Evaluation of Modelling and Remote Sensing Tools for Improving Air Quality in Surroundings of Open Pit Mines †
Abstract
1. Introduction
2. Methods
2.1. Improvements in Blasting Contribution
2.2. Nowcasting of PM10 Levels
2.3. Elaboration of Heat Maps Using Satellite Data
3. Results and Discussion
3.1. Improvements in Blasting Contributions
3.2. Nowcasting of PM10 Levels
3.3. Elaboration of Heat Maps Using Satellite Data
4. Conclusions
- (1)
- As standard emissions factors for blasting operations like AP-42 are based on coal mines, they do not correctly apply to copper mines, generating a relevant overestimation of the concentration generated by blasts. The inverse modelling methodology is a simple, useful, effective, and scalable tool for calculating emission factors that are more appropriate than those of the standards.
- (2)
- The nowcasting technique enables us to determine, with a high degree of accuracy, the evolution of this pollutant over the next few hours (1, 2, 3 h). The TFT model developed adds value compared to persistence forecasting, showing low levels of MAEs, 3.0 μg/m3 and 1.6 μg/m3 for PM10 and PM2.5, respectively, indicating reliable performance in predicting these pollutants.
- (3)
- GRASP satellite observations provide a powerful tool for hindcast analysis, long-term trend evaluation, and spatial hotspot detection, providing essential input for risk assessment and targeted air quality interventions. These capabilities are crucial for understanding the environmental footprint of mining operations and for informing public health strategies in affected areas.
- For the blasting contributions, only two episodes were identified that meet all defined conditions. It is necessary to expand the analysis for a longer period. Furthermore, the inverse modelling estimation can be extended considering the type of material (mineral or sterile), pollutants, PM2.5, and heavy metals. Also, incorporating CFD (Computational Fluid Dynamics) modelling can help us obtain a better representation of the pollutant dispersion.
- In the case of the nowcasting study, PM10 shows lower accuracy in comparison with PM2.5 due to higher emission source contributions and higher uncertainty in measurements, as well as higher difficulty in representing exceedances of the legislated limit values. For this reason, the use of a more representative period is required to validate nowcasting results and focus on exceedance forecasts.
- Finally, in the case of the hindcast analysis, a limitation remains regarding the revisit frequency of Sentinel-3 that it is currently limited to once every 2–3 days. Incorporating future satellite missions with a higher revisit frequency will improve the possibilities of hindcast analysis. Also, coupling surface information from monitoring points with satellite information can improve the heat maps generated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEMET | Spanish National Meteorological Agency; |
CFD | Computational Fluid Dynamics; |
CIQSO | Center for Research in Sustainable Chemistry; |
GFS | Global Forecasting System; |
GRASP | Generalized Retrieval of Atmosphere and Surface Properties; |
GRN | Gated Residual Network; |
MAGE | Mean Absolute Gross Error; |
MB | Mean Bias; |
RMSE | Root Mean Square Error; |
TFT | Temporal Fusion Transformer; |
UHU | University of Huelva; |
WRF | Weather Research and Forecasting System. |
Appendix A
Hyperparameters | ||
---|---|---|
Epochs | 200 | No. of iterations over the data |
Prediction length | 3 | No. of future time steps |
Encoder length | 48 | No. of past time steps in the input |
Learning rate | 0.068 | Step size for model optimization |
Batch size | 32 | No. of training samples in a single pass |
Dropout | 0.1 | Fraction of dropped neurons |
Loss function | Quantile loss | -- |
Attention head size | 1 | No. of parallel attention heads |
Hidden size | 8 | Dimensions of the model’s layers |
References
- Boente, C.; Zafra-Pérez, A.; Fernández-Caliani, J.C.; Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; de la Rosa, J.D. Source apportionment of potentially toxic PM10 near a vast metallic ore mine and health risk assessment for residents exposed. Atmos. Environ. 2023, 301, 119696. [Google Scholar] [CrossRef]
- Huertas, J.I.; Huertas, M.E.; Izquierdo, S.; González, E.D. Air quality impact assessment of multiple open pit coal mines in northern Colombia. J. Environ. Manag. 2012, 93, 121–129. [Google Scholar] [CrossRef]
- Boente, C.; Millán-Martínez, M.; Sánchez de la Campa, A.M.; Sánchez-Rodas, D.; de la Rosa, J.D. Physicochemical assessment of atmospheric particulate matter emissions during open-pit mining operations in a massive sulphide ore exploitation. Atmos. Pollut. Res. 2022, 13, 101391. [Google Scholar] [CrossRef]
- Petavratzi, E.; Kingman, S.; Lowndes, I. Particulates from mining operations: A review of sources, effects and regulations. Miner. Eng. 2005, 18, 1183–1199. [Google Scholar] [CrossRef]
- Castillo, S.; de la Rosa, J.D.; Sánchez de la Campa, A.M.; González-Castanedo, Y.; Fernández-Caliani, J.C.; Fernández Camacho, R.; González, I.; Romero, A. Contribution of mine wastes to atmospheric metal deposition in the surrounding area o fan abandoned heavily polluted mining district (Riotinto Mines, Spain). Sci. Total Environ. 2013, 449, 363–372. [Google Scholar] [CrossRef]
- Fernández Caliani, J.C.; de la Rosa, J.D.; Sánchez de la Campa, A.M.; González Castanedo, S.; Castillo, S. Mineral composition of atmospheric fallout impacting the Riotinto mining area (Spain) during episodes of high metal deposition. Mineral. Mag. 2013, 77, 2793–2810. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.M.; de la Rosa, J.D.; Fernández Caliani, J.C.; Gonzalez-Castanedo, Y. Impact of abandoned mine wastes on atmospheric respirable particulate matter in the historic mining district of Riotinto (Iberian Pyrite Belt). Environ. Res. 2011, 111, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- AP-42: Compilation of Air Emissions Factors from Stationary Sources. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors-stationary-sources (accessed on 21 May 2025).
- EMEP/EEA air pollutant emission inventory guidebook 2023. Available online: https://www.eea.europa.eu/en/analysis/publications/emep-eea-guidebook-2023 (accessed on 21 May 2025).
- Comas Muguruza, A.; Arasa Agudo, R.; Udina, M. Characterization of the Planetary Boundary Layer Height in Huelva (Spain) During an Episode of High NO2 Pollutant Concentrations. Earth 2025, 6, 26. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Sharma, P.; Agarwal, S. Inverse modelling approach to assess air pollutant emission trends, and source contributions in highly polluted cities. Discov. Atmos. 2024, 2, 13. [Google Scholar] [CrossRef]
- Cheng, X.; Hao, Z.; Zang, Z.; Liu, Z.; Xu, X.; Wang, S.; Liu, Y.; Hu, Y.; Ma, X. A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: An application to air quality forecasts in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys. 2021, 21, 13747–13761. [Google Scholar] [CrossRef]
- Rosca, C.-M.; Carbureanu, M.; Stancu, A. Data-Driven Approaches for Predicting and Forecasting Air Quality in Urban Areas. Appl. Sci. 2025, 15, 4390. [Google Scholar] [CrossRef]
- Wu, C.; Wang, R.; Lu, S.; Tian, J.; Yin, L.; Wang, L.; Zheng, W. Time-Series Data-Driven PM2.5 Forecasting: From Theoretical Framework to Empirical Analysis. Atmosphere 2025, 16, 292. [Google Scholar] [CrossRef]
- Anggraini, T.S.; Irie, H.; Sakti, A.D.; Wikantika, K. Global air quality index prediction using integrated spatial observation data and geographics machine learning. Sci. Remote Sens. 2025, 11, 100197. [Google Scholar] [CrossRef]
- Stebel, K.; Stachlewska, I.S.; Nemuc, A.; Horálek, J.; Schneider, P.; Ajtai, N.; Diamandi, A.; Benešová, N.; Boldeanu, M.; Botezan, C.; et al. SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sens. 2021, 13, 2219. [Google Scholar] [CrossRef]
- Seck, G.S.; Hache, E.; Bonnet, C.; Simoën, M.; Carcanague, S. Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations. Resour. Conserv. Recycl. 2020, 163, 105072. [Google Scholar] [CrossRef]
- Snoun, H.; Krichen, M.; Chérif, H. A comprehensive review of Gaussian atmospheric dispersion models: Current usage and future perspectives. Euro-Mediterr. J. Environ. Integr. 2023, 8, 219–242. [Google Scholar] [CrossRef]
- Roy, S.; Adhikari, G.R.; Singh, T.N. Development of Emission Factors for Quantification of Blasting Dust at Surface. J. Environ. Prot. 2010, 1, 346–361. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note 475; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Arasa, R.; Porras, I.; Domingo-Dalmau, A.; Picanyol, M.; Codina, B.; González, M.; Piñón, J. Defining a Standard Methodology to Obtain Optimum WRF Configuration for Operational Forecast: Application over the Port of Huelva (Southern Spain). Atmos. Clim. Sci. 2016, 6, 329–350. [Google Scholar] [CrossRef]
- Lim, B.; Arık, S.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Badhe, N.; Neve, R.; Yele, V.; Abhang, S.; Dhule, K.; Mali, D. An optimized system for predicting energy usage in smart grids using temporal fusion transformer and aquila optimizer. Front. Artif. Intell. 2025, 8, 1542320. [Google Scholar] [CrossRef] [PubMed]
- Lekidis, A.; Papageorgiou, E. Edge-based short-term energy demand prediction. Energies 2023, 16, 5435. [Google Scholar] [CrossRef]
- Saleem, M.; Rashid, J.; Ahmad, S.; Al-Shaery, A.; Althobaiti, S.; Faheem, M. Forecasting green energy production in latin american countries and Canada via temporal fusion transformer. Energy Sci. Eng. 2025, 13, 2262–2283. [Google Scholar] [CrossRef]
- Yang, H.; Li, P.; Cui, Y.; Han, X.; Zhou, M. Multi-sensor temporal fusion transformer for stock performance prediction: An adaptive sharpe ratio approach. Sensors 2025, 25, 976. [Google Scholar] [CrossRef]
- PyTorch Forecasting—Temporal Fusion Transformer. Available online: https://pytorch-forecasting.readthedocs.io/en/stable/api/pytorch_forecasting.models.temporal_fusion_transformer._tft.TemporalFusionTransformer.html (accessed on 16 January 2025).
- NOAA The Global Forecasting System (GFS). Available online: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.php (accessed on 24 March 2025).
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Herman, M.; Fuertes, D.; Ducos, F.; Lopatin, A.; Chaikovsky, A.; Torres, B.; Derimian, Y.; et al. GRASP: A versatile algorithm for characterizing the atmosphere. SPIE Newsroom 2014, 25, 2–1201408. [Google Scholar] [CrossRef]
- Dubovik, O.; Fuertes, D.; Litvinov, P.; Lopatin, A.; Lapyonok, T.; Doubovik, I.; Xu, F.; Ducos, F.; Chen, C.; Torres, B.; et al. A comprehensive description of multi-term LSM for applying multiple a priori constraints in problems of atmospheric remote sensing: GRASP algorithm, concept, and applications. Front. Remote Sens. 2021, 2, 706851. [Google Scholar] [CrossRef]
- Chen, C.; Dubovik, O.; Fuertes, D.; Litvinov, P.; Lapyonok, T.; Lopatin, A.; Ducos, F.; Derimian, Y.; Herman, M.; Tanré, D.; et al. Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth Syst. Sci. Data 2020, 12, 3573–3620. [Google Scholar] [CrossRef]
- Janssen, S.; Thunis, P. FAIRMODE Guidance Document on Modelling Quality Objectives and Benchmarking (Version 3.3); EUR 31068 EN; JRC129254; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-52425-0. [Google Scholar] [CrossRef]
Features | |
---|---|
Target values | PM10, PM2.5 |
Known real values | Hour, weekday, week, month, forecasted meteorological variables |
Unknown real values | Measured meteorological variables |
Categorical values | None |
Static values | None |
Emission Factor Estimation Method | Emission | Modelled Concentration | Estimated Contribution of the Blasting to PM10 Concentration | Difference Between Modelled and Observed |
---|---|---|---|---|
AP-42 | 6.63 kg | 651 µg/m3 | 104 µg/m3 | 547 µg/m3 (526%) |
Inverse Modelling | 1.40 kg | 137 µg/m3 | 33 µg/m3 (32%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudo, R.A.; Hernández, Ó.; Etzkorn, E.; Herrera, M.; Fuertes, D.; Llopis, E.; Sánchez de la Campa, A.; Alejandro, F.; Sanjuán, E. Evaluation of Modelling and Remote Sensing Tools for Improving Air Quality in Surroundings of Open Pit Mines. Environ. Earth Sci. Proc. 2025, 34, 7. https://doi.org/10.3390/eesp2025034007
Agudo RA, Hernández Ó, Etzkorn E, Herrera M, Fuertes D, Llopis E, Sánchez de la Campa A, Alejandro F, Sanjuán E. Evaluation of Modelling and Remote Sensing Tools for Improving Air Quality in Surroundings of Open Pit Mines. Environmental and Earth Sciences Proceedings. 2025; 34(1):7. https://doi.org/10.3390/eesp2025034007
Chicago/Turabian StyleAgudo, Raúl Arasa, Óscar Hernández, Elisa Etzkorn, Milagros Herrera, David Fuertes, Eliot Llopis, Ana Sánchez de la Campa, Francisco Alejandro, and Emilio Sanjuán. 2025. "Evaluation of Modelling and Remote Sensing Tools for Improving Air Quality in Surroundings of Open Pit Mines" Environmental and Earth Sciences Proceedings 34, no. 1: 7. https://doi.org/10.3390/eesp2025034007
APA StyleAgudo, R. A., Hernández, Ó., Etzkorn, E., Herrera, M., Fuertes, D., Llopis, E., Sánchez de la Campa, A., Alejandro, F., & Sanjuán, E. (2025). Evaluation of Modelling and Remote Sensing Tools for Improving Air Quality in Surroundings of Open Pit Mines. Environmental and Earth Sciences Proceedings, 34(1), 7. https://doi.org/10.3390/eesp2025034007