Impacts of Wildfires on the Global Atmosphere: Multi-Year Simulations Using a Range of Emissions Datasets †
Abstract
1. Introduction
2. Biomass Burning Emissions Datasets
- Global Fire Emissions Database (GFED4s),
- Global Fire Assimilation System (GFASv1.2),
- Fire Energetics Emissions Research (FEERv1.0-G1.2), and
- Quick Fire Emission Dataset (QFEDv2.6r1).
2.1. GFED4s
2.2. GFASv1.2
2.3. FEERv1.0-G1.2
2.4. QFEDv2.6r1
3. Datasets Analysis
3.1. Black Carbon
3.2. Carbon Monoxide
3.3. Regional Variations
3.3.1. Indonesia
3.3.2. Mediterranean Region
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuniyal, J.C.; Guleria, R.P. The current state of aerosol-radiation interactions: A mini review. J. Aerosol Sci. 2019, 130, 45–54. [Google Scholar] [CrossRef]
- Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Kuhn, W.; Lacis, A.; Luther, F.; Mahlman, J.; Reck, R.; et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys. 1987, 25, 1441–1482. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Q.; Lin, W.; Xu, X.; Yao, J.; Gao, W. Measurement report: Long-term variations in carbon monoxide at a background station in China’s Yangtze River Delta region. Atmos. Chem. Phys. 2020, 20, 15969–15982. [Google Scholar] [CrossRef]
- Faïn, X.; Rhodes, R.H.; Philip, P.; Petrenko, V.V.; Fourteau, K.; Chellman, N.; Crosier, E.; McConnell, J.R.; Brook, E.J.; Blunier, H.; et al. Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores. Clim. Past Discuss. 2021, 18, 631–647. [Google Scholar] [CrossRef]
- Núñez, X.C.; Ruiz, L.V.; García, C.G. Black carbon and organic carbon emissions from wildfires in Mexico. Atmósfera 2014, 27, 165–172. [Google Scholar] [CrossRef]
- Evangeliou, N.; Kylling, A.; Eckhardt, S.; Myroniuk, V.; Stebel, K.; Paugam, R.; Zibtsev, S.; Stohl, A. Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 2019, 19, 1393–1411. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Zhang, L.; Henze, D.K.; Grell, G.A.; Torres, O.; Jethva, H.; Lamsal, L.N. What factors control the trend of increasing AAOD over the United States in the last decade? J. Geophys. Res. Atmos. 2017, 122, 1797–1810. [Google Scholar] [CrossRef]
- van Leeuwen, T.T.; Van Der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Rücker, G.; French, N.H.; Archibald, S.; Carvalho, J.A., Jr.; Cook, G.D.; de Groot, W.J.; et al. Biomass burning fuel consumption rates: A field measurement database. Biogeosciences 2014, 11, 7305–7329. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Ichoku, C.; Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 2014, 14, 6643–6667. [Google Scholar] [CrossRef]
- NTRS-NASA Technical Reports Server. The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4: Technical Report Series on Global Modeling and Data Assimilation, Volume 38. Available online: https://ntrs.nasa.gov/citations/20180005253 (accessed on 5 September 2025).
- Carter, T.S.; Heald, C.L.; Jimenez, J.L.; Campuzano-Jost, P.; Kondo, Y.; Moteki, N.; Schwarz, J.P.; Wiedinmyer, C.; Darmenov, A.S.; da Silva, A.M.; et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. Discuss. 2019, 20, 2073–2097. [Google Scholar] [CrossRef]
- Uda, S.K.; Hein, L.; Atmoko, D. Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environ. Sci. Pollut. Res. 2019, 26, 31315–31327. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Chin, M.; Ichoku, C.M.; Field, R.D. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean dipole during 1979–2016. J. Geophys. Res. Atmos. 2018, 123, 7974–7988. [Google Scholar] [CrossRef]
- Amraoui, M.; Liberato, M.L.; Calado, T.J.; DaCamara, C.C.; Coelho, L.P.; Trigo, R.M.; Gouveia, C.M. Fire activity over Mediterranean Europe based on information from Meteosat-8. For. Ecol. Manag. 2013, 294, 62–75. [Google Scholar] [CrossRef]
- Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco, P.; Ellison, L.; Kucsera, T.; da Silva, A.; Wang, J.; et al. Six global biomass burning emission datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 2020, 20, 969–994. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraskevopoulou, K.; Vamvakaki, C.; Myriokefalitakis, S.; Mourgela, R.-N.; Petrakis, M.P.; Seiradakis, K.; Voulgarakis, A. Impacts of Wildfires on the Global Atmosphere: Multi-Year Simulations Using a Range of Emissions Datasets. Environ. Earth Sci. Proc. 2025, 35, 25. https://doi.org/10.3390/eesp2025035025
Paraskevopoulou K, Vamvakaki C, Myriokefalitakis S, Mourgela R-N, Petrakis MP, Seiradakis K, Voulgarakis A. Impacts of Wildfires on the Global Atmosphere: Multi-Year Simulations Using a Range of Emissions Datasets. Environmental and Earth Sciences Proceedings. 2025; 35(1):25. https://doi.org/10.3390/eesp2025035025
Chicago/Turabian StyleParaskevopoulou, Konstantina, Chrysoula Vamvakaki, Stelios Myriokefalitakis, Rafaila-Nikola Mourgela, Manolis P. Petrakis, Konstantinos Seiradakis, and Apostolos Voulgarakis. 2025. "Impacts of Wildfires on the Global Atmosphere: Multi-Year Simulations Using a Range of Emissions Datasets" Environmental and Earth Sciences Proceedings 35, no. 1: 25. https://doi.org/10.3390/eesp2025035025
APA StyleParaskevopoulou, K., Vamvakaki, C., Myriokefalitakis, S., Mourgela, R.-N., Petrakis, M. P., Seiradakis, K., & Voulgarakis, A. (2025). Impacts of Wildfires on the Global Atmosphere: Multi-Year Simulations Using a Range of Emissions Datasets. Environmental and Earth Sciences Proceedings, 35(1), 25. https://doi.org/10.3390/eesp2025035025