Quantum Control of Exciton Motion in Electric Field
Abstract
:1. Introduction
2. Model and Equations of Motion
2.1. Evolution of Dipole Moment
2.2. Classical Equation of Motion
2.3. Electric Field of the Gate
3. Control of Classical Motion
3.1. Search Problem
3.2. Search Method
- Step 1: We begin with selecting a relatively larger initial step size and employing direct calculation. For each point within the cube, the corresponding charge density varies accordingly. Using the Runge–Kutta method, we numerically solve the coupled Equations (5), (6), (9), and (12). This process yields the exciton’s final position and final velocity at . Each point that satisfied the conditions in Equation (16) is labeled as valid, others are labeled as invalid.
- Step 2: Each valid point obtained from Step 1 is now treated as an initial point to construct a local neighborhood. Toward an initial point , we define its neighborhood by independently adjusting each coordinate with a reduced step size :
- Step 3: Applying the same numerical method used in Step 1, we evaluate the points in each neighborhood to determine which point remains valid under the reduced step size . By focusing on neighborhoods around previously identified valid points, we concentrate computational effort on the regions with the potential to find the valid points.
- Step 4: Valid points from Step 3 serve as updated initial points. The step size is further reduced to , and the same process is repeated along all directions. By iteratively narrowing the step size and concentrating on neighborhoods around valid points, we achieve a more precise and efficient identification of additional valid parameter combinations.
3.3. Search Results
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
QW | quantum well(s) |
References
- Knox, R. Theory of Excitons; Academic Press: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. [Google Scholar] [CrossRef]
- Lozovik, Y.E.; Ovchinnikov, I.; Volkov, S.Y.; Butov, L.; Chemla, D. Quasi-two-dimensional excitons in finite magnetic fields. Phys. Rev. B 2002, 65, 235304. [Google Scholar] [CrossRef]
- Yang, X.; Guo, S.; Chan, F.; Wong, K.; Ching, W. Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 1991, 43, 1186. [Google Scholar] [CrossRef] [PubMed]
- Remeika, M.; Fogler, M.M.; Butov, L.V.; Hanson, M.; Gossard, A.C. Two-dimensional electrostatic lattices for indirect excitons. Appl. Phys. Lett. 2012, 100, 061103. [Google Scholar] [CrossRef]
- High, A.A.; Leonard, J.R.; Hammack, A.T.; Fogler, M.M.; Butov, L.V.; Kavokin, A.V.; Campman, K.L.; Gossard, A.C. Spontaneous coherence in a cold exciton gas. Nature 2012, 483, 584. [Google Scholar] [CrossRef] [PubMed]
- Dorow, C.; Leonard, J.; Fogler, M.; Butov, L.; West, K.; Pfeiffer, L. Split-gate device for indirect excitons. Appl. Phys. Lett. 2018, 112, 183501. [Google Scholar] [CrossRef]
- High, A.; Hammack, A.; Butov, L.; Hanson, M.; Gossard, A. Exciton optoelectronic transistor. Opt. Lett. 2007, 32, 2466. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, Y.; High, A.; Butov, L. Control of excitons by laterally modulated electrode density. Appl. Phys. Lett. 2010, 97, 201106. [Google Scholar] [CrossRef]
- Ross, J.S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H.; Taniguchi, T.; Watanabe, K.; Yan, J.; Mandrus, D.; Cobden, D.; et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638. [Google Scholar] [CrossRef] [PubMed]
- Gregg, B.A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688. [Google Scholar] [CrossRef]
- Pandey, A.; Min, J.; Reddeppa, M.; Malhotra, Y.; Xiao, Y.; Wu, Y.; Sun, K.; Mi, Z. An ultrahigh efficiency excitonic micro-LED. Nano Lett. 2023, 23, 1680. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sherman, E.Y.; Ruschhaupt, A. Quantum control of classical motion: Piston dynamics in a Rabi-coupled Bose-Einstein condensate. New J. Phys. 2024, 26, 053031. [Google Scholar] [CrossRef]
- Cohen, T.C.; Diu, B.; Laloë, F. Quantum Mechanics; Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Beau, M.; Barbier, M.; Martellini, R.; Martellini, L. Time-of-arrival distributions for continuous quantum systems and application to quantum backflow. Phys. Rev. A 2024, 110, 052217. [Google Scholar] [CrossRef]
- Palmero, M.; Torrontegui, E.; Muga, J.G.; Modugno, M. Detecting quantum backflow by the density of a Bose-Einstein condensate. Phys. Rev. A 2013, 87, 053618. [Google Scholar] [CrossRef]
- Barbier, M.; Goussev, A. On the experiment-friendly formulation of quantum backflow. Quantum 2021, 5, 536. [Google Scholar] [CrossRef]
- Sadreev, A.F.; Sherman, E.Y. Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire. Phys. Rev. B 2013, 88, 115302. [Google Scholar] [CrossRef]
- Ungar, F.; Tamborenea, P.I.; Axt, V.M. Spin dynamics of hot excitons in diluted magnetic semiconductors with spin-orbit interaction. Phys. Rev. B 2019, 100, 045306. [Google Scholar] [CrossRef]
- Ji, Y.; Zhong, Q.; Yang, X.; Li, L.; Li, Q.; Xu, H.; Chen, P.; Li, S.; Yan, H.; Xiao, Y.; et al. Surface engineering enables efficient AgBiS2 quantum dot solar cells. Nano Lett. 2024, 24, 10418. [Google Scholar] [CrossRef] [PubMed]
Original Search Method | Directly Calculating | Efficiency Improvement | |
---|---|---|---|
0.32 | 32,768 (18) | 32,768 (18) | 0% |
0.16 | 327 (105) | (131) | 87.27% |
0.08 | 1591 (799) | > | ≈98.27% |
Modified Search Method | Directly Calculating | Efficiency Improvement | |
---|---|---|---|
0.32 | 32,768 (18) | 32,768 (18) | 0% |
0.16 | 903 (129) | (131) | 87.05% |
0.08 | 4221 (984) | > | ≈98.11% |
Modified Search Method | Directly Calculating | Efficiency Improvement | |
---|---|---|---|
0.32 | 32,768 (111) | 32,768 (111) | 0% |
0.16 | 3471 (977) | (985) | 86.06% |
0.08 | 18,618 (8178) | > | ≈97.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Casanova, J.; Chen, X.; Sherman, E.Y. Quantum Control of Exciton Motion in Electric Field. AppliedPhys 2025, 1, 2. https://doi.org/10.3390/appliedphys1010002
Li Y, Casanova J, Chen X, Sherman EY. Quantum Control of Exciton Motion in Electric Field. AppliedPhys. 2025; 1(1):2. https://doi.org/10.3390/appliedphys1010002
Chicago/Turabian StyleLi, Yingjia, Jorge Casanova, Xi Chen, and Evgeny Ya. Sherman. 2025. "Quantum Control of Exciton Motion in Electric Field" AppliedPhys 1, no. 1: 2. https://doi.org/10.3390/appliedphys1010002
APA StyleLi, Y., Casanova, J., Chen, X., & Sherman, E. Y. (2025). Quantum Control of Exciton Motion in Electric Field. AppliedPhys, 1(1), 2. https://doi.org/10.3390/appliedphys1010002