Evaluation of Density and Viability of Arbuscular Mycorrhizal Spores in Austrocedrus chilensis Forests Affected by Wildland Fires in Patagonia, Argentina
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Sample Processing: Spore and Soil Analyses
2.4. Bioassay Setup
2.5. Statistical Analysis
3. Results
3.1. Analyses of Soil AMS Densities and Soil Variables
3.2. Seedling AM Colonization from Soil Bioassay
3.3. Relationships Between Seedlings AM Colonization, Spore Density, and Soil Features
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMF | Arbuscular mycorrhizal fungi |
AMS | Arbuscular mycorrhizal spores |
AM% | Arbuscular mycorrhizal colonization percentage |
WFS | Wildfire severity |
AM | Arbuscular mycorrhiza |
OM | Soil organic matter |
N | Soil nitrogen content |
EC | Soil electrical conductivity |
C/N | Soil carbon nitrogen ratio |
2W-GLMM | Two-way general linear mix model |
PCA | Principal component analysis |
References
- Veblen, T.T.; Kitzberger, T.; Villalva, R.; Donnegan, J. Fire History in Northern Patagonia: The Roles of Humans and Climatic Variation. Ecol. Monogr. 1999, 69, 47–67. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Chatzitheodoridis, F.; Kalfas, D.; Patitsa, C.; Papagrigoriou, A. Socio-Psychological, Economic and Environmental Effects of Forest Fires. Fire 2023, 6, 280. [Google Scholar] [CrossRef]
- Kitzberger, T.; Veblen, T.T. Fire-induced changes in northern Patagonian landscapes. Landsc. Ecol. 1999, 14, 1–15. [Google Scholar] [CrossRef]
- de Torres Curth, M.I.; Ghermandi, L.; Pfister, G. Los incendios en el noroeste de la Patagonia: Su relación con las condiciones meteorológicas y la presión antrópica a lo largo de 20 años. Ecol. Austral 2008, 18, 153–167. [Google Scholar] [CrossRef]
- Mohr Bell, D. Superficies afectadas por incendios en la región Bosque Andino Patagónico durante los veranos de 2013–2014 y 2014–2015. In Nodo Regional Bosque Andino Patagónico (SAyDS-CIEFAP); Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina, 2015; 12p. [Google Scholar]
- Kitzberger, T.; Tiribelli, F.; Barberá, I.; Gowda, J.H.; Morales, J.M.; Zalazar, L.; Paritsis, J. Projections of fire probability and ecosystem vulnerability under 21st century climate across a trans-Andean productivity gradient in Patagonia. Sci. Total Environ. 2022, 839, 156303. [Google Scholar] [CrossRef]
- Barros, V.R.; Boninsegna, J.A.; Camilloni, I.A.; Chidiak, M.; Magrín, G.O.; Rusticucci, M. Climate change in Argentina: Trends, projections, impacts and adaptation. WIREs Clim. Change 2015, 6, 151–169. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P.A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- González, M.E.; Lara, A.; Urrutia, R.; Bosnich, J. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 2011, 32, 215–219. [Google Scholar] [CrossRef]
- Mundo, I.A.; Villalba, R.; Veblen, T.T.; Kitzberger, T.; Holz, A.; Paritsis, J.; Ripalta, A. Fire history in southern Patagonia: Human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 2017, 8, e01932. [Google Scholar] [CrossRef]
- Urretavizcaya, M.F.; Defossé, G.E. Restoration of burned and post-fire logged Austrocedrus chilensis stands in Patagonia: Effects of competition and environmental conditions on seedling survival and growth. Int. J. Wildland Fire 2019, 28, 365. [Google Scholar] [CrossRef]
- Pastorino, M.J.; Fariña, M.M.; Bran, D.; Gallo, L.A. Extremos geográficos de la distribución natural de Austrocedrus chilensis (Cupressaceae). Bol. Soc. Argent. Bot. 2006, 41, 307–311. [Google Scholar]
- Urretavizcaya, M.F.; Defossé, G. Soil seed bank of Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina. Forest Ecol. Manag. 2004, 187, 361–372. [Google Scholar] [CrossRef]
- López Bernal, P.M.; Urretavizcaya, M.F.; Defossé, G.E. Seedling dynamics in an environmental gradient of Andean Patagonia, Argentina. In From Seed Germination to Young Plants: Ecology, Growth and Environmental Influences; Busso, C.A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 189–210. [Google Scholar]
- Gallo, L.; Pastorino, M.J.; Donoso, C. Variación en Austrocedrus chilensis (D. Don) Pic. Ser et Bizzarri (Ciprés de la Cordillera). In Variación Intraespecífica en las Especies Arbóreas de los Bosques Templados de Chile y Argentina; Donoso, C., Premoli, A., Gallo, L., Ipinza, R., Eds.; Marisa Cuneo: Valdivia, Chile, 2004; pp. 233–250. [Google Scholar]
- La Manna, L.; Bava, J.; Collantes, M.; Rajchenberg, M. Características estructurales de los bosques de Austrocedrus chilensis afectados por “mal del ciprés” en Patagonia, Argentina. Bosque 2006, 27, 135–145. [Google Scholar] [CrossRef]
- Gobbi, M.; Sancholuz, L. Regeneración pos-incendio del ciprés de la cordillera (Austrocedrus chilensis) en los primeros años. Bosque 1992, 13, 25–32. [Google Scholar]
- CIEFAP; MAyDS. Actualización de la Clasificación de Tipos Forestales y Cobertura del Suelo de la Región Bosque Andino Patagónico. 2016. Available online: https://www.argentina.gob.ar/sites/default/files/2018/04/informe_coberturas_bosque_bap_2013.pdf (accessed on 20 January 2025).
- Bava, J.; Lencinas, J.D.; Haag, A. Determinación de la materia prima disponible para proyectos de inversión forestales en cuencas de la provincia del Chubut. In Informe Parcial; Consejo Federal de Inversiones: Buenos Aires, Argentina, 2006; p. 85. [Google Scholar]
- Morales, D.; Rostagno, C.M.; La Manna, L. Runoff and erosion from volcanic soils affected by fire: The case of Austrocedrus chilensis forests in Patagonia. Argentina. Plant Soil 2013, 370, 367–380. [Google Scholar] [CrossRef]
- Vélez, M.L.; La Manna, L.; Tarabini, M.; Gomez, F.; Elliott, M.; Hedley, P.E.; Cock, P.; Greslebin, A. Phytophthora austrocedri in Argentina and co-inhabiting Phytophthoras: Roles of anthropogenic and abiotic factors in species distribution and diversity. Forests 2020, 11, 1223. [Google Scholar] [CrossRef]
- Orellana, I.A.; Raffaele, E. The spread of the exotic conifer Pseudotsuga menziesii in Austrocedrus chilensis forests and shrublands in northwestern Patagonia, Argentina. N. Z. J. For. Sci. 2020, 40, 199–209. [Google Scholar]
- Urretavizcaya, M.F. Propiedades del suelo en bosques quemados de Austrocedrus chilensis en Patagonia, Argentina. Bosque 2010, 31, 140–149. [Google Scholar]
- Loguercio, G.A.; Urretavizcaya, M.F.; Caselli, M.; Defossé, G.E. Propuestas silviculturales para el manejo de bosques de Austrocedrus chilensis sanos y afectados por el mal del ciprés de Argentina. In Silvicultura en Bosques Nativos. Experiencias en Silvicultura y Restauración en Chile, Argentina y el Oeste de Estados Unidos; Donoso, P.J., Promis, A., Soto, D.P., Eds.; Imprenta América: Valdivia, Chile, 2018; pp. 117–134. ISBN 978-0-692-09238-5. [Google Scholar]
- IUCN. IUCN Red List of Threatened Species (Version 2013.1). 2013. Available online: http://www.iucnredlist.org (accessed on 5 June 2025).
- Godoy, R.; Mayr, R. Caracterización morfológica de micorrizas vesículo-arbusculares en coníferas endémicas del sur de Chile. Bosque 1989, 10, 89–98. [Google Scholar]
- Fontenla, S.; Godoy, R.; Rosso, P.; Havrylenko, M. Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 1998, 8, 29–33. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, UK, 2008; pp. 145–187. [Google Scholar]
- Sendek, A.; Karakoç, C.; Wagg, C.; Domínguez-Begines, J.; Martucci do Couto, G.; van der Heijden, M.G.A.; Ahmad Naz, A.; Lochner, A.; Chatzinotas, A.; Klotz, S.; et al. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci. Rep. 2019, 9, 9650. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Bitterlich, M.; Jansa, J.; Püschel, D.; Ahmed, M.A. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. J. Exp. Bot. 2023, 74, 4808–4824. [Google Scholar] [CrossRef] [PubMed]
- Veresoglou, S.D.; Rillig, M.C. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol. Lett. 2012, 8, 214–217. [Google Scholar] [CrossRef]
- Willis, A.; Rodrigues, B.F.; Harris, P.J.C. The ecology of arbuscular mycorrhizal fungi. Crit. Rev. Plant Sci. 2013, 32, 1–20. [Google Scholar] [CrossRef]
- Powell, J.R.; Rillig, M.C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 2018, 220, 1059–1075. [Google Scholar] [CrossRef]
- Neuenkamp, L.; Prober, S.M.; Price, J.N.; Zobel, M.; Standish, R.J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 2019, 40, 140–149. [Google Scholar] [CrossRef]
- Longo, S.; Nouhra, E.; Goto, B.T.; Berbara, R.L.; Urcelay, C. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. For. Ecol. Manag. 2014, 315, 86–94. [Google Scholar] [CrossRef]
- Cofré, N.; Urcelay, C.; Wall, L.G.; Domínguez, L.; Becerra, A. El potencial de colonización micorrícico-arbuscular varía entre prácticas agrícolas y sitios en diferentes áreas geográficas de la región Pampeana. Ecol. Austral 2018, 28, 581–592. [Google Scholar]
- Day, N.J.; Dunfield, K.E.; Johnstone, J.F.; Mack, M.C.; Turetsky, M.R.; Walker, X.J.; Baltzer, J.L. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Glob. Change Biol. 2019, 25, 2310–2324. [Google Scholar] [CrossRef]
- Xiang, X.; Gibbons, S.M.; Yang, J.; Kong, J.; Sun, R.; Chu, H. Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant Soil 2015, 397, 347–356. [Google Scholar] [CrossRef]
- Sun, J.; Miller, J.B.; Granqvist, E.; Wiley-Kalil, A.; Gobbato, E.; Maillet, F.; Maillet, F.; Cottaz, S.; Samain, E.; Venkateshwaran, M.; et al. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 2015, 27, 823–838. [Google Scholar] [CrossRef]
- Holden, S.R.; Rogers, B.M.; Treseder, K.K.; Randerson, J.T. Fire severity influences the response of soil microbes to a boreal forest fire. Environ. Res. Lett. 2016, 11, 035004. [Google Scholar] [CrossRef]
- Claridge, A.W.; Trappe, J.M.; Hansen, K. Do fungi have a role as soil stabilizers and remediators after forest fire? For. Ecol. Manag. 2009, 257, 1063–1069. [Google Scholar] [CrossRef]
- Rashid, A.; Ahmed, T.; Ayub, N.; Khan, A.G. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 1997, 7, 217–220. [Google Scholar] [CrossRef]
- de Assis, D.M.A.; De Melo, M.A.C.; da Silva, D.K.A.; Oehl, F.; da Silva, G.A. Assemblages of arbuscular mycorrhizal fungi in tropical humid and dry forests in the Northeast of Brazil. Botany 2018, 96, 859–871. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L.; De Deyn, G.B.; Eggleton, P.; Fierer, N.; Fraser, T.; et al. Global soil biodiversity atlas. In European Commission; Publications Office of the European Union: Luxembourg, 2016; p. 176. [Google Scholar]
- Whitman, T.; Whitman, E.; Woolet, J.; Flannigan, M.D.; Thompson, D.K.; Parisien, M.A. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 2019, 138, 107571. [Google Scholar] [CrossRef]
- Dove, N.C.; Hart, S.C. Fire reduces fungal species richness and in situ mycorrhizal colonization: A meta-analysis. Fire Ecol. 2017, 13, 37–65. [Google Scholar] [CrossRef]
- Saini, R.; Sharma, S. Climate resilient microbes in sustainable crop production. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Kumar, V., Kumar, R., Singh, J., Kumar, P., Eds.; Agriculture and Environmental Science Academy: Haridwar, India, 2019; pp. 265–283. [Google Scholar]
- Johnson, N.C.; Tilman, D.; Wedin, D. Plant and soil controls on mycorrhizal fungal communities. Ecology 1992, 73, 2034–2042. [Google Scholar] [CrossRef]
- Egerton-Warburton, L.M.; Johnson, N.C.; Allen, E.B. Mycorrhizal community dynamics following nitrogen fertilization: A cross-site test in five grasslands. Ecol. Monogr. 2007, 77, 527–544. [Google Scholar] [CrossRef]
- Lekberg, Y.; Gibbons, S.M.; Rosendahl, S.; Ramsey, P.W. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J. 2013, 7, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Egan, C.; Li, D.-W.; Klironomos, J. Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol. 2014, 12, 26–31. [Google Scholar] [CrossRef]
- Fox, S.; Sikes, B.A.; Brown, S.P.; Cripps, C.L.; Glassman, S.I.; Hughes, K.; Semenova-Nelsen, T.; Jumpponen, A. Fire as a driver of fungal diversity—A synthesis of current knowledge. Mycologia 2022, 114, 215–241. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.I.; Levine, C.R.; DiRocco, A.M.; Battles, J.J.; Bruns, T.D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: Some like it hot. ISME J. 2016, 10, 1228–1239. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Urretavizcaya, M.F.; Rago, M.M.; Caselli, M.; Ríos Campano, F.; Gianolini, S.; Alonso, V. Effect of fire severity and presence of bamboo (Chusquea culeou) on soil chemical properties in Andean Patagonian forests of Argentina. Int. J. Wildland Fire 2025, 34, WF24011. [Google Scholar] [CrossRef]
- Mutch, L.S.; Swetnam, T.W. Effects of fire severity and climate on Ring-Width Growth of Giant Sequoia after Burning. In Proceedings of the Symposium on Fire in Wilderness and Park Management, Missoula, MT, USA, 30 March–1 April 1993; Brown, J.K., Mutch, R.W., Spoon, C.W., Wakimoto, R.H., Eds.; USdA Forest Service: Washington, DC, USA, 1995; pp. 241–246. [Google Scholar]
- SUIE 2002 Sistema Unificado de Información Energética (SUIE). Secretaría de Energía de la Nación Argentina. Mapa de Isohietas República Argentina. 2002. Available online: https://sig.energia.gob.ar/visor/visorsig.php (accessed on 10 December 2023).
- Ianson, D.C.; Allen, M.F. The Effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia 1986, 78, 164–168. [Google Scholar]
- Allen, M.F.; Moore, T.S., Jr.; Christensen, M.; Stanton, N. America growth of Vesicular-Arbuscular-Mycorrhizal and Nonmycorrhizal Bouteloua gracilis in a defined medium. Mycologia 1979, 71, 666–669. [Google Scholar] [CrossRef]
- Bailey, W. Soil Science. In Análisis Químico de Suelos; Jackson, M.L., Ed.; Ediciones Omega S.A.: Barcelona, Spain, 1943; pp. 55–143. [Google Scholar]
- Allison, L.E. Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos; Editorial Limusa: Durango, Mexico, 1980. [Google Scholar]
- Davies, B.E. Loss-on ignition as an estimate of soil organic matter. Soil Sci. Proc. 1974, 38, 150. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Organic Matter Testing: An Overview. In Soil Organic Matter: Analysis and Interpretation; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Jr., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1–9. [Google Scholar]
- Bremmer, J.M. Determination of Nitrogen in soil by the Kjeldahl method. J. Agr. Sci. 1960, 55, 11–13. [Google Scholar]
- Olsen, S.R.; Cole, D.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S.D.A.: Washington, DC, USA, 1954; p. 19.
- Elrashidi, M.A. Soil and Water Conservation Advances in the United States: A review. J. Soil Water Conserv. 2011, 66, 5A. [Google Scholar] [CrossRef]
- Richter, M.; Conti, M.; Maccarini, G. Mejoras en la determinación de cationes intercambiables y capacidad de intercambio catiónico en los suelos. Rev. Fac. Agron. 1982, 3, 145–155. [Google Scholar]
- Schollenber, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil—ammnium acetate method. Soil Sci. 1945, 59, 13–25. [Google Scholar]
- Sauer, D.B.; Burroughs, R. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 1986, 76, 745–749. [Google Scholar] [CrossRef]
- Schinelli Casares, T. Producción de Nothofagus Bajo Condiciones Controladas; Ediciones INTA: Bariloche, Argentina, 2012; p. 52. [Google Scholar]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Lett. Nat. 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Cázares, E.; Smith, J.E. Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon coast range soil. Mycorrhiza 1996, 6, 65–67. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Grove, T.; Malajczuk, N. Working with mycorrhizas in forestry and agriculture. In Australian Center for International Agricultural Research; Monograph 32: Canberra, Australia, 1996; p. 374. [Google Scholar]
- Di Rienzo, J.A.; Macchiavelli, R.E.; Casanoves, F. Modelos Mixtos en InfoStat. In Manual del Usuario; Editorial Brujas: Córdoba, Argentina, 2010. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versión 2020. In Centro de Transferencia InfoStat, FCA; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020; Available online: http://www.infostat.com.ar (accessed on 10 June 2023).
- RStudio Team. Posit Team RStudio: Integrated Development Environment for R. Posit Software, PBC; RStudio Team: Boston, MA, USA, 2022; Available online: http://www.posit.co/ (accessed on 5 March 2025).
- Carrillo, R.; Godoy, R.; Peredo, H. Simbiosis micorrícica en comunidades boscosas del Valle Central en el sur de Chile. Bosque 1992, 13, 57–67. [Google Scholar] [CrossRef]
- Dhillion, S.S.; Anderson, D.C. Seasonal dynamics of dominant species of arbuscular mycorrhizae in burned and unburned sand prairies. Can. J. Bot. 1993, 71, 1625–1630. [Google Scholar] [CrossRef]
- Pattinson, G.S.; Hammill, K.A.; Sutton, B.G.; McGee, P.A. Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol. Res. 1999, 103, 491–496. [Google Scholar] [CrossRef]
- Eom, A.-H.; Hartnett, D.C.; Wilson, G.W.T.; Figge, D.A.H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in Tallgrass Prairie. Am. Midl. Nat. 1999, 142, 55–70. [Google Scholar] [CrossRef]
- Allen, E.B.; Steers, R.J.; Dickens, S.J. Impacts of fire and invasive species on desert soil ecology. Rangel. Ecol. Manag. 2011, 64, 450–462. [Google Scholar] [CrossRef]
- Bouffaud, M.-L.; Bragalini, C.; Berruti, A.; Peyret-Guzzon, M.; Voyron, S.; Stockinger, H.; van Tuinen, D.; Lumini, E.; Wipf, D.; Plassart, P.; et al. Arbuscular mycorrhizal fungal community differences among European long-term observatories. Mycorrhiza 2017, 27, 331–343. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Vaessen, S.; Barcelo, M.; He, J.; Rahimlou, S.; Abarenkov, K.; Brundrett, M.C.; Gomes, S.I.F.; Merckx, V.; Tedersoo, L. FungalRoot: Global online database of plant mycorrhizal associations. New Phytol. 2020, 227, 955–966. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Folliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Chimal-Sánchez, E.; Araiza-Jacinto, M.L.; Román-Cárdenas, V.J. El efecto del fuego en la riqueza de especies de hongos micorrizógenos arbusculares asociada a plantas de matorral xerófilo en el Parque Ecológico “Cubitos”. Rev. Espec. Cienc. Químico-Biológicas 2015, 18, 107–115. [Google Scholar] [CrossRef]
- Barraclough, A.D.; Olsson, P.A. Slash-and-burn practices decrease arbuscular mycorrhizal fungi abundance in soil and the roots of Didierea madagascariensis in the dry tropical forest of Madagascar. Fire 2018, 1, 37. [Google Scholar] [CrossRef]
- Chávez, D.; Machuca, A.; Fuentes-Ramirez, A.; Fernandez, N.; Cornejo, P. Shifts in soil traits and arbuscular mycorrhizal symbiosis represent the conservation status of Araucaria araucana forests and the effects after fire events. For. Ecol. Manag. 2020, 458, 117806. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Harpe, V.R.; Turner, J.H.; Moore, J.A.M.; Moorhead, L.C.; Beals, K.K.; Hubert, M.M.; Papes, M.; Schweitzer, J.A. Arbuscular mycorrhizal fungal response to fire and urbanization in the Great Smoky Mountains National Park. Elem. Sci. Anth. 2021, 9, 00037. [Google Scholar] [CrossRef]
- Mino, L.; Kolp, M.R.; Fox, S.; Reazin, C.; Zeglin, L.; Jumpponen, A. Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiol. Ecol. 2021, 97, fiab154. [Google Scholar] [CrossRef]
- Hopkins, J.R.; McKenna, T.P.; Bennett, A.E. Fire season and time since fire determine arbuscular mycorrhizal fungal trait responses to fire. Plant Soil 2024, 503, 231–245. [Google Scholar] [CrossRef]
- Docherty, K.M.; Balser, T.C.; Bohannan, B.J.M.; Gutknecht, J.L.M. Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry 2012, 109, 63–83. [Google Scholar] [CrossRef]
- Longo, S.; Nouhra, E.; Tecco, P.A.; Urcelay, C. Functional stability of mycorrhizal interactions in woody natives and aliens facing fire disturbance. Plant Ecol. 2020, 221, 321–331. [Google Scholar] [CrossRef]
- Stürmer, S.L.; Hackbarth Heinz, K.G.; Marascalchi, M.N.; Giongo, A.; Siqueira, J.O. Wildfire does not affect spore abundance, species richness, and inoculum potential of arbuscular mycorrhizal fungi (Glomeromycota) in ferruginous Canga ecosystems. Acta Bot. Bras. 2022, 36, e2021abb0218. [Google Scholar] [CrossRef]
- Moreira, M.; Baretta, D.; Tsai, S.M.; Nogueira Cardoso, E.J.B. Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucaria angustifolia (Bert.) O. Ktze. ecosystems. Sci. Agric. 2006, 63, 380–385. [Google Scholar] [CrossRef]
- Urretavizcaya, M.F.; Defossé, G.E.; Gonda, H.E. Effect of sowing season, plant cover, and climatic variability on seedling emergence and survival in burned Austrocedrus chilensis forests. Restor. Ecol. 2012, 20, 131–140. [Google Scholar] [CrossRef]
- Gobbi, M.; Schlichter, T. Survival of Austrocedrus chilensis seedlings in relation to microsite conditions and forest thinning. For. Ecol. Manag. 1998, 111, 137–146. [Google Scholar] [CrossRef]
- La Manna, L.; Barroetaveña, C. Propiedades químicas del suelo en bosques de Nothofagus antarctica y Austrocedrus chilensis afectados por fuego. Rev. Fac. Cienc. Agrar. UNCuyo 2011, 43, 41–55. [Google Scholar]
- Marín, C.; Aguilera, P.; Oehl, F.; Godoy, R. Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J. Soil Sci. Plant Nutr. 2017, 17, 966–984. [Google Scholar] [CrossRef]
- Paz, C.; Öpik, M.; Bulascoschi, L.; Bueno, C.G.; Galetti, M. Dispersal of arbuscular mycorrhizal fungi: Evidence and insights for ecological studies. Microb. Ecol. 2021, 81, 283–292. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Księżniak, A.; Gałązka, A.; Hetman, B.; Kopacki, M.; Skwaryło-Bednarz, B. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: A Review. Int. Agrophysics 2018, 32, 133–140. [Google Scholar] [CrossRef]
- Gavito, M.E.; Olsson, P.A. Foraging for resources in arbuscular mycorrhizal fungi: What is an obligate symbiont searching for and how is it done? In Mycorrhiza; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 73–88. [Google Scholar]
- Mohammadi Goltapeh, E.; Rezaee Danesh, Y.; Prasad, R.; Varma, A. Mycorrhizal fungi: What we know and What should we know? In Mycorrhiza; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27. [Google Scholar]
- Öpik, M.; Saks, Ü.; Kennedy, J.; Daniell, T. Global diversity patterns of arbuscular mycorrhizal fungi–community composition and links with functionality. In Mycorrhiza; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 89–111. [Google Scholar]
- Kytöviita, M.-M.; Vestberg, M. Soil legacy determines arbuscular mycorrhizal spore bank and plant performance in the low Arctic. Mycorrhiza 2020, 30, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.F.; Su, Y.Y.; Zhang, Y.; Wu, M.Y.; Zhang, Z.; Pei, K.Q.; Sun, L.F.; Wan, S.Q.; Liang, Y. Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chin. Sci. Bull. 2013, 58, 4109–4119. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Guo, R.; Guo, J. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci. Rep. 2015, 6, 24749. [Google Scholar] [CrossRef]
- Kilpeläinen, J.; Aphalo, P.J.; Lehto, T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought. Soil Biol. Biochem. 2020, 146, 107798. [Google Scholar] [CrossRef]
Sampling Sites | A | B | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Fire Severity | Unb * | Mod | High | Unb | Mod | High | Unb | Mod | High |
pH | 6.05 | 6.71 | 7.15 | 6.85 | 7.31 | 7.18 | 6.76 | 6.80 | 7.63 |
OM | 24.38 | 11.04 | 11.02 | 28.72 | 8.95 | 7.46 | 34.76 | 12.95 | 8.51 |
* T | b | a | a | b | a | a | b | a | a |
N | 0.72 | 0.41 | 0.46 | 0.66 | 0.39 | 0.29 | 0.91 | 0.64 | 0.39 |
* T | b | a | a | b | a | a | b | a | a |
Available P | 40.66 | 21.65 | 55.23 | 24.01 | 47.29 | 30.45 | 54.03 | 44.48 | 39.68 |
Na | 0.88 | 0.88 | 1.06 | 1.12 | 0.76 | 0.52 | 1.07 | 0.71 | 0.85 |
K | 0.96 | 1.37 | 0.94 | 1.71 | 0.81 | 0.55 | 1.69 | 1.21 | 1.68 |
Ca | 16.91 | 7.08 | 17.42 | 38.16 | 18.42 | 14.83 | 43.33 | 20 | 32.5 |
Mg | 4.08 | 2.08 | 5.58 | 9.33 | 1.83 | 1.33 | 7.5 | 5.67 | 4.5 |
EC | 0.13 | 0.13 | 0.21 | 0.08 | 0.09 | 0.13 | 0.12 | 0.13 | 0.22 |
C/N | 16.7 | 13.1 | 11.8 | 24.4 | 11.5 | 12.5 | 19.2 | 9.9 | 10.8 |
* T | b | a | a | b | a | a | b | a | a |
CEC | 42.67 | 37.33 | 31.00 | 52.33 | 26.00 | 23.33 | 44.33 | 34.00 | 31.33 |
* T | b | a | a | b | a | a | b | a | a |
Variable | % AM | Arbuscules | Coil | Hyphae | Vesicles | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
pH | −0.7 | 0.05 | −0.7 | 0.03 | −0.6 | 0.00045 | −0.8 | 0.02 | −0.6 | 0.03 |
OM% | 0.8 | 0.02 | 0.9 | 0.003 | 0.92 | 0.11 | 0.8 | 0.01 | 0.72 | 0.09 |
EC | −0.7 | 0.05 | −0.65 | 0.06 | −0.51 | 0.17 | −0.53 | 0.14 | −0.7 | 0.05 |
Mg | 0.35 | 0.36 | 0.62 | 0.07 | 0.7 | 0.03 | 0.52 | 0.15 | 0.24 | 0.53 |
C/N | 0.76 | 0.02 | 0.8 | 0.01 | 0.95 | 0.0001 | 0.8 | 0.01 | 0.66 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado Salomón, M.E.; Urretavizcaya, M.F.; Talarico, S.S.; De Errasti, A.; Gianolini, S.; Barroetaveña, C. Evaluation of Density and Viability of Arbuscular Mycorrhizal Spores in Austrocedrus chilensis Forests Affected by Wildland Fires in Patagonia, Argentina. Wild 2025, 2, 36. https://doi.org/10.3390/wild2030036
Salgado Salomón ME, Urretavizcaya MF, Talarico SS, De Errasti A, Gianolini S, Barroetaveña C. Evaluation of Density and Viability of Arbuscular Mycorrhizal Spores in Austrocedrus chilensis Forests Affected by Wildland Fires in Patagonia, Argentina. Wild. 2025; 2(3):36. https://doi.org/10.3390/wild2030036
Chicago/Turabian StyleSalgado Salomón, María Eugenia, María Florencia Urretavizcaya, Sabrina S. Talarico, Andrés De Errasti, Stefano Gianolini, and Carolina Barroetaveña. 2025. "Evaluation of Density and Viability of Arbuscular Mycorrhizal Spores in Austrocedrus chilensis Forests Affected by Wildland Fires in Patagonia, Argentina" Wild 2, no. 3: 36. https://doi.org/10.3390/wild2030036
APA StyleSalgado Salomón, M. E., Urretavizcaya, M. F., Talarico, S. S., De Errasti, A., Gianolini, S., & Barroetaveña, C. (2025). Evaluation of Density and Viability of Arbuscular Mycorrhizal Spores in Austrocedrus chilensis Forests Affected by Wildland Fires in Patagonia, Argentina. Wild, 2(3), 36. https://doi.org/10.3390/wild2030036