Previous Issue
Volume 1, March
 
 

Adhesives, Volume 1, Issue 2 (June 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 1882 KiB  
Article
Quantifying Adhesive Strength of Tapes Through Precision TAA Method
by Emmanuel Georgiou, Dirk Drees, Michel De Bilde, Lais Lopes and Angelos Koutsomichalis
Adhesives 2025, 1(2), 7; https://doi.org/10.3390/adhesives1020007 - 7 Apr 2025
Viewed by 239
Abstract
Tapes are widely utilized across various industries, offering versatile solutions for bonding, sealing, and packaging applications. Their ease of use, strength, and adaptability make them essential in manufacturing, construction, and consumer markets. However, the effectiveness of tapes depends heavily on their adhesive performance, [...] Read more.
Tapes are widely utilized across various industries, offering versatile solutions for bonding, sealing, and packaging applications. Their ease of use, strength, and adaptability make them essential in manufacturing, construction, and consumer markets. However, the effectiveness of tapes depends heavily on their adhesive performance, which is influenced by factors such as the adhesive layer composition, material compatibility, environmental conditions, and contact parameters. Quantifying adhesive performance through standardized testing is critical to ensuring reliability, optimizing functionality, and meeting industry-specific requirements. Traditional methods, such as peel and shear tests, are commonly used to evaluate the adhesive and shear strength of tapes. However, these methods typically operate at macro-load scales and often use complex sample geometries and significant material quantities. Recently, precision indentation–retraction testing has emerged as a promising technique for accurately quantifying the adhesion and cohesion forces of viscoelastic fluids. This study adapts this method to evaluate and compare the adhesive strength of various commercially available adhesive tapes. The adhesion force and separation energy of five commercial tapes, namely paper masking tape, high-temperature tape, insulation tape, duct tape, box wrapping tape, and double-sided tape, were measured using a Falex Tackiness Adhesion Analyser (TAA) tester, under controlled conditions (approach speed: 0.01 mm/s, retraction speed: 0.1 mm/s, and load: 50 mN). The results indicated that the adhesion force and separation energy varied significantly among the tapes, whereas a different pattern in the indentation–retraction curves was obtained for these tapes. In addition, the significance of difference among the adhesive properties of the tapes was assessed with the use of analysis of variance (ANOVA). This innovative approach not only enhances the precision of adhesive strength measurements but also provides valuable insights into adhesive layer properties, offering a novel tool for research, development, and quality control in tape production. Full article
Show Figures

Figure 1

10 pages, 4205 KiB  
Case Report
Endocrown Restoration for an Endodontically Treated Molar: A Step-by-Step Clinical Guide with a 5-Year Follow-Up
by Dimokritos Papalexopoulos, Ashot Torchyan, Eleftheria Pani and Theodora-Kalliopi Samartzi
Adhesives 2025, 1(2), 6; https://doi.org/10.3390/adhesives1020006 - 31 Mar 2025
Viewed by 427
Abstract
The classical approach for the preparation of an endodontically treated molar with a post and core involves widening the anatomically complex system of canals, which may be narrow or curved with variable angulation. The aforementioned along with the fact that restorative dentistry stands [...] Read more.
The classical approach for the preparation of an endodontically treated molar with a post and core involves widening the anatomically complex system of canals, which may be narrow or curved with variable angulation. The aforementioned along with the fact that restorative dentistry stands against the wastage of tooth tissue make endocrowns an appealing alternative. Bindl and Mörmann first described an all-ceramic crown anchored to the internal portion of the pulp chamber and on the cavity margins, thus obtaining macromechanical retention provided by the axial opposing pulpal walls and microretention attained with the use of adhesive cementation. The purpose of this report is to describe the protocol for the treatment plan selection, preparation, impression, and adhesive cementation of an endocrown with a follow-up of 5 years. A 56-year-old male patient presented to the Postgraduate Clinic of Prosthodontics seeking rehabilitation for tooth No. #36. A clinical examination revealed multiple immediate composite resin restorations with unacceptable morphology and adaptation to the remaining tooth as well as a lack of a contact point but, rather, a large, concave contact area facilitating food entrapment. Since the tooth was endodontically treated, the proposed treatment plan included the fabrication of an all-ceramic endocrown. The steps of preparation, attribution of the correct shape, impression, and adhesive luting under rubber dam isolation are thoroughly described. The final functional and aesthetic result, patient’s satisfaction, and the 5-year follow-up render restorations such as endocrowns, which draw their retention from adhesive luting, a viable alternative to conventional approaches. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop