Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. Characterization
3.2. Preparation of the Aqueous Extract
3.3. Synthesis of Gold Nanoparticles Using Mallow Leaf Extract
3.4. In-Silico Predictions
3.4.1. Bioactivity Prediction Using Molinspiration
3.4.2. Drug-Likeness Prediction Using Molsoft
3.4.3. ADMET Prediction Using PreADMET
3.5. Biological Tests
3.5.1. Cell Culture
3.5.2. Cytotoxic Activity Assessment Using a Viability Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schultz, S.; Smith, D.R.; Mock, J.J.; Schultz, D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA 2000, 97, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Doty, R.C.; Fernig, D.G.; Levy, R. Nanoscale science: A big step towards the Holy Grail of single molecule biochemistry and molecular biology. Cell. Mol. Life Sci. 2004, 61, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, M.O.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Alric, C.; Taleb, J.; Duc, G.L.; Mandon, C.; Billotey, C.; MeurHerland, A.L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; et al. Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 1, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004, 2, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sawle, B.D.; Salimath, B.; Deshpande, R.; Bedre, M.D.; Prabhakar, B.K.; Venkataraman, A. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci. Technol. Adv. Mater. 2008, 9, 035012. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Marsili, E. A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev. Environ. Sci. Biotechnol. 2010, 9, 199–204. [Google Scholar] [CrossRef]
- Kunoh, T.; Takeda, M.; Matsumoto, S.; Suzuki, I.; Takano, M.; Kunoh, H.; Takada, J. Green Synthesis of Gold Nanoparticles Coupled with Nucleic Acid Oxidation. ACS Sustain. Chem. Eng. 2018, 6, 364–373. [Google Scholar] [CrossRef]
- Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004, 275, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low Dimens. Syst. Nanostruct. 2010, 42, 1417–1424. [Google Scholar] [CrossRef]
- Rao, Y.; Inwati, G.K.; Singh, M. Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Future Sci. 2017, 3, FS0239. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.M.; Girilal, M.; Venkatesan, R.; Kalaichelvan, P.T. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf. B. Biointerfaces 2011, 88, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Gopinath, K.; Venkatesh, K.S.; Ilangovan, R.; Sankaranarayanan, K.; Arumugam, A. Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind. Crops Prod. 2013, 50, 737–742. [Google Scholar] [CrossRef]
- Ganeshkumar, M.; Sathishkumar, M.; Ponrasu, T.; Dinesh, M.G.; Suguna, L. Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf. B Biointerfaces 2013, 106, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.; Ismail, Z.; Sadikun, A.; Ibrahim, P. Bioactive markers based pharmacokientic evaluation of extracts of a traditional medicinal plant, Piper sarmentosum. Evid.-Based Complement. Alternat. Med. 2011, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nahrstedt, A.; Butterweck, V. Lessons learned from herbal medicinal products: The example of St. John’s Wort. J. Nat. Prod. 2010, 73, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Ye, M.; Xiang, C.; Wang, Q.; Liu, C.F.; Miao, W.J.; Guo, D.A. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatogr. A. 2012, 1258, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Esimone, C.O.; Nwafor, S.V.; Okoli, C.O.; Chah, K.F.; Uzuegbu, D.B.; Chibundu, C.; Eche, M.A.; Adikwu, M.U. In vivo evaluation of interaction between aqueous seed extract of Garcinia kola Heckel and ciprofloxacin hydrochloride. Am. J. Ther. 2002, 9, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Gunaratna, P.C.; Kissinger, P.T.; Kissinger, C.B.; Gitzen, J.F. An automated blood sampler for simultaneous sampling of systemic blood and brain microdialysates for drug absorption, distribution, metabolism, and elimination studies. J. Pharmacol. Toxicol. Methods 2004, 49, 57–64. [Google Scholar] [CrossRef]
- Rizki, A.; Wildan, K.M.; Lutfi, C.; Zullies, I.; Ronny, M. Hilda Ismail. Molecular docking and ADME-toxicity studies of potential compounds of medicinal plants grown in Indonesia as an anti-rheumatoid arthritis. AIP Conf. Proc. 2017, 1823, 020033. [Google Scholar] [CrossRef]
- Sasikala, R.P.; Meena, K.S. Molecular docking studies and admet properties of compounds from Physalis Minima L. leaves, root and fruit. Innov. J. Life Sci. 2016, 4, 21–25. [Google Scholar]
- Zeghichi, S.; Kallithraka, S.; Simopoulos, A.P. Nutritional composition of molokhia (Corchorus olitorius) and stamnagathi (Cichorium spinosum). World Rev. Nutr. Diet. 2003, 91, 1–21. [Google Scholar] [PubMed]
- Azuma, K.; Nakayama, M.; Koshioka, M.; Ippoushi, K.; Yamaguchi, Y.; Kohata, K.; Yamauchi, Y.; Ito, H.; Higashio, H. Phenolic Antioxidants from the Leaves of Corchorus olitorius L. J. Agric. Food Chem. 1999, 47, 3963–3966. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J.; Huang, S.-Y.; Wu, M.-Y.; Chen, Y.-C.; Tsang, S.-F.; Chyuan, J.-H.; Hsu, H.-Y. Induction of Apoptosis by Ethanolic Extract of Corchorus olitorius Leaf in Human Hepatocellular Carcinoma (HepG2) Cells via a Mitochondria-Dependent Pathway. Molecules 2012, 17, 9348–9360. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S.; Hiramoto, K.; Fujikawa, T.; Kondo, H.; Konishi, N.; Sudo, S.; Iwashima, M.; Ooi, K. Topical application of Corchorus olitorius leaf extract ameliorates atopic dermatitis in NC/Nga mice. Dermatol. Asp. 2014, 2, 3–10. [Google Scholar] [CrossRef]
- El-Rafie, H.M.; Abd El-Aziz, S.M.; Zahran, M.K. Bioactivities of gold and iron oxide nanoparticles biosynthesized from the edible plant Corchorus olitorius. Der Pharmacia Lettre 2016, 8, 156–164. [Google Scholar]
- Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Jabgunde, A.; Kale, S.; Pardesi, K.; Bellare, J.; Dhavale, D.D.; Chopade, B.A. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012, 7, 483–496. [Google Scholar]
- Dwivedi, A.D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Aspects 2010, 369, 27–33. [Google Scholar] [CrossRef]
- Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tanasy fruit mediated green synthesis of silver and goldnanoparticles. Process Biochem. 2010, 45, 1065–1071. [Google Scholar] [CrossRef]
- Das, S.; Roy, P.; Mondal, S.; Bera, T.; Mukherjee, A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type of visceral leishmaniasis. Colloids Surf. B Biointerfaces 2013, 107, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Rahman, A.U.; Choudhary, M.I.; Thomsen, W.J. Bioassay Technique for Drug Development; Harwood Academic Publishers: Reading, UK, 2001. [Google Scholar]
- Ma, X.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharm. Sin. 2005, 26, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Mannhold, R. Molecular Drug Properties: Measurement and Prediction; Wiley-VHC Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; p. 30. [Google Scholar]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a Quantitative Structure-Activity Relationship (QSAR) with the abraham descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.J.; Zhang, W.; Xia, K.; Qiao, X.B.; Xu, X.J. ADME Evaluation in drug discovery. 5. correlation of caco-2 permeation with simple molecular properties. J. Chem. Inf. Comput. Sci. 2004, 44, 1585–1600. [Google Scholar] [CrossRef] [PubMed]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, R. MDCK (Madin-Darby Canine Kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Bruce, N.A.; Gurney, E.G.; James, A.M.; Bartsch, H. Carcinogens as Frameshift Mutagens: Metabolites and Derivatives of 2-acetylaminofluorene and other Aromatic Amine Carcinogens. PNAS 1973, 69, 3128–3213. [Google Scholar]
Compound Name | GPCR Ligand | Ion Channel Modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease Inhibitor | Enzyme Inhibitor |
---|---|---|---|---|---|---|
Chlorogenic acid | 0.29 | 0.14 | 0 | 0.74 | 0.27 | 0.62 |
Quercetin-3-galactoside | 0.06 | −0.04 | 0.13 | 0.20 | −0.06 | 0.42 |
3,5-Dicaffeoylquinic acid | 0.18 | 0.03 | −0.02 | 0.46 | 0.13 | 0.37 |
Quercetin-3-glucoside | 0.07 | −0.11 | 0.08 | 0.01 | −0.07 | 0.47 |
Quercetin-3-(6-malonylglucoside) | −0.62 | −1.50 | −1.03 | −0.98 | −0.40 | −0.66 |
Compound Name | BBB a | PPB b | HIA c | Caco-2 d | MDCK e | Drug-Likeness Scores |
---|---|---|---|---|---|---|
Chlorogenic acid | 0.034 | 41.96 | 20.43 | 18.72 | 4.51 | 1.29 |
Quercetin-3-galactoside | 0.032 | 59.16 | 11.78 | 9.44 | 2.49 | 0.89 |
3,5-Dicaffeoylquinic acid | 0.035 | 86.06 | 23.12 | 19.32 | 0.04 | 1.05 |
Quercetin-3-glucoside | 0.032 | 58.16 | 11.78 | 4.49 | 2.21 | 0.91 |
Quercetin-3-(6-malonylglucoside) | 0.047 | 35.48 | 0.39 | 6.70 | 0.06 | 0.70 |
Compound Name | Ames Test Mutagenicity | Mouse Carcinogenicity | Rat Carcinogenicity |
---|---|---|---|
Chlorogenic acid | Mutagenic | Positive | Negative |
Quercetin-3-galactoside | Non-Mutagenic | Negative | Negative |
3,5-Dicaffeoylquinic acid | Mutagenic | Positive | Positive |
Quercetin-3-glucoside | Non-Mutagenic | Negative | Negative |
Quercetin-3-(6-malonylglucoside) | Mutagenic | Positive | Negative |
Sample Conc. (μg/mL) | HCT-116 Viability % | HepG-2 Viability % | MCF-7 Viability % | |||
---|---|---|---|---|---|---|
Stand. | Sample | Stand. | Sample | Stand. | Sample | |
50 | 12.16 | 25.61 | 15.38 | 24.07 | 7.82 | 17.80 |
25 | 15.54 | 39.92 | 27.35 | 40.59 | 15.18 | 31.02 |
12.5 | 18.92 | 53.06 | 43.59 | 51.67 | 29.26 | 41.22 |
6.25 | 39.86 | 72.34 | 53.85 | 61.99 | 42.35 | 73.43 |
3.125 | 47.30 | 87.11 | 69.23 | 77.20 | 56.54 | 85.64 |
1.56 | 58.11 | 97.01 | 76.82 | 89.91 | 67.24 | 96.51 |
0 | 100 | 100 | 100 | 100 | 100 | 100 |
Sample Conc. (μg/mL) | HCT-116 Viability % | HepG-2 Viability % | MCF-7 Viability % | |||
---|---|---|---|---|---|---|
Stand. | Sample | Stand. | Sample | Stand. | Sample | |
50 | 12.16 | 22.96 | 15.38 | 20.13 | 7.82 | 15.4 |
25 | 15.54 | 36.73 | 27.35 | 36.74 | 15.18 | 28.17 |
12.5 | 18.92 | 49.34 | 43.59 | 47.91 | 29.26 | 38.98 |
6.25 | 39.86 | 68.22 | 53.85 | 58.14 | 42.35 | 69.73 |
3.125 | 47.30 | 83.74 | 69.23 | 73.06 | 56.54 | 81.97 |
1.56 | 58.11 | 94.85 | 76.82 | 85.82 | 67.24 | 90.29 |
0 | 100 | 100 | 100 | 100 | 100 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, E.H.; Saqer, A.M.A.; Assirey, E.; Naqvi, A.; Okasha, R.M. Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. Int. J. Mol. Sci. 2018, 19, 2612. https://doi.org/10.3390/ijms19092612
Ismail EH, Saqer AMA, Assirey E, Naqvi A, Okasha RM. Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. International Journal of Molecular Sciences. 2018; 19(9):2612. https://doi.org/10.3390/ijms19092612
Chicago/Turabian StyleIsmail, Eman H., Aliyah M. A. Saqer, Eman Assirey, Arshi Naqvi, and Rawda M. Okasha. 2018. "Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells" International Journal of Molecular Sciences 19, no. 9: 2612. https://doi.org/10.3390/ijms19092612
APA StyleIsmail, E. H., Saqer, A. M. A., Assirey, E., Naqvi, A., & Okasha, R. M. (2018). Successful Green Synthesis of Gold Nanoparticles using a Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer Cells. International Journal of Molecular Sciences, 19(9), 2612. https://doi.org/10.3390/ijms19092612