Supporting ASD Diagnosis with EEG, ML and Swarm Intelligence: Early Detection of Autism Spectrum Disorder Based on Electroencephalography Analysis by Machine Learning and Swarm Intelligence
Abstract
1. Introduction
1.1. Motivation and Problem Characterization
1.2. Related Works
2. Materials and Methods
2.1. Database
2.2. Preprocessing
2.3. Classification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.; Jones, R.M.; Pickles, A. Autism spectrum disorder. Nat. Rev. Dis. Prim. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Vismara, L.A.; Rogers, S.J. Behavioral treatments in autism spectrum disorder: What do we know? Annu. Rev. Clin. Psychol. 2010, 6, 447–468. [Google Scholar] [CrossRef] [PubMed]
- Kulage, K.M.; Smaldone, A.M.; Cohn, E.G. How will DSM-5 affect autism diagnosis? A systematic literature review and meta-analysis. J. Autism Dev. Disord. 2014, 44, 1918–1932. [Google Scholar] [CrossRef]
- Volkmar, F.R.; Reichow, B. Autism in DSM-5: Progress and challenges. Mol. Autism 2013, 4, 1–6. [Google Scholar] [CrossRef]
- Kulage, K.M.; Goldberg, J.; Usseglio, J.; Romero, D.; Bain, J.M.; Smaldone, A.M. How has DSM-5 affected autism diagnosis? A 5-year follow-up systematic literature review and meta-analysis. J. Autism Dev. Disord. 2020, 50, 2102–2127. [Google Scholar] [CrossRef]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef]
- Dias, C.C.V.; Maciel, S.C.; Silva, J.V.C.d.; Menezes, T.d.S.B.d. Representações sociais sobre o autismo elaboradas por estudantes universitários. Psico-USF 2022, 26, 631–643. [Google Scholar] [CrossRef]
- Oliveira, G. Autismo: Diagnóstico e orientação. Parte I-Vigilância, rastreio e orientação nos cuidados primários de saúde. Acta Pediatr. Port. 2009, 40, 278–287. [Google Scholar]
- Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef]
- Khodatars, M.; Shoeibi, A.; Sadeghi, D.; Ghaasemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Zare, A.; Kong, Y.; et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Comput. Biol. Med. 2021, 139, 104949. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kaur, A. A review on analysis of EEG signals. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications, Ghaziabad, India, 19–20 March 2015; pp. 957–960. [Google Scholar]
- Subha, D.P.; Joseph, P.K.; Acharya, U.R.; Lim, C.M. EEG signal analysis: A survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.C.; Eng, M.; Biomédica, E. Eeg e potenciais evocados–uma introduçao. Contronic Sist. Automát. Ltda 2011, 2011, 1–13. [Google Scholar]
- Cantarelli, T.L.; Júnior, J.; Júnior, S. Fundamentos da medição do eeg: Uma introdução. Semin. ELETRONICA E AUTOMAÇÃO, Ponta Grossa. 2016. Available online: https://www.researchgate.net/profile/Jose-Mendes-Junior-2/publication/308400572_FUNDAMENTOS_DA_MEDICAO_DO_EEG_UMA_INTRODUCAO/links/57e2c45d08aecd0198dd808b/FUNDAMENTOS-DA-MEDICAO-DO-EEG-UMA-INTRODUCAO.pdf (accessed on 26 April 2025).
- Li, B.; Cheng, T.; Guo, Z. A review of EEG acquisition, processing and application. J. Phys. Conf. Ser. 2021, 1907, 012045. [Google Scholar] [CrossRef]
- Oro, A.B.; Navarro-Calvillo, M.; Esmer, C. Autistic Behavior Checklist (ABC) and its applications. In Comprehensive Guide to Autism; Springer: New York, NY, USA, 2014; pp. 2787–2798. [Google Scholar]
- Pagnozzi, A.M.; Conti, E.; Calderoni, S.; Fripp, J.; Rose, S.E. A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. Int. J. Dev. Neurosci. 2018, 71, 68–82. [Google Scholar] [CrossRef]
- De Bruijne, M. Machine learning approaches in medical image analysis: From detection to diagnosis. Med. Image Anal. 2016, 33, 94–97. [Google Scholar] [CrossRef]
- Tanveer, M.; Richhariya, B.; Khan, R.U.; Rashid, A.H.; Khanna, P.; Prasad, M.; Lin, C. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–35. [Google Scholar] [CrossRef]
- Hyde, K.K.; Novack, M.N.; LaHaye, N.; Parlett-Pelleriti, C.; Anden, R.; Dixon, D.R.; Linstead, E. Applications of supervised machine learning in autism spectrum disorder research: A review. Rev. J. Autism Dev. Disord. 2019, 6, 128–146. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The heritability of autism spectrum disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef]
- Angulo-Ruiz, B.Y.; Ruiz-Martínez, F.J.; Rodríguez-Martínez, E.I.; Ionescu, A.; Saldaña, D.; Gómez, C.M. Linear and non-linear analyses of EEG in a group of ASD children during resting state condition. Brain Topogr. 2023, 36, 736–749. [Google Scholar] [CrossRef]
- Tang, T.; Li, C.; Zhang, S.; Chen, Z.; Yang, L.; Mu, Y.; Chen, J.; Xu, P.; Gao, D.; Li, F.; et al. A hybrid graph network model for ASD diagnosis based on resting-state EEG signals. Brain Res. Bull. 2024, 206, 110826. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, Y.; Wan, L.; Sun, C.; Liu, X.; Zhang, J.; Liang, Y.; Liu, G.; Yan, H.; Li, R.; et al. Divergent electroencephalogram resting-state functional network alterations in subgroups of autism spectrum disorder: A symptom-based clustering analysis. Cereb. Cortex 2024, 34, bhad413. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, Z.; Li, Y.; Liu, Y.; Li, Y.; Wang, Y. Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model. Comput. Methods Programs Biomed. 2024, 250, 108196. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Han, X.; Song, J.; Niu, Z.; Li, X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput. Biol. Med. 2020, 120, 103722. [Google Scholar] [CrossRef]
- Hossain, M.D.; Kabir, M.A.; Anwar, A.; Islam, M.Z. Detecting autism spectrum disorder using machine learning techniques: An experimental analysis on toddler, child, adolescent and adult datasets. Health Inf. Sci. Syst. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Chung, H.; Wilkinson, C.; Said, A.; Nelson, C. Evaluating early EEG correlates of restricted and repetitive behaviors for toddlers with or without autism. Res. Sq. 2024, 2024, rs-3. [Google Scholar] [CrossRef]
- Ali, N.A.; Syafeeza, A.; Jaafar, A.; Alif, M.; Ali, N. Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm. IAES Int. J. Artif. Intell. 2020, 9, 91–99. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Ramamurthy, K.; Choudhury, K.K.; Won, D.; Manoharan, T.A. Performance analysis of deep learning models for detection of autism spectrum disorder from EEG signals. Trait. Signal 2021, 38, 853–863. [Google Scholar] [CrossRef]
- Baygin, M.; Dogan, S.; Tuncer, T.; Barua, P.D.; Faust, O.; Arunkumar, N.; Abdulhay, E.W.; Palmer, E.E.; Acharya, U.R. Automated ASD detection using hybrid deep lightweight features extracted from EEG signals. Comput. Biol. Med. 2021, 134, 104548. [Google Scholar] [CrossRef]
- Oh, S.L.; Jahmunah, V.; Arunkumar, N.; Abdulhay, E.W.; Gururajan, R.; Adib, N.; Ciaccio, E.J.; Cheong, K.H.; Acharya, U.R. A novel automated autism spectrum disorder detection system. Complex Intell. Syst. 2021, 7, 2399–2413. [Google Scholar] [CrossRef]
- Jayawardana, Y.; Jaime, M.; Jayarathna, S. Analysis of Temporal Relationships between ASD and Brain Activity through EEG and Machine Learning. In Proceedings of the 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), Los Angeles, CA, USA, 30 July–1 August 2019; pp. 151–158. [Google Scholar] [CrossRef]
- Alotaibi, N.; Maharatna, K. Classification of autism spectrum disorder from EEG-based functional brain connectivity analysis. Neural Comput. 2021, 33, 1914–1941. [Google Scholar] [CrossRef] [PubMed]
- Abdolzadegan, D.; Moattar, M.H.; Ghoshuni, M. A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biocybern. Biomed. Eng. 2020, 40, 482–493. [Google Scholar] [CrossRef]
- Dede, A.J.O.; Xiao, W.; Vaci, N.; Cohen, M.X.; Milne, E. Lack of univariate, clinically-relevant biomarkers of autism in resting state EEG: A study of 776 participants. MedRxiv 2023. [Google Scholar] [CrossRef]
- Dickinson, A.; Jeste, S.; Milne, E. Electrophysiological signatures of brain aging in autism spectrum disorder. Cortex 2022, 148, 139–151. [Google Scholar] [CrossRef]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Kemp, B.; Olivan, J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin. Neurophysiol. 2003, 114, 1755–1761. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Oliver, E.; Ruiz, J.; She, S.; Wang, J. The Software Architecture of the GIMP 2006. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51e9312a8c6376dd0b87e102422acff4c7209d19 (accessed on 5 June 2025).
- Maor, E. The Pythagorean Theorem: A 4,000-Year History. In Statistics and Computing; Princeton University Press: Princeton, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 10.1.0 Manual: A High-Level Interactive Language for Numerical Computations; 2025. Available online: https://docs.octave.org/latest/ (accessed on 5 June 2025).
- de Santana, M.A.; Fonseca, F.S.; Torcate, A.S.; dos Santos, W.P. Emotion Recognition from Multimodal Data: A machine learning approach combining classical and hybrid deep architectures. Res. Biomed. Eng. 2023, 39, 613–639. [Google Scholar] [CrossRef]
- Espinola, C.W.; Gomes, J.C.; Pereira, J.M.S.; Dos Santos, W.P. Detection of major depressive disorder using vocal acoustic analysis and machine learning—An exploratory study. Res. Biomed. Eng. 2021, 37, 53–64. [Google Scholar] [CrossRef]
- Wanderley Espinola, C.; Gomes, J.C.; Mônica Silva Pereira, J.; dos Santos, W.P. Detection of major depressive disorder, bipolar disorder, schizophrenia and generalized anxiety disorder using vocal acoustic analysis and machine learning: An exploratory study. Res. Biomed. Eng. 2022, 38, 813–829. [Google Scholar] [CrossRef]
- Espinola, C.W.; Gomes, J.C.; Pereira, J.M.S.; dos Santos, W.P. Vocal acoustic analysis and machine learning for the identification of schizophrenia. Res. Biomed. Eng. 2021, 37, 33–46. [Google Scholar] [CrossRef]
- Jiang, J.J.; Wei, W.X.; Shao, W.L.; Liang, Y.F.; Qu, Y.Y. Research on large-scale bi-level particle swarm optimization algorithm. IEEE Access 2021, 9, 56364–56375. [Google Scholar] [CrossRef]
- Santana, M.A.d.; Pereira, J.M.S.; Silva, F.L.d.; Lima, N.M.d.; Sousa, F.N.d.; Arruda, G.M.S.d.; Lima, R.d.C.F.d.; Silva, W.W.A.d.; Santos, W.P.d. Breast cancer diagnosis based on mammary thermography and extreme learning machines. Res. Biomed. Eng. 2018, 34, 45–53. [Google Scholar] [CrossRef]
- Barbosa, V.A.d.F.; Gomes, J.C.; de Santana, M.A.; Albuquerque, J.E.d.A.; de Souza, R.G.; de Souza, R.E.; dos Santos, W.P. Heg.IA: An intelligent system to support diagnosis of Covid-19 based on blood tests. Res. Biomed. Eng. 2021, 2021, 1–18. [Google Scholar]
- Gomes, J.C.; Barbosa, V.A.d.F.; Santana, M.A.; Bandeira, J.; Valença, M.J.S.; de Souza, R.E.; Ismael, A.M.; dos Santos, W.P. IKONOS: An intelligent tool to support diagnosis of COVID-19 by texture analysis of X-ray images. Res. Biomed. Eng. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Oliveira, A.P.S.d.; De Santana, M.A.; Andrade, M.K.S.; Gomes, J.C.; Rodrigues, M.C.; dos Santos, W.P. Early diagnosis of Parkinson’s disease using EEG, machine learning and partial directed coherence. Res. Biomed. Eng. 2020, 36, 311–331. [Google Scholar] [CrossRef]
- Gomes, J.C.; Masood, A.I.; Silva, L.H.d.S.; da Cruz Ferreira, J.R.B.; Freire Junior, A.A.; Rocha, A.L.d.S.; de Oliveira, L.C.P.; da Silva, N.R.C.; Fernandes, B.J.T.; Dos Santos, W.P. Covid-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences. Sci. Rep. 2021, 11, 11545. [Google Scholar] [CrossRef]
- Rodrigues, A.L.; de Santana, M.A.; Azevedo, W.W.; Bezerra, R.S.; Barbosa, V.A.; de Lima, R.C.; dos Santos, W.P. Identification of mammary lesions in thermographic images: Feature selection study using genetic algorithms and particle swarm optimization. Res. Biomed. Eng. 2019, 35, 213–222. [Google Scholar] [CrossRef]
- Barbosa, V.A.d.F.; Gomes, J.C.; de Santana, M.A.; de Lima, C.L.; Calado, R.B.; Bertoldo Junior, C.R.; Albuquerque, J.E.d.A.; de Souza, R.G.; de Araújo, R.J.E.; Mattos Junior, L.A.R.; et al. Covid-19 rapid test by combining a random forest-based web system and blood tests. J. Biomol. Struct. Dyn. 2022, 40, 11948–11967. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, L.; Liu, G.; Si, S. Design and Development of the Bayesian Network Platform Based on B/S Structure. In Proceedings of the 2011 Fourth International Symposium on Knowledge Acquisition and Modeling, Sanya, China, 8–9 October 2011; pp. 65–68. [Google Scholar]
- Dimitoglou, G.; Adams, J.A.; Jim, C.M. Comparison of the C4. 5 and a Naïve Bayes classifier for the prediction of lung cancer survivability. arXiv 2012, arXiv:1206.1121. [Google Scholar]
- Niranjan, A.; Nutan, D.; Nitish, A.; Deepa-Shenoy, P.; Venugopal, K.; ERCR, T. Ensemble of random committee and random tree for efficient anomaly classification using voting. In Proceedings of the International Conference for Convergence in Technology, Pune, India, 6–8 April 2018; pp. 6–8. [Google Scholar]
- Yuan, D.; Huang, J.; Yang, X.; Cui, J. Improved random forest classification approach based on hybrid clustering selection. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 1559–1563. [Google Scholar]
- Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Eibe, F.; Hall, M.A.; Witten, I.H.; Pal, J. The WEKA workbench. In Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kauffmann: Cambridge, UK, 2016; Volume 4. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM Sigkdd Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
Classifier | Accuracy (%) | Kappa Statistic | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Bayes Net | 74.20 ± 2.07 | 0.48 ± 0.04 | 0.76 ± 0.03 | 0.72 ± 0.03 | 0.81 ± 0.02 |
Naive Bayes | 58.58 ± 1.67 | 0.17 ± 0.03 | 0.25 ± 0.03 | 0.92 ± 0.02 | 0.60 ± 0.02 |
Random Tree | 90.04 ± 1.38 | 0.80 ± 0.03 | 0.90 ± 0.02 | 0.90 ± 0.02 | 0.90 ± 0.01 |
Random Forest | |||||
10 trees | 95.66 ± 0.99 | 0.91 ± 0.02 | 0.97 ± 0.01 | 0.94 ± 0.02 | 0.99 ± 0.00 |
100 trees | 98.33 ± 0.59 | 0.97 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 | 1.00 ± 0.00 |
500 trees | 98.54 ± 0.54 | 0.97 ± 0.01 | 0.99 ± 0.01 | 0.98 ± 0.01 | 1.00 ± 0.00 |
SVM - Kernel Polinomial | |||||
Linear | 96.36 ± 0.87 | 0.93 ± 0.02 | 0.96 ± 0.01 | 0.97 ± 0.01 | 0.96 ± 0.01 |
Degree 2 | 97.84 ± 0.69 | 0.96 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 |
Degree 3 | 98.15 ± 0.79 | 0.96 ± 0.02 | 0.98 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 |
SVM - Kernel RBF | |||||
0.5 | 92.99 ± 1.50 | 0.86 ± 0.03 | 0.98 ± 0.01 | 0.88 ± 0.03 | 0.93 ± 0.01 |
0.2 | 98.24 ± 0.59 | 0.96 ± 0.01 | 0.99 ± 0.01 | 0.97 ± 0.01 | 0.98 ± 0.01 |
0.1 | 99.13 ± 0.44 | 0.98 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.00 |
Classifier | Accuracy (%) | Kappa Statistic | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Bayes Net | 74.26 ± 2.09 | 0.49 ± 0.04 | 0.80 ± 0.03 | 0.69 ± 0.03 | 0.82 ± 0.02 |
Naive Bayes | 59.44 ± 1.59 | 0.19 ± 0.03 | 0.27 ± 0.03 | 0.91 ± 0.02 | 0.75 ± 0.02 |
Random Tree | 90.55 ± 1.49 | 0.81 ± 0.03 | 0.91 ± 0.02 | 0.90 ± 0.02 | 0.91 ± 0.01 |
Random Forest | |||||
10 trees | 95.87 ± 0.94 | 0.92 ± 0.02 | 0.98 ± 0.01 | 0.94 ± 0.02 | 0.99 ± 0.00 |
100 trees | 98.21 ± 0.61 | 0.96 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.01 | 1.00 ± 0.00 |
500 trees | 98.37 ± 0.57 | 0.97 ± 0.01 | 0.99 ± 0.01 | 0.98 ± 0.01 | 1.00 ± 0.00 |
SVM - Kernel Polinomial | |||||
Linear | 92.33 ± 1.11 | 0.84 ± 0.02 | 0.91 ± 0.01 | 0.92 ± 0.01 | 0.92 ± 0.01 |
Degree 2 | 98.17 ± 0.58 | 0.96 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 |
Degree 3 | 98.48 ± 0.53 | 0.96 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 |
SVM - Kernel RBF | |||||
0.5 | 98.86 ± 0.51 | 0.97 ± 0.01 | 0.99 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 |
0.2 | 99.23 ± 0.38 | 0.98 ± 0.00 | 0.99 ± 0.00 | 0.99 ± 0.00 | 0.99 ± 0.00 |
0.1 | 98.50 ± 0.55 | 0.97 ± 0.01 | 0.98 ± 0.00 | 0.98 ± 0.00 | 0.98 ± 0.00 |
Classifier | Accuracy (%) | Kappa Statistic | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Bayes Net | 68.51 ± 2.58 | 0.36 ± 0.05 | 0.74 ± 0.03 | 0.62 ± 0.03 | 0.74 ± 0.02 |
Naive Bayes | 55.73 ± 1.50 | 0.11 ± 0.02 | 0.18 ± 0.02 | 0.93 ± 0.01 | 0.62 ± 0.02 |
Random Tree | 87.43 ± 1.47 | 0.74 ± 0.02 | 0.87 ± 0.02 | 0.87 ± 0.02 | 0.87 ± 0.01 |
Random Forest | |||||
10 trees | 91.40 ± 1.23 | 0.82 ± 0.02 | 0.93 ± 0.01 | 0.89 ± 0.01 | 0.97 ± 0.00 |
100 trees | 93.70 ± 1.09 | 0.87 ± 0.02 | 0.93 ± 0.01 | 0.93 ± 0.01 | 0.98 ± 0.00 |
500 trees | 93.91 ± 1.10 | 0.87 ± 0.02 | 0.93 ± 0.01 | 0.94 ± 0.01 | 0.98 ± 0.00 |
SVM - Kernel Polinomial | |||||
Linear | 63.84 ± 2.05 | 0.28 ± 0.04 | 0.49 ± 0.03 | 0.78 ± 0.03 | 0.64 ± 0.02 |
Degree 2 | 70.24 ± 1.98 | 0.41 ± 0.04 | 0.58 ± 0.03 | 0.83 ± 0.03 | 0.70 ± 0.02 |
Degree 3 | 72.59 ± 1.75 | 0.45 ± 0.03 | 0.59 ± 0.03 | 0.87 ± 0.02 | 0.73 ± 0.02 |
SVM - Kernel RBF | |||||
0.5 | 71.04 ± 1.97 | 0.42 ± 0.04 | 0.64 ± 0.03 | 0.78 ± 0.03 | 0.71 ± 0.02 |
0.2 | 63.50 ± 1.99 | 0.27 ± 0.04 | 0.50 ± 0.03 | 0.78 ± 0.03 | 0.64 ± 0.02 |
0.1 | 61.13 ± 1.97 | 0.22 ± 0.04 | 0.44 ± 0.03 | 0.78 ± 0.03 | 0.61 ± 0.02 |
Classifier | Accuracy (%) | Kappa Statistic | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|
Original-SVM RBF 0.1 | 94.77 | 0.89 | 0.95 | 0.94 | 0.95 |
PSO-SVM RBF 0.2 | 96.71 | 0.93 | 0.97 | 0.97 | 0.97 |
Evolucionary-Random Forest 500 | 95.44 | 0.91 | 0.95 | 0.96 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, F.S.; Silva, A.S.d.O.; Muniz, M.V.S.; de Oliveira, C.V.N.; de Melo, A.M.N.; Passos, M.L.M.d.S.; Sampaio, A.B.d.S.; da Silva, T.C.V.; da Gama, A.E.F.; Montenegro, A.C.d.A.; et al. Supporting ASD Diagnosis with EEG, ML and Swarm Intelligence: Early Detection of Autism Spectrum Disorder Based on Electroencephalography Analysis by Machine Learning and Swarm Intelligence. AI Sens. 2025, 1, 3. https://doi.org/10.3390/aisens1010003
Fonseca FS, Silva ASdO, Muniz MVS, de Oliveira CVN, de Melo AMN, Passos MLMdS, Sampaio ABdS, da Silva TCV, da Gama AEF, Montenegro ACdA, et al. Supporting ASD Diagnosis with EEG, ML and Swarm Intelligence: Early Detection of Autism Spectrum Disorder Based on Electroencephalography Analysis by Machine Learning and Swarm Intelligence. AI Sensors. 2025; 1(1):3. https://doi.org/10.3390/aisens1010003
Chicago/Turabian StyleFonseca, Flávio Secco, Adrielly Sayonara de Oliveira Silva, Maria Vitória Soares Muniz, Catarina Victória Nascimento de Oliveira, Arthur Moreira Nogueira de Melo, Maria Luísa Mendes de Siqueira Passos, Ana Beatriz de Souza Sampaio, Thailson Caetano Valdeci da Silva, Alana Elza Fontes da Gama, Ana Cristina de Albuquerque Montenegro, and et al. 2025. "Supporting ASD Diagnosis with EEG, ML and Swarm Intelligence: Early Detection of Autism Spectrum Disorder Based on Electroencephalography Analysis by Machine Learning and Swarm Intelligence" AI Sensors 1, no. 1: 3. https://doi.org/10.3390/aisens1010003
APA StyleFonseca, F. S., Silva, A. S. d. O., Muniz, M. V. S., de Oliveira, C. V. N., de Melo, A. M. N., Passos, M. L. M. d. S., Sampaio, A. B. d. S., da Silva, T. C. V., da Gama, A. E. F., Montenegro, A. C. d. A., de Queiroga, B. A. M., da Silva, M. G. N. M., Lima, R. A. S. C., Seabra Filho, S. d. S., Cruz, S. d. S. J. d. O., da Silva, C. C., de Lima, C. L., Moreno, G. M. M., de Santana, M. A., ... dos Santos, W. P. (2025). Supporting ASD Diagnosis with EEG, ML and Swarm Intelligence: Early Detection of Autism Spectrum Disorder Based on Electroencephalography Analysis by Machine Learning and Swarm Intelligence. AI Sensors, 1(1), 3. https://doi.org/10.3390/aisens1010003