A Plasma Thruster Based on Screw-Pinch Physics
Abstract
:1. Introduction
2. The Screw-Pinch Configuration with Non-Uniform Axial Magnetic Field
3. Plasma Thruster Design
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iannarelli, D.; Napoli, F.; Alladio, F.; Apruzzese, G.; Bombarda, F.; Buratti, P.; Delfini, J.; Ninno, A.D.; Filippi, F.; Fiorucci, D.; et al. A new indirect measurement method of the electron temperature for the Proto-sphera’s pinch plasma. J. Instrum. 2023, 18, C04017. [Google Scholar] [CrossRef]
- Freidberg, J.P. Ideal MHD; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Reece Roth, J. Industrial Plasma Engineering; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Alladio, F.; Costa, P.; Mancuso, A.; Micozzi, P.; Papastergiou, S.; Rogier, F. Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH). Nucl. Fusion 2006, 46, S613. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, H.; Ren, J.; Li, M.; Cao, J. Magnetic mirror effect in a cylindrical Hall thruster. J. Phys. D Appl. Phys. 2017, 51, 035201. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Xue, S.; Li, Y.; Cai, G. Influence of the upstream axial magnetic mirror field on the plume characteristics in the full cylindrical Hall thruster. Acta Astronaut. 2022, 196, 186–193. [Google Scholar] [CrossRef]
- Tang, R.; Gallimore, A.D.; Kammash, T. Design of an ECR gasdynamic mirror thruster. In Proceedings of the 31st International Electric Propulsion Conference (IEPC), Ann Arbor, MI, USA, 20–24 September 2009. [Google Scholar]
- BenDaniel, D.J.; Allis, W.P. Scattering loss from magnetic mirror systems—I. J. Nucl. Energy Part C Plasma Phys. Accel. Thermonucl. Res. 1962, 4, 31. [Google Scholar] [CrossRef]
- Iannarelli, D.; Ingenito, A.; Napoli, F.; Cichocki, F.; Castaldo, C.; Ninno, A.D.; Mannori, S.; Cardinali, A.; Taccogna, F. Full Helicon thruster modeling. arXiv 2024, arXiv:2407.21457. [Google Scholar]
- Wesson, J.; Campbell, D.J. Tokamaks; Oxford University Press: Oxford, UK, 2011; Volume 149. [Google Scholar]
- Leontovich, M.; Institut Atomnoi Energii (Akademiia Nauk SSSR). Plasma Physics and the Problem of Controlled Thermonuclear Reactions; Number v. 4; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Post, R.F. The magnetic mirror approach to fusion. Nucl. Fusion 1987, 27, 1579. [Google Scholar] [CrossRef]
- Richardson, O.W. Thermionic Phenomena and the Laws Which Govern Them. Nobel Lecture, December 1929. Available online: https://www.nobelprize.org/uploads/2018/06/richardson-lecture.pdf (accessed on 9 April 2025).
- Stangeby, P.C. The Plasma Boundary of Magnetic Fusion Devices; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Mazouffre, S. Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol. 2016, 25, 033002. [Google Scholar] [CrossRef]
- Rossetti, P.; Andrenucci, M. HT-100 development status. In Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, MI, USA, 20–24 September 2009. [Google Scholar]
Input | Value | Units |
---|---|---|
1.00 × | particles/m3 | |
1.59 | eV | |
I | 50.00 | A |
0.01, 0.03, 0.05, 0.08 | T | |
0.10 | T | |
1.00 | - | |
10.00 | - | |
2.00, 5.00 | - |
Species | ||||
---|---|---|---|---|
(N/kW) | 0.0169 | 0.0217 | 0.0603 | 0.096 |
(kW) | 1.241 | 1.929 | 1.297 | 1.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannarelli, D.; Napoli, F.; De Ninno, A.; Ingenito, A.; Mannori, S. A Plasma Thruster Based on Screw-Pinch Physics. AppliedPhys 2025, 1, 3. https://doi.org/10.3390/appliedphys1010003
Iannarelli D, Napoli F, De Ninno A, Ingenito A, Mannori S. A Plasma Thruster Based on Screw-Pinch Physics. AppliedPhys. 2025; 1(1):3. https://doi.org/10.3390/appliedphys1010003
Chicago/Turabian StyleIannarelli, Daniele, Francesco Napoli, Antonella De Ninno, Antonella Ingenito, and Simone Mannori. 2025. "A Plasma Thruster Based on Screw-Pinch Physics" AppliedPhys 1, no. 1: 3. https://doi.org/10.3390/appliedphys1010003
APA StyleIannarelli, D., Napoli, F., De Ninno, A., Ingenito, A., & Mannori, S. (2025). A Plasma Thruster Based on Screw-Pinch Physics. AppliedPhys, 1(1), 3. https://doi.org/10.3390/appliedphys1010003