauk SSSR 1987, 292, 1294–1297. [Google Scholar]
- Semenov-Tian-Shansky, M. What is a classical R-matrix? Func. Anal. Appl. 1983, 17, 259–272. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J.E. Foundations of Mechanics; Benjamin/Cummings Publisher: San Francisco, CA, USA, 1978. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Oevel, W. Dirac constraints in field theory: Lifts of Hamiltonian systems to the cotangent bundle. J. Math. Phys. 1988, 29, 210–219. [Google Scholar] [CrossRef]
- Oevel, W. R-structures, Yang–Baxter equations and related involution theorems. J. Math. Phys. 1989, 30, 1140–1149. [Google Scholar] [CrossRef]
- Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems (Russian); The Computer Research Institute Publ.: Moscow, Russia; Izhvek, Russia, 2003. [Google Scholar]
- Li, L.-C.; Parmentier, S. Nonlinear Poisson structures and r-matrices. Commun. Math. Phys. 1989, 125, 545–563. [Google Scholar] [CrossRef]
- Godbillon, C. Geometrie Differentielle Et Mecanique Analytique; Hermann Publ.: Paris, France, 1969. [Google Scholar]
- Prykarpatsky, A.K.; Mykytyuk, I.V. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Bĺaszak, M.B.; Szablikowski, B.M. Classical R-matrix theory for bi-Hamiltonian field systems. J. Phys. A Math. Theory 2009, 42, 404002. [Google Scholar] [CrossRef]
- Auslander, L. Simply transitive groups of affine motions. Am. Math. J. 1977, 99, 215–222. [Google Scholar] [CrossRef]
- Osborn, J.M. Simple Novikov algebras with an idempotent. Commun. Algebra 1992, 20, 2729–2753. [Google Scholar]
- Osborn, J.M.; Zelmanov, E. Nonassociative algebras related to Hamiltonian operarors in the formal calculus of variations. J. Pure Appl. Algebra 1995, 101, 335–352. [Google Scholar] [CrossRef]
- Xu, X. On simple Novikov algebras and their irreducible modules Novikov algebras. J. Algebra 1996, 185, 905–934. [Google Scholar] [CrossRef]
- Burde, D.; Dekimpe, K. Novikov structures on solvable Lie algebras. J. Geom. Phys. 2006, 56, 1837–1855. [Google Scholar] [CrossRef] [Green Version]
- Burde, D.; Dekimpe, K.; Vercammen, K. Novikov algebras and Novikov structures on Lie algebras. Linear Algebra Appl. 2008, 429, 31–41. [Google Scholar] [CrossRef]
- Burde, D.; de Graaf, W. Classification of Novikov algebras. Appl. Algebra Eng. Commun. Comput. 2013, 24, 1–15. [Google Scholar] [CrossRef]
- Baehr, H.C.; Dimakis, A.; Müller-Hoissen, F. Differential calculi on commutative algebras. J. Phys. A 1995, 28, 31973222. [Google Scholar] [CrossRef]
- Burde, D. Simple left-symmetric algebras with solvable Lie algebras. Manuscripta Math. 1998, 95, 397–411. [Google Scholar]
- Jacobson, N. A note on nonassociative algebras. Duke Math. J. 1937, 3, 544–548. [Google Scholar] [CrossRef]
- Farrand, S.M.; Finston, D.R. On the multiplication ideal of a nonassociative algebra. Arch. Math. 1987, 48, 298–818. [Google Scholar] [CrossRef]
- Finston, D.R. On multiplicative algebras. Trans. Am. Math. Soc. 1986, 293, 807–818. [Google Scholar] [CrossRef]
- Filippov, V.T. On right-symmetric and Novikon nil algebras of bounded index (Russian). Mat. Zametki 2001, 70, 289–295. [Google Scholar]
- Jacobson, N. Lie Algebras; Interscience: New York, NY, USA, 1962. [Google Scholar]
- Jacobson, N. Structure and Representations of Jordan Algebras; American Mathematical Society Colloquium Publications V. 39; AMS: Providence, RI, USA, 1968.
- Zhevlakov, K.A.; Slinko, A.M.; Shestakov, I.P.; Shirshov, A.I. Rings That Are Nearly Associative, Translated From Russian By Harry F. Smoth; Academic Press: New York, NY, USA, 1982; pp. 4729–4738. [Google Scholar]
- Levitzki, J. On problem of A. Kurosh. Bull. Am. Math. Soc. 1946, 50, 1033–1035. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artemovych, O.D.; Balinsky, A.A.; Blackmore, D.; Prykarpatski, A.K. Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky–Novikov Type Symmetry Algebras and Related Hamiltonian Operators. Symmetry 2018, 10, 601. https://doi.org/10.3390/sym10110601
Artemovych OD, Balinsky AA, Blackmore D, Prykarpatski AK. Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky–Novikov Type Symmetry Algebras and Related Hamiltonian Operators. Symmetry. 2018; 10(11):601. https://doi.org/10.3390/sym10110601
Chicago/Turabian StyleArtemovych, Orest D., Alexander A. Balinsky, Denis Blackmore, and Anatolij K. Prykarpatski. 2018. "Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky–Novikov Type Symmetry Algebras and Related Hamiltonian Operators" Symmetry 10, no. 11: 601. https://doi.org/10.3390/sym10110601
APA StyleArtemovych, O. D., Balinsky, A. A., Blackmore, D., & Prykarpatski, A. K. (2018). Reduced Pre-Lie Algebraic Structures, the Weak and Weakly Deformed Balinsky–Novikov Type Symmetry Algebras and Related Hamiltonian Operators. Symmetry, 10(11), 601. https://doi.org/10.3390/sym10110601