Comparative Study Between Chloroquine Sulphate and Copper Sulfate in Aquaculture at Low Dosages †
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Drug Resistance in the Malaria-Endemic World. Available online: https://www.cdc.gov/malaria/php/public-health-strategy/drug-resistance.html (accessed on 20 July 2024).
- Wellems, T.E.; Plowe, C.V. Chloroquine-resistant malaria. J. Infect. Dis. 2001, 184, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Ursos, L.M.; Roepe, P.D. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med. Res. Rev. 2002, 22, 465–491. [Google Scholar] [CrossRef]
- Deak, G.Y.; Daescu, V.; Holban, E.; Marinescu, P.; Tanase, G.S.; Csergo, R.; Daescu, A.I.; Gaman, S. Health-environment relation: A key issue of Romanian environmental protection. J. Environ. Prot. Ecol. 2015, 16, 304–315. [Google Scholar]
- Sulfonamides. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Morf, L.; Singh, U. Entamoeba histolytica: A snapshot of current research and methods for genetic analysis. Curr. Opin. Microbiol. 2012, 15, 469–475. [Google Scholar] [CrossRef]
- Nasir, N.A.N.M.; Zakarya, I.A.; Kamaruddin, S.A.; Islam, A.K.M.A. Advances and future prospects on biotechnological approaches towards Azolla for environmental sustainability. Pertanika J. Trop. Agri. Sci. 2022, 45, 595–609. [Google Scholar] [CrossRef]
- Xian, B.C.C.; Kang, C.W.; Ab Wahab, M.; Zainol, M.R.R.M.A.; Baharudin, F. Evaluation of low impact development and best management practices on peak flow reduction using SWMM. IOP Conf. Ser. Earth Environ. Sci 2021, 646, 012045. [Google Scholar] [CrossRef]
- Deák, G.; Holban, E.; Sadîca, I.; Jawdhari, A. Sturgeon Parasites: A Review of Their Diversity and Distribution. Diversity 2024, 16, 163. [Google Scholar] [CrossRef]
- Deák, G.; Matache, R.; Prangate, R.; Dumitrescu, G.; Holban, E.; Lupea, L.; Norlia, N.R.; Ibrahim, M. Risk of contamination of sturgeon species along the Lower Danube with AcIV-E virus from sturgeons raised in aquaculture systems. IOP Conf. Ser. Earth Environ. Sci 2023, 1216, 012012. [Google Scholar] [CrossRef]
- Matache, R.; Deak, G.; Jawdhari, A.; Sadica, I.; Pop, C.E.; Fendrihan, S.; Craciun, N. First insights of the Danube sturgeon (Acipenser gueldenstaedtii) skin adherent microbiota. bioRxiv 2024. [Google Scholar] [CrossRef]
- Aloo, P.A. Health problems associated with consumption of fish and the role of aquatic environments in the transmission of human diseases. Afr. J. Health Sci. 2000, 7, 107–113. [Google Scholar]
- Abdulhusein, G.; Ramteke, P. Investigations on parasitic diseases in fish of river Yamuna during the summer season. European Acad. Res. 2014, 2, 10057–10097. [Google Scholar]
- Adams, A.M.; Murrell, K.D.; Cross, J.H. Parasites of fish and risks to public health. Rev. Sci. Tech. 1997, 16, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Jawdhari, A.; Sadîca, I.; Matei, M.; Boboc, M.; Holban, E.; Laslo, L.; Mihăilescu, D.F. Assessment of Conservation Status of Petroleuciscus Borysthenicus Celensis From Gurban River, Romania By Identification of Parasites and Bacteria. Int. J. Conserv. Sci. 2024, 15, 1115–1128. [Google Scholar] [CrossRef]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Veterinary, M. Parasitic Disease of Fishes. Available online: https://www.msdvetmanual.com/exotic-and-laboratory-animals/aquarium-fish/parasitic-diseases-of-fish#Flagellates_v23355077 (accessed on 5 July 2024).
- Matthews, J.L. Common diseases of laboratory zebrafish. Methods Cell Biol. 2004, 77, 617–643. [Google Scholar]
- Laufer, M.K.; Thesing, P.C.; Eddington, N.D.; Masonga, R.; Dzinjalamala, F.K.; Takala, S.L.; Taylor, T.E.; Plowe, C.V. Return of chloroquine antimalarial efficacy in Malawi. N. Engl. J. Med. 2006, 355, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E. General relationship between water quality and aquaculture performance in ponds. In Fish Diseases Prevention and Control Strategies, 1st ed.; Jeney, G., Ed.; Elsevier: Auburn, AL, USA, 2017; pp. 147–166. [Google Scholar] [CrossRef]
- Dinesh, R.; Anand, C.; John, K.; George, M.; Bharathi, S.; Kumar, J. An overview of chemicals and drugs in aquaculture disease management. Indian J. Anim. Health 2022, 62, 1–20. [Google Scholar] [CrossRef]
- Desta, K.; Amare, M. Validated UV-Visible spectrometry using water as a solvent for determination of chloroquine in tablet samples. Chem. Int. 2017, 3, 288–295. [Google Scholar]
- Ciucă, V.C.; Safta, V.V.; Rusănescu, C.O.; Paraschiv, G.; Deák, G.; Ilie, M.; Cănănău, S. Rapid environmental impact assessment of penicillin G in a veterinary product using an original software method and monitoring by SPE-Online-UHPLC-MS/MS. Molecules 2023, 28, 6227. [Google Scholar] [CrossRef]
- AquaVet. Proof Five Cooper Sulfate. Available online: http://legacy.picol.cahnrs.wsu.edu/~picol/pdf/OR/60867.pdf (accessed on 20 July 2016).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deák, G.; Jawdhari, A.; Holban, E.; Sadîca, I.; Cucu, G.; Stegărescu, S.; Gheorghe, G.; Zsolt, B. Comparative Study Between Chloroquine Sulphate and Copper Sulfate in Aquaculture at Low Dosages. Environ. Earth Sci. Proc. 2025, 33, 2. https://doi.org/10.3390/eesp2025033002
Deák G, Jawdhari A, Holban E, Sadîca I, Cucu G, Stegărescu S, Gheorghe G, Zsolt B. Comparative Study Between Chloroquine Sulphate and Copper Sulfate in Aquaculture at Low Dosages. Environmental and Earth Sciences Proceedings. 2025; 33(1):2. https://doi.org/10.3390/eesp2025033002
Chicago/Turabian StyleDeák, György, Abdulhusein Jawdhari, Elena Holban, Isabela Sadîca, George Cucu, Sorin Stegărescu, Grigore Gheorghe, and Bodor Zsolt. 2025. "Comparative Study Between Chloroquine Sulphate and Copper Sulfate in Aquaculture at Low Dosages" Environmental and Earth Sciences Proceedings 33, no. 1: 2. https://doi.org/10.3390/eesp2025033002
APA StyleDeák, G., Jawdhari, A., Holban, E., Sadîca, I., Cucu, G., Stegărescu, S., Gheorghe, G., & Zsolt, B. (2025). Comparative Study Between Chloroquine Sulphate and Copper Sulfate in Aquaculture at Low Dosages. Environmental and Earth Sciences Proceedings, 33(1), 2. https://doi.org/10.3390/eesp2025033002