Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change †
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. Climate Change Scenario & Models & IMS
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef]
- Caretta, M.A.; Mukherji, A.; Arfanuzzaman, M.; Betts, R.A.; Gelfan, A.; Hirabayashi, Y.; Lissner, T.K.; Lopez Gunn, E.; Liu, J.; Morgan, R.; et al. Water. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Dehghani, S.; Massah Bavani, A.R.; Roozbahani, A.; Gohari, A.; Berndtsson, R. Towards an Integrated System Modeling of Water Scarcity with Projected Changes in Climate and Socioeconomic Conditions. Sustain. Prod. Consum. 2022, 33, 543–556. [Google Scholar] [CrossRef]
- Jain, H.; Dhupper, R.; Shrivastava, A.; Kumar, D.; Kumari, M. AI-Enabled Strategies for Climate Change Adaptation: Protecting Communities, Infrastructure, and Businesses from the Impacts of Climate Change. Comput. Urban Sci. 2023, 3, 25. [Google Scholar] [CrossRef]
- Europe’s State of Water 2024: The Need for Improved Water Resilience. Available online: https://www.eea.europa.eu/en/analysis/publications/europes-state-of-water-2024 (accessed on 7 November 2025).
- Chiew, F.H.S. Climate Change and Water Resources: Munro Oration, Hydrology and Water Resources Symposium Sydney, 13 November 2023. Australas. J. Water Resour. 2024, 28, 6–17. [Google Scholar] [CrossRef]
- Wang, H.-M.; Chen, J.; Xu, C.-Y.; Zhang, J.; Chen, H. A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s Future 2020, 8, e2020EF001602. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Collados-Lara, A.-J.; Alcalá, F.J. Assessing Impacts of Future Potential Climate Change Scenarios on Aquifer Recharge in Continental Spain. J. Hydrol. 2018, 567, 803–819. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Statistical Transformations—A Comparison of Methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Adams, K.H.; Reager, J.T.; Buzzanga, B.A.; David, C.H.; Sawyer, A.H.; Hamlington, B.D. Climate-Induced Saltwater Intrusion in 2100: Recharge-Driven Severity, Sea Level-Driven Prevalence. Geophys. Res. Lett. 2024, 51, e2024GL110359. [Google Scholar] [CrossRef] [PubMed]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Assessing Impacts of Climate Variability and Land Use/Land Cover Change on the Water Balance Components in the Sahel Using Earth Observations and Hydrological Modelling. J. Hydrol. Reg. Stud. 2023, 47, 101370. [Google Scholar] [CrossRef]
- Lam, Q.D.; Meon, G.; Pätsch, M. Coupled Modelling Approach to Assess Effects of Climate Change on a Coastal Groundwater System. Groundw. Sustain. Dev. 2021, 14, 100633. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A.; Sidiropoulos, P.; Vasiliades, L. Climate Change Impacts on Nitrate Leaching and Groundwater Nitrate Dynamics Using a Holistic Approach and Med-CORDEX Climatic Models. Water 2024, 16, 465. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A.; Sidiropoulos, P.; Tziatzios, G.; Mylopoulos, N. An Integrated Modeling System for the Evaluation of Water Resources in Coastal Agricultural Watersheds: Application in Almyros Basin, Thessaly, Greece. Water 2021, 13, 268. [Google Scholar] [CrossRef]





| Abbreviated GCM + RCM | Grid | Abbreviated GCM + RCM | Grid |
|---|---|---|---|
| 1. CNRM–AL52 | MED11 ~50 km | 7. LMD–LZ4N8 | MED44 ~12.5 km |
| 2. ICTP–RC43 ** | MED11 ~50 km | 8. GUF–CC48 | MED44 ~12.5 km |
| 3. CMCC–CC48 | MED44 ~12.5 km | 9. ICTP–RC47 ** | MED44 ~12.5 km |
| 4. CNRM–AL52 | MED44 ~12.5 km | 10. UNI–EBU ** | MED44i ~12 km |
| 5. ELU–RC43 | MED44 ~12.5 km | 11. UNI–EBUP2 ** | MED44i ~12 km |
| 6. ICTP–RC47 ** | MED44 ~12.5 km |
| Variable | Mean (1991–2018) | Spread (1991–2018) | Δ% 2019–2050 | Spread 2019–2050 | Δ% 2051–2080 | Spread 2051–2080 | Δ% 2081–2100 | Spread 2081–2100 |
|---|---|---|---|---|---|---|---|---|
| Precipitation (mm) | 537.9 | 666.2 | −1.6% | 1.30% | −0.8% | 0.90% | 0.50% | 1.00% |
| Temperature (°C) | 15.4 | 11.8 | 6.50% | 2.80% | 17.50% | 1.70% | 28.60% | 5.00% |
| Actual Evapotranspiration (mm) | 399.7 | 552.1 | 2.20% | 5.50% | 7.90% | 0.80% | 12.40% | 2.30% |
| Groundwater Recharge (mm) | 41.3 | 131.9 | −18% | 85% | −35% | 67% | −40% | 63% |
| Seawater Intrusion (hm3) | 0.5 | 1.6 | 460% | 383% | 780% | 500% | 860% | 511% |
| Water Balance (hm3) | −17.4 | 59 | 0.60% | 15% | −45% | 72% | −77% | 121% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lyra, A.; Loukas, A.; Sidiropoulos, P.; Mylopoulos, N. Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change. Environ. Earth Sci. Proc. 2024, 31, 24. https://doi.org/10.3390/eesp2025032024
Lyra A, Loukas A, Sidiropoulos P, Mylopoulos N. Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change. Environmental and Earth Sciences Proceedings. 2024; 31(1):24. https://doi.org/10.3390/eesp2025032024
Chicago/Turabian StyleLyra, Aikaterini, Athanasios Loukas, Pantelis Sidiropoulos, and Nikitas Mylopoulos. 2024. "Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change" Environmental and Earth Sciences Proceedings 31, no. 1: 24. https://doi.org/10.3390/eesp2025032024
APA StyleLyra, A., Loukas, A., Sidiropoulos, P., & Mylopoulos, N. (2024). Propagation of Climate Model Variability to Coastal Groundwater Simulations Under Climate Change. Environmental and Earth Sciences Proceedings, 31(1), 24. https://doi.org/10.3390/eesp2025032024

