Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs †
Abstract
1. Introduction
2. Evolution of Climate Prediction
2.1. Evolution of General Circulation Models
2.2. Machine Learning & Deep Learning
2.3. AI-Enhanced Modeling
3. Predictive Analytics
3.1. Physics-Based Models
3.2. ML-Based Emulation & Surrogate Modeling

3.3. AI-Enhanced Hybrid Predictive Analytics
3.3.1. Physics-Informed ML
3.3.2. Hybrid Modeling Approaches
4. Comparative Performance
5. Applications in Predictive Climate Science
5.1. Downscaling
5.2. Forecasting
5.3. Extremes
6. Challenges
6.1. Computational Demand & Scalability
6.2. Uncertainty, Interpretability and Data Quality
6.3. Ethical Concerns
7. Future Prospects of Climate Modeling
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bordoni, S.; Kang, S.M.; Shaw, T.A.; Simpson, I.R.; Zanna, L. The Futures of Climate Modeling. Npj Clim. Atmospheric Sci. 2025, 8, 99. [Google Scholar] [CrossRef]
- Shiru, M.S.; Chung, E.-S. Performance Evaluation of CMIP6 Global Climate Models for Selecting Models for Climate Projection over Nigeria. Theor. Appl. Climatol. 2021, 146, 599–615. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T. Advancements in Downscaling Global Climate Model Temperature Data in Southeast Asia: A Machine Learning Approach. Forecasting 2023, 6, 1–17. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Fernández-Torres, M.-Á.; Cohrs, K.-H.; Höhl, A.; Castelletti, A.; Pacal, A.; Robin, C.; Martinuzzi, F.; Papoutsis, I.; Prapas, I.; et al. Artificial Intelligence for Modeling and Understanding Extreme Weather and Climate Events. Nat. Commun. 2025, 16, 1919. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T. Advancements and Challenges of Artificial Intelligence in Climate Modeling for Sustainable Urban Planning. Front. Artif. Intell. 2025, 8, 1517986. [Google Scholar] [CrossRef]
- Edwards, P.N. History of Climate Modeling. WIREs Clim. Change 2011, 2, 128–139. [Google Scholar] [CrossRef]
- Bjerknes, V. The Problem of Weather Prediction, Considered from the Viewpoints of Mechanics and Physics. Meteorol. Z. 2009, 18, 663–667. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- De Burgh-Day, C.O.; Leeuwenburg, T. Machine Learning for Numerical Weather and Climate Modelling: A Review. Geosci. Model Dev. 2023, 16, 6433–6477. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Xue, W.; Yang, G.; Zhang, G.J. Stable Climate Simulations Using a Realistic General Circulation Model with Neural Network Parameterizations for Atmospheric Moist Physics and Radiation Processes. Geosci. Model Dev. 2022, 15, 3923–3940. [Google Scholar] [CrossRef]
- Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High—Resolution Simulations. Geophys. Res. Lett. 2017, 44, 12396–12417. [Google Scholar] [CrossRef]
- Soldatenko, S.A. Artificial Intelligence and Its Application in Numerical Weather Prediction. Russ. Meteorol. Hydrol. 2024, 49, 283–298. [Google Scholar] [CrossRef]
- Slater, L.J.; Arnal, L.; Boucher, M.-A.; Chang, A.Y.-Y.; Moulds, S.; Murphy, C.; Nearing, G.; Shalev, G.; Shen, C.; Speight, L.; et al. Hybrid Forecasting: Blending Climate Predictions with AI Models. Hydrol. Earth Syst. Sci. 2023, 27, 1865–1889. [Google Scholar] [CrossRef]
- Materia, S.; García, L.P.; Van Straaten, C.; Sungmin, O.; Mamalakis, A.; Cavicchia, L.; Coumou, D.; De Luca, P.; Kretschmer, M.; Donat, M. Artificial Intelligence for Climate Prediction of Extremes: State of the Art, Challenges, and Future Perspectives. WIREs Clim. Change 2024, 15, e914. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine Learning and Artificial Intelligence to Aid Climate Change Research and Preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef]
- Schneider, T.; Behera, S.; Boccaletti, G.; Deser, C.; Emanuel, K.; Ferrari, R.; Leung, L.R.; Lin, N.; Müller, T.; Navarra, A.; et al. Harnessing AI and Computing to Advance Climate Modelling and Prediction. Nat. Clim. Change 2023, 13, 887–889. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of Approaches for Selection and Ensembling of GCMs. J. Water Clim. Change 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Rummukainen, M. State–of–the–art with Regional Climate Models. WIREs Clim. Change 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Donatelli, D.; Juhász, N. The Primitive Equations of the Polluted Atmosphere as a Weak and Strong Limit of the 3D Navier-Stokes Equations in Downwind-Matching Coordinates. Discrete Contin. Dyn. Syst. 2022, 42, 2859. [Google Scholar] [CrossRef]
- Govett, M.; Bah, B.; Bauer, P.; Berod, D.; Bouchet, V.; Corti, S.; Davis, C.; Duan, Y.; Graham, T.; Honda, Y.; et al. Exascale Computing and Data Handling: Challenges and Opportunities for Weather and Climate Prediction. Bull. Am. Meteorol. Soc. 2024, 105, E2385–E2404. [Google Scholar] [CrossRef]
- Azimi, S.M.E.; Sadatinejad, S.J.; Malekian, A.; Jahangir, M.H. Application of Artificial Intelligence Hybrid Models for Meteorological Drought Prediction. Nat. Hazards 2022, 116, 2565–2589. [Google Scholar] [CrossRef]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep Learning to Represent Subgrid Processes in Climate Models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Reddy, B.S.N.; Pramada, S.K.; Roshni, T. Monthly Surface Runoff Prediction Using Artificial Intelligence: A Study from a Tropical Climate River Basin. J. Earth Syst. Sci. 2021, 130, 35. [Google Scholar] [CrossRef]
- Chokkavarapu, N.; Mandla, V.R. Comparative Study of GCMs, RCMs, Downscaling and Hydrological Models: A Review toward Future Climate Change Impact Estimation. SN Appl. Sci. 2019, 1, 1698. [Google Scholar] [CrossRef]
- Maher, N.; Milinski, S.; Ludwig, R. Large Ensemble Climate Model Simulations: Introduction, Overview, and Future Prospects for Utilising Multiple Types of Large Ensemble. Earth Syst. Dyn. 2021, 12, 401–418. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of Artificial Intelligence Techniques for Prediction of Soil Temperatures in Turkey. Theor. Appl. Climatol. 2017, 130, 545–556. [Google Scholar] [CrossRef]
- Rummukainen, M. Added Value in Regional Climate Modeling. WIREs Clim. Change 2016, 7, 145–159. [Google Scholar] [CrossRef]
- McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Monthly Climate Prediction Using Deep Convolutional Neural Network and Long Short-Term Memory. Sci. Rep. 2024, 14, 17748. [Google Scholar] [CrossRef]
- Yang, T.; Asanjan, A.A.; Welles, E.; Gao, X.; Sorooshian, S.; Liu, X. Developing Reservoir Monthly Inflow Forecasts Using Artificial Intelligence and Climate Phenomenon Information. Water Resour. Res. 2017, 53, 2786–2812. [Google Scholar] [CrossRef]
- Adamidis, P.; Pfister, E.; Bockelmann, H.; Zobel, D.; Beismann, J.-O.; Jacob, M. The Real Challenges for Climate and Weather Modelling on Its Way to Sustained Exascale Performance: A Case Study Using ICON (v2.6.6). Geosci. Model Dev. 2025, 18, 905–919. [Google Scholar] [CrossRef]
- Imanian, H.; Hiedra Cobo, J.; Payeur, P.; Shirkhani, H.; Mohammadian, A. A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events. Sustainability 2022, 14, 8065. [Google Scholar] [CrossRef]
- Bull, J.M.; Coughtrie, A.; Deeptimahanti, D.; Hedley, M.; Laoide-Kemp, C.; Maynard, C.; Shepherd, H.; Van De Bund, S.; Weiland, M.; Went, B. Performance and Scaling of the LFRic Weather and Climate Model on Different Generations of HPE Cray EX Supercomputers. In Proceedings of the Cray User Group; ACM: Perth, Australia, 2024; pp. 1–11. [Google Scholar]
- Abebe, W.T.; Endalie, D. Artificial Intelligence Models for Prediction of Monthly Rainfall without Climatic Data for Meteorological Stations in Ethiopia. J. Big Data 2023, 10, 2. [Google Scholar] [CrossRef]
- Nordgren, A. Artificial Intelligence and Climate Change: Ethical Issues. J. Inf. Commun. Ethics Soc. 2023, 21, 1–15. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hoffman, F.M.; et al. Taking Climate Model Evaluation to the next Level. Nat. Clim. Change 2019, 9, 102–110. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Change Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
- Alizadeh, O. Advances and Challenges in Climate Modeling. Clim. Change 2022, 170, 18. [Google Scholar] [CrossRef]
- Joshi, M.N.; Dixit, A.K.; Saxena, S.; Memoria, M.; Choudhury, T.; Sar, A. A Study of the Application of AI & ML to Climate Variation, with Particular Attention to Legal & Ethical Concerns. EAI Endorsed Trans. Internet Things 2024, 10, 1–11. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going Next? J. Geophys. Res. Atmospheres 2019, 124, 5696–5723. [Google Scholar] [CrossRef]


| Model/Method | Core Applications | Strength | Limitations |
|---|---|---|---|
| Global Climate Models (GCMs) | Large-scale projections | Global view | Coarse resolution [17] |
| Convection-Permitting Models (CPMs) | High-impact events | Accurate representation | High computational cost [26] |
| Large Ensembles (SMILEs) | Extreme event studies | Probability estimation | Massive data requirements [26] |
| Artificial Neural Networks (ANNs) | Hydrology, temperature | Good for noisy data | Large data needs [17,18]. |
| ANFIS, Hybrid | soil temperature | High accuracy | Computationally intensive [27] |
| Machine Learning (SVM, RF, DL) | Downscaling, bias correction | Fast inference | Model transparency issues [21,24]. |
| Regional Climate Models (RCMs) | Local climate projections | High spatial details | Dependent on GCM [16,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supto, S.T.J. Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs. Environ. Earth Sci. Proc. 2025, 34, 15. https://doi.org/10.3390/eesp2025034015
Supto STJ. Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs. Environmental and Earth Sciences Proceedings. 2025; 34(1):15. https://doi.org/10.3390/eesp2025034015
Chicago/Turabian StyleSupto, Sk. Tanjim Jaman. 2025. "Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs" Environmental and Earth Sciences Proceedings 34, no. 1: 15. https://doi.org/10.3390/eesp2025034015
APA StyleSupto, S. T. J. (2025). Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs. Environmental and Earth Sciences Proceedings, 34(1), 15. https://doi.org/10.3390/eesp2025034015
