Response of Aerosols and Tropospheric Gases to Wildfire Emission Scenarios †
Abstract
1. Introduction
2. Methods
2.1. Model Description
2.2. Experimental Setup
3. Results
3.1. Temporal Effects on the Global Scale
3.2. Temporal Effects on the Regional Scale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, B.; Liu, J.; Bowman, K.W.; Pascolini-Campbell, M.; Chatterjee, A.; Pandey, S.; Miyazaki, K.; van der Werf, G.R.; Wunch, D.; Wennberg, P.O.; et al. Carbon Emissions from the 2023 Canadian Wildfires. Nat. 2024, 633, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; Wigder, N.L. Ozone Production from Wildfires: A Critical Review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global Fire Emissions Estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- van Marle, M.J.E.; Kloster, S.; Magi, B.I.; Marlon, J.R.; Daniau, A.-L.; Field, R.D.; Arneth, A.; Forrest, M.; Hantson, S.; Kehrwald, N.M.; et al. Historic Global Biomass Burning Emissions for CMIP6 (BB4CMIP) Based on Merging Satellite Observations with Proxies and Fire Models (1750–2015). Geosci. Model Dev. 2017, 10, 3329–3357. [Google Scholar] [CrossRef]
- Voulgarakis, A.; Marlier, M.E.; Faluvegi, G.; Shindell, D.T.; Tsigaridis, K.; Mangeon, S. Interannual Variability of Tropospheric Trace Gases and Aerosols: The Role of Biomass Burning Emissions. J. Geophys. Res. Atmos. 2015, 120, 7157–7173. [Google Scholar] [CrossRef]
- Voulgarakis, A.; Savage, N.H.; Wild, O.; Braesicke, P.; Young, P.J.; Carver, G.D.; Pyle, J.A. Interannual Variability of Tropospheric Composition: The Influence of Changes in Emissions, Meteorology and Clouds. Atmos. Chem. Phys. 2010, 10, 2491–2506. [Google Scholar] [CrossRef]
- Gliß, J.; Mortier, A.; Schulz, M.; Andrews, E.; Balkanski, Y.; Bauer, S.E.; Benedictow, A.M.K.; Bian, H.; Checa-Garcia, R.; Chin, M.; et al. AeroCom Phase III Multi-Model Evaluation of the Aerosol Life Cycle and Optical Properties Using Ground- and Space-Based Remote Sensing as Well as Surface in Situ Observations. Atmos. Chem. Phys. 2021, 21, 87–128. [Google Scholar] [CrossRef]
- Zhong, Q.; Schutgens, N.; van der Werf, G.; van Noije, T.; Tsigaridis, K.; Bauer, S.E.; Mielonen, T.; Kirkevåg, A.; Seland, Ø.; Kokkola, H.; et al. Satellite-Based Evaluation of AeroCom Model Bias in Biomass Burning Regions. Atmos. Chem. Phys. 2022, 22, 11009–11032. [Google Scholar] [CrossRef]
- van Noije, T.; Bergman, T.; Le Sager, P.; O’Donnell, D.; Makkonen, R.; Gonçalves-Ageitos, M.; Döscher, R.; Fladrich, U.; Von Hardenberg, J.; Keskinen, J.-P.; et al. EC-Earth3-AerChem: A Global Climate Model with Interactive Aerosols and Atmospheric Chemistry Participating in CMIP6. Geosci. Model Dev. 2021, 14, 5637–5668. [Google Scholar] [CrossRef]
- Sogacheva, L.; Popp, T.; Sayer, A.M.; Dubovik, O.; Garay, M.J.; Heckel, A.; Hsu, N.C.; Jethva, H.; Kahn, R.A.; Kolmonen, P.; et al. Merging Regional and Global Aerosol Optical Depth Records from Major Available Satellite Products. Atmos. Chem. Phys. 2020, 20, 2031–2056. [Google Scholar] [CrossRef]
- Tsikerdekis, A.; Hasekamp, O.P.; Schutgens, N.A.J.; Zhong, Q. Assimilation of POLDER Observations to Estimate Aerosol Emissions. Atmos. Chem. Phys. 2023, 23, 9495–9524. [Google Scholar] [CrossRef]
- Huijnen, V.; Williams, J.; van Weele, M.; van Noije, T.; Krol, M.; Dentener, F.; Segers, A.; Houweling, S.; Peters, W.; de Laat, J.; et al. The Global Chemistry Transport Model TM5: Description and Evaluation of the Tropospheric Chemistry Version 3.0. Geosci. Model Dev. 2010, 3, 445–473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrakis, M.P.; Boleti, E.; Mourgela, R.-N.; Seiradakis, K.; Roșu, I.A.; Voulgarakis, A. Response of Aerosols and Tropospheric Gases to Wildfire Emission Scenarios. Environ. Earth Sci. Proc. 2025, 35, 16. https://doi.org/10.3390/eesp2025035016
Petrakis MP, Boleti E, Mourgela R-N, Seiradakis K, Roșu IA, Voulgarakis A. Response of Aerosols and Tropospheric Gases to Wildfire Emission Scenarios. Environmental and Earth Sciences Proceedings. 2025; 35(1):16. https://doi.org/10.3390/eesp2025035016
Chicago/Turabian StylePetrakis, Manolis P., Eirini Boleti, Rafaila-Nikola Mourgela, Konstantinos Seiradakis, Iulian Alin Roșu, and Apostolos Voulgarakis. 2025. "Response of Aerosols and Tropospheric Gases to Wildfire Emission Scenarios" Environmental and Earth Sciences Proceedings 35, no. 1: 16. https://doi.org/10.3390/eesp2025035016
APA StylePetrakis, M. P., Boleti, E., Mourgela, R.-N., Seiradakis, K., Roșu, I. A., & Voulgarakis, A. (2025). Response of Aerosols and Tropospheric Gases to Wildfire Emission Scenarios. Environmental and Earth Sciences Proceedings, 35(1), 16. https://doi.org/10.3390/eesp2025035016