Assessing Species Richness with Camera Trap Surveys During Five Years of Large-Scale Mining Disruptions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Equipment Deployed
2.3. Statistical Analyses
3. Results
3.1. Species Richness
3.2. Detection Rates
3.3. Relative Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khavhagali, V.P. Importance, Threats, Status and Conservation Challenges of Biodiversity in Northern Cape; The Grassland Society of Southern Africa: Kimberley, South Africa, 2010; Volume 10, pp. 14–17. [Google Scholar]
- Ewers, R.M.; Didham, R.K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 2006, 81, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Trolliet, F.; Huynen, M.; Vermeulen, C.; Hambuckers, A. Use of camera traps for wildlife studies. A review. Biotechnol. Agron. Soc. Environ. 2014, 18, 446–454. [Google Scholar]
- Crustescu, B.; Stenhouse, G.B.; Boyce, M.S. Large omnivore movements in response to surface mining and mine reclamation. Sci. Rep. 2016, 6, 19177. [Google Scholar] [CrossRef] [PubMed]
- Kays, R.; Kranstauber, B.; Jansen, P.; Carbone, C.; Rowcliffe, M.; Fountaun, T.; Tilak, S. Camera traps as sensor networks for monitoring animal communities. In Proceedings of the 2009 IEEE 34th Conference on Local Computer Networks, Zurich, Switzerland, 20–23 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 811–818. [Google Scholar] [CrossRef]
- Attuquayefio, D.K.; Owusu, E.H.; Ofori, B.Y. Impact of mining and forest regeneration on small mammal biodiversity in the Western Region of Ghana. Environ. Monit. Assess. 2017, 189, 237. [Google Scholar] [CrossRef] [PubMed]
- Owusu, E.H.; Ofori, B.Y.; Attuquayefio, D.K. The secondary impact of mining on primates and other medium to large mammals in forest reserves in southwestern Ghana. Extr. Ind. Soc. 2018, 5, 114–121. [Google Scholar] [CrossRef]
- Lefcort, H.; Vancura, J.; Lider, E.L. 75 years after mining ends stream insect diversity is still affected by heavy metals. Ecotoxicology 2010, 19, 1416–1425. [Google Scholar] [CrossRef]
- Sonter, L.J.; Ali, S.H.; Watson, J.E. Mining and biodiversity: Key issues and research needs in conservation science. Proc. R. Soc. B 2018, 285, 20181926. [Google Scholar] [CrossRef]
- Havemann, C.P.; Retief, T.A.; Collins, K.; Fynn, R.W.S.; Tosh, C.A.; de Bruyn, P.J.N. Home range and habitat use of roan antelope Hippotragus equinus in Northern Botswana. J. Arid. Environ. 2022, 196, 104648. [Google Scholar] [CrossRef]
- Bernhardt, J.R.; O’Connor, M.I.; Sunday, J.M.; Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. B 2020, 375, 20190454. [Google Scholar] [CrossRef]
- Viana, D.S.; Granados, J.E.; Fandos, P.; Pérez, J.M.; Cano-Manuel, F.J.; Burón, D.; Fandos, G.; Aguado, M.Á.P.; Figuerola, J.; Soriguer, R.C. Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Mov. Ecol. 2018, 6, 1. [Google Scholar] [CrossRef]
- Moorcroft, P.R. Mechanistic approaches to understanding and predicting mammalian space use: Recent advances, future directions. J. Mammal. 2012, 93, 903–916. [Google Scholar] [CrossRef]
- Johnson, D.H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 1980, 61, 65–71. [Google Scholar] [CrossRef]
- Van Moorter, B.; Rolandsen, C.M.; Basille, M.; Gaillard, J.M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 2016, 85, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Caldecott, J.O.; Jenkins, M.D.; Johnson, T.H.; Groombridge, B. Priorities for conserving global species richness and endemism. Biodivers. Conserv. 1996, 5, 699–727. [Google Scholar] [CrossRef]
- Fleishman, E.; Noss, R.F.; Noon, B.R. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 2006, 6, 543–553. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Homage to Santa Rosalia or Why are there so many animals? Am. Nat. 1959, 93, 145–159. [Google Scholar] [CrossRef]
- Riggio, J.; Kija, H.; Masenga, E.; Mbwilo, F.; Van de Perre, F.; Caro, T. Sensitivity of Africa’s larger mammals to humans. J. Nat. Conserv. 2018, 43, 136–145. [Google Scholar] [CrossRef]
- Wong, W.M.; Kachel, S. Camera trapping—Advancing the technology. In Snow Leopards; Academic Press: Cambridge, MA, USA, 2024; pp. 415–428. [Google Scholar] [CrossRef]
- Bijl, H.; Heltai, M. A narrative review on the use of camera traps and machine learning in wildlife research. Columella J. Agric. Environ. Sci. 2022, 9, 47–69. [Google Scholar] [CrossRef]
- Caravaggi, A.; Banks, P.B.; Burton, A.C.; Finlay, C.M.; Haswell, P.M.; Hayward, M.W.; Rowcliffe, M.J.; Wood, M.D. A review of camera trapping for conservation behaviour research. Remote Sens. Ecol. Conserv. 2017, 3, 109–122. [Google Scholar] [CrossRef]
- Rovero, F.; Kays, R. Camera trapping for conservation. In Conservation Technology; Wich, S.A., Piel, A.K., Eds.; Oxford University Press: Oxford, UK, 2021; pp. 79–101. [Google Scholar]
- MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 2003, 84, 2200–2207. [Google Scholar] [CrossRef]
- Van Wyk, A.E.; Smith, G.F. Regions of Floristic Endemism in Southern Africa: A Review with Emphasis on Succulents; Umdaus Press: Pretoria, South Africa, 2001. [Google Scholar]
- Frisby, A.W.; Siebert, S.J.; Struwig, M.; Cilliers, D.P. Plant endemism in Griqualand West, South Africa. South Afr. J. Bot. 2019, 124, 127–137. [Google Scholar] [CrossRef]
- Kays, R.; Arbogast, B.S.; Baker-Whatton, M.; Beirne, C.; Boone, H.M.; Bowler, M.; Burneo, S.F.; Cove, M.V.; Ding, P.; Espinosa, S.; et al. An empirical evaluation of camera trap study design: How many, how long and when? Methods Ecol. Evol. 2020, 11, 700–713. [Google Scholar] [CrossRef]
- Tfwala, C.M.; Van Rensburg, L.D.; Schall, R.; Dlamini, P. Drought dynamics and interannual rainfall variability on the Ghaap plateau, South Africa, 1918–2014. Phys. Chem. Earth Parts A/B/C 2018, 107, 1–7. [Google Scholar] [CrossRef]
- Smit, J.H.L. Fitososiologie en Veldbestuur van die Oostelike Kalahari Doringveld. Ph.D. Dissertation, University of Pretoria, Pretoria, South Africa, 2000. [Google Scholar]
- Apps, P.J.; McNutt, J.W. How camera traps work and how to work them. Afr. J. Ecol. 2018, 56, 702–709. [Google Scholar] [CrossRef]
- Cusack, J.J.; Dickman, A.J.; Rowcliffe, J.M.; Carbone, C.; Macdonald, D.W.; Coulson, T. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 2015, 10, e0126373. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.; Gange, A.C.; Wiesel, I. An oasis in the desert: The potential of water sources as camera trap sites in arid environments for surveying a carnivore guild. J. Arid. Environ. 2016, 124, 304–309. [Google Scholar] [CrossRef]
- Thorn, M.; Scott, D.M.; Green, M.; Bateman, P.W.; Cameron, E.Z. Estimating brown hyaena occupancy using baited camera traps. South Afr. J. Wildl. Res.—24-Mon. Delayed Open Access 2009, 39, 1–10. [Google Scholar] [CrossRef]
- Asaad, I.; Lundquist, C.J.; Erdmann, M.V.; Costello, M.J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 2017, 213, 309–316. [Google Scholar] [CrossRef]
- Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal distributions across the sciences: Keys and clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—Normal or log-normal: That is the question. BioScience 2001, 51, 341–352. [Google Scholar] [CrossRef]
- Tanwar, K.S.; Sadhu, A.; Jhala, Y.V. Camera trap placement for evaluating species richness, abundance, and activity. Sci. Rep. 2021, 11, 23050. [Google Scholar] [CrossRef]
- Taylor, W.A. Factors Influencing Productivity in Sympatric Populations of Mountain Reedbuck and Grey Rhebok in the Sterkfontein Dam Nature Reserve, South Africa. Ph.D. Dissertation, University of Pretoria, Pretoria, South Africa, 2006. [Google Scholar]
- Lichtenberg, E.M.; Hallager, S. A description of commonly observed behaviors for the kori bustard (Ardeotis kori). J. Ethol. 2008, 26, 17–34. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. Available online: https://www.researchgate.net/publication/267205556 (accessed on 19 October 2024).
- Engmann, S.; Cousineau, D. Comparing distributions: The two-sample Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test. J. Appl. Quant. Methods 2011, 6, 3. [Google Scholar]
- Losos, J.B.; Greene, H.W. Ecological and evolutionary implications of diet in monitor lizards. Biol. J. Linn. Soc. 1988, 35, 379–407. [Google Scholar] [CrossRef]
- Pietersen, D.W.; McKechnie, A.E.; Jansen, R. Home range, habitat selection and activity patterns of an arid-zone population of Temminck’s ground pangolins, Smutsia temminckii. Afr. Zool. 2014, 49, 265–276. [Google Scholar] [CrossRef]
- Taylor, W.A.; Skinner, J.D.; Krecek, R.C. Home ranges of sympatric grey rhebok and mountain reedbuck in a South African highveld grassland. Afr. Zool. 2007, 42, 145–151. [Google Scholar] [CrossRef]
- Parker, D.M.; Nams, V.O.; Balme, G.A.; Begg, C.; Begg, K.; Bidner, L.; Bockmuehl, D.; Cozzi, G.; du Preez, B.; Fattebert, J.; et al. The implications of large home range size in a solitary felid, the Leopard (Panthera pardus). J. Mammal. 2023, 104, 1353–1363. [Google Scholar] [CrossRef]
- Rovero, F.; Marshall, A.R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 2009, 46, 1011–1017. [Google Scholar] [CrossRef]
- Stein, A.B.; Fuller, T.K.; Marker, L.L. Brown hyaena feeding ecology on Namibian farmlands. South Afr. J. Wildl. Res.—24-Mon. Delayed Open Access 2013, 43, 27–32. [Google Scholar] [CrossRef]
- Wilson, B. The Black-Footed Cat Felis nigripes (Burchell, 1824): A Review of the Geographical Distribution and Conservation Status. Unpublished. MTech Dissertation, Tshwane University of Technology, Pretoria, South Africa, 2015. [Google Scholar]
- Petraitis, P.S.; Latham, R.E.; Niesenbaum, R.A. The maintenance of species diversity by disturbance. Q. Rev. Biol. 1989, 64, 393–418. [Google Scholar] [CrossRef]
- Kamler, J.F.; Macdonald, D.W. Social organization, survival, and dispersal of cape foxes (Vulpes chama) in South Africa. Mamm. Biol. 2014, 79, 64–70. [Google Scholar] [CrossRef]
- Pietersen, D.W.; McKechnie, A.E.; Jansen, R. A review of the anthropogenic threats faced by Temminck’s ground pangolin, Smutsia temminckii, in southern Africa. South Afr. J. Wildl. Res.—24-Mon. Delayed Open Access 2014, 44, 167–178. [Google Scholar] [CrossRef]
- Müller, L.; Briers-Louw, W.D.; Seele, B.C.; Stefanus Lochner, C.; Amin, R. Population size, density, and ranging behaviour in a key leopard population in the Western Cape, South Africa. PLoS ONE 2022, 17, e0254507. [Google Scholar] [CrossRef] [PubMed]
- Suedmeyer, W.K. Hyaenidae. In Fowler’s Zoo and Wild Animal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, p. 509. [Google Scholar] [CrossRef]
- Vissia, S.; Wadhwa, R.; Van Langevelde, F. Co-occurrence of high densities of brown hyena and spotted hyena in central Tuli, Botswana. J. Zool. 2021, 314, 143–150. [Google Scholar] [CrossRef]
- Weyer, N.M. Physiological Flexibility of Free-Living Aardvarks (Orycteropus afer) in Response to Environmental Fluctuations. Ph.D. Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2018. [Google Scholar]
- Parsons, A.W.; Forrester, T.; McShea, W.J.; Baker-Whatton, M.C.; Millspaugh, J.J.; Kays, R. Do occupancy or detection rates from camera traps reflect deer density? J. Mammal. 2017, 98, 1547–1557. [Google Scholar] [CrossRef]
- Taylor, W.A.; Skinner, J.D. A review of the social organisation of mountain reedbuck, Redunca fulvorufula, and grey rhebok, Pelea capreolus, in relation to their ecology. Trans. R. Soc. South Afr. 2006, 61, 8–10. [Google Scholar] [CrossRef]
- Patel, T.; O’Connor, T.; Parrini, F.; Krüger, S. Using a relative abundance index to determine population trends of large mammals in the uKhahlamba Drakensberg Park, South Africa, between 2000 and 2010. Afr. J. Wildl. Res. 2021, 51, 68–74. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Pietersen, D.W.; Jansen, R.; Swart, J.; Panaino, W.; Kotze, A.; Rankin, P.; Nebe, B. Temminck’s pangolin Smutsia temminckii. In Pangolins; Academic Press: Cambridge, MA, USA, 2020; pp. 175–193. [Google Scholar] [CrossRef]
- Burton, A.C.; Neilson, E.; Moreira, D.; Ladle, A.; Steenweg, R.; Fisher, J.T.; Bayne, E.; Boutin, S. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 2015, 52, 675–685. [Google Scholar] [CrossRef]
Trap Location | Number of Animal Species Detected | Strike Rate | Vegetation Type | Water Present |
---|---|---|---|---|
1 | 11 | 91.8 | Wild Olive Shrubland | Yes |
2 | 8 | 61.9 | Wild Olive Woodland | No |
3 | 13 | 146.1 | Rhigozum Grassland | No |
4 | 20 | 726.4 | Dwarf Karroid Shrubland | Yes |
5 | 13 | 39.8 | Dwarf Karroid Shrubland | No |
6 | 20 | 133.3 | Camphor Bush Panveld | No |
7 | 3 | 8.1 | Camphor Bush Panveld | No |
8 | 13 | 55.5 | Camphor Bush Panveld | No |
9 | 1 | 1.0 | Camphor Bush Panveld | No |
10 | 3 | 91 | Camphor Bush Panveld | No |
11 | 15 | 849.2 | Camphor Bush Panveld | Yes |
12 | 7 | 112.9 | Rhigozum Grassland | No |
13 | 17 | 173.8 | Rhigozum Grassland | No |
14 | 14 | 68.8 | Black Thorn Shrubland | No |
15 | 16 | 39.1 | Rhigozum Grassland | No |
16 | 12 | 185.1 | Rhigozum Grassland | Yes |
17 | 5 | 91.8 | Groenwaterspruit | No |
18 | 11 | 53.1 | Wild Olive Shrubland | No |
19 | 19 | 415.1 | Camphor Bush Panveld | No |
20 | 8 | 19.0 | Rhigozum Grassland | No |
21 | 7 | 37.3 | Wolhaarkop Sandveld | No |
22 | 22 | 488.4 | Wolhaarkop Sandveld | No |
23 | 11 | 138.7 | Black Thorn Shrubland | Yes |
24 | 14 | 87.8 | Rhigozum Grassland | No |
25 | 16 | 49.1 | Dwarf Karroid Shrubland | No |
26 | 10 | 116.0 | Wild Olive Shrubland | No |
27 | 5 | 11.1 | Camphor Bush Panveld | No |
28 | 15 | 52.3 | Wolhaarkop Sandveld | No |
29 | 20 | 139.2 | Wolhaarkop Sandveld | Yes |
30 | 18 | 60.7 | Rhigozum Grassland | No |
31 | 14 | 212.3 | Rhigozum Grassland | Yes |
32 | 7 | 132.8 | Camphor Bush Panveld | No |
33 | 10 | 153.8 | Black Thorn Shrubland | Yes |
34 | 12 | 25.6 | Wolhaarkop Sandveld | No |
35 | 16 | 353.3 | Wolhaarkop Sandveld | No |
36 | 29 | 71.7 | Rhigozum Grassland | Yes |
37 | 15 | 71.6 | Rhigozum Grassland | No |
38 | 13 | 706.6 | Black Thorn Shrubland | Yes |
39 | 17 | 317.9 | Wolhaarkop Sandveld | Yes |
40 | 16 | 462.3 | Wolhaarkop Sandveld | Yes |
41 | 8 | 134.6 | Soutloop River | Yes |
42 | 13 | 271.4 | Black Thorn Shrubland | Yes |
43 | 7 | 250.0 | Black Thorn Shrubland | No |
44 | 15 | 430.9 | Black Thorn Shrubland | Yes |
45 | 3 | 26.04 | Banded Ironstone Ridge | No |
46 | 4 | 418.7 | Rhigozum Grassland | No |
47 | 15 | 527.1 | Black Thorn Shrubland | Yes |
48 | 6 | 210.0 | Black Thorn Shrubland | Yes |
49 | 8 | 525.0 | Black Thorn Shrubland | Yes |
50 | 12 | 495.0 | Black Thorn Shrubland | Yes |
51 | 1 | 12.5 | Wolhaarkop Sandveld | No |
52 | 6 | 160.0 | Wolhaarkop Sandveld | No |
External Factor | Species Richness | p-Value |
---|---|---|
Vegetation | 0.127 | 0.601 |
Water proximity | 0.281 | 0.044 * |
Distance from mining activity | 0.218 | 0.121 |
Species | Latin Name | Mean in % | 95% Confidence Limits | IUCN Status |
---|---|---|---|---|
Kudu | Tragelaphus strepsiceros | 61.57 | 20,237 | Least Concern |
Springbok | Antidorcas marsupialis | 47.31 | 65,915 | Least Concern |
Common warthog | Phacochoerus africanus | 24.86 | 14,223 | Least Concern |
Common duiker | Sylvicapra grimmia | 15.50 | 6846 | Least Concern |
Gemsbok | Oryx gazella | 11.01 | 9950 | Least Concern |
Blue wildebeest | Connochaetes taurinus | 8.19 | 10,854 | Least Concern |
Steenbok | Raphicerus campestris | 7.57 | 3653 | Least Concern |
Cape porcupine | Hystrix africaeaustralis | 6.81 | 3523 | Least Concern |
Cape scrub hare | Lepus saxatilis | 6.76 | 3343 | Least Concern |
Black-backed jackal | Canis mesomelas | 4.16 | 1493 | Least Concern |
Rock hyrax | Procedia capensis | 2.24 | 3057 | Least Concern |
Slender mongoose | Herpestes sanguineus | 2.17 | 1230 | Least Concern |
Springhare | Pedetes capensis | 1.99 | 1539 | Least Concern |
Aardvark | Orycteropus afer | 1.48 | 0.791 | Least Concern |
Blesbok | Damaliscus pygargus | 1.07 | 1040 | Least Concern |
Yellow mongoose | Cynictis penicillata | 0.94 | 0.764 | Least Concern |
Meerkat | Suricata suricatta | 0.89 | 0.965 | Least Concern |
Chacma baboon | Papio ursinus | 0.86 | 0.661 | Least Concern |
Kori bustard | Ardeotis kori | 0.83 | 0.415 | Near Threatened |
Caracal | Caracal caracal | 0.82 | 0.408 | Least Concern |
Bat-eared fox | Otocyon megalotis | 0.71 | 0.855 | Least Concern |
Small-spotted genet | Genetta genetta | 0.69 | 0.581 | Least Concern |
Cape ground squirrel | Xerus inauris | 0.27 | 0.249 | Least Concern |
African wild cat | Felis lybica | 0.26 | 0.190 | Least Concern |
Mountain reedbuck | Redunca fulvorufula | 0.25 | 0.366 | Least Concern |
Aardwolf | Proteles cristata | 0.23 | 0.198 | Least Concern |
Cape fox | Vulpes chama | 0.22 | 0.280 | Least Concern |
Tsessebe | Damaliscus lunatus ssp. lunatus | 0.20 | 0.372 | Least Concern |
Impala | Aepyceros melampus ssp. melampus | 0.19 | 0.246 | Least Concern |
Red hartebeest | Alcelaphus buselaphus ssp. caama | 0.18 | 0.334 | Least Concern |
Common eland | Tragelaphus oryx | 0.17 | 0.230 | Least Concern |
Striped polecat | Ictonyx striatus | 0.12 | 0.123 | Least Concern |
Common waterbuck | Kobus ellipsiprymnus ssp. ellipsiprymnus | 0.10 | 0.150 | Least Concern |
Sable antelope | Hippotragus niger | 0.09 | 0.120 | Least Concern |
Vervet monkey | Chloroneb’s pyrethrums | 0.07 | 0.076 | Least Concern |
Black-footed cat | Felis nigripes | 0.07 | 0.034 | Vulnerable |
Leopard | Panthera pardus | 0.06 | 0.031 | Vulnerable |
Roan antelope | Hippotragus equinus | 0.05 | 0.079 | Least Concern |
Plains zebra | Equus zebra | 0.05 | 0.095 | Least Concern |
Monitor lizard | Varanus niloticus | 0.03 | 0.049 | Least Concern |
Black wildebeest | Connochaetes gnou | 0.03 | 0.058 | Least Concern |
Nyala | Tragelaphus angasii | 0.02 | 0.039 | Least Concern |
Brown hyena | Parahyaena brunnea | 0.02 | 0.024 | Near Threatened |
Temminck’s pangolin | Smutsia temminckii | 0.01 | 0.021 | Vulnerable |
Giraffe | Giraffa camelopardalis | 0.01 | 0.011 | Vulnerable |
Black rhinoceros * | Diceros bicornis | n/a | n/a | Critically Endangered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higgs, R.W.; Deacon, F. Assessing Species Richness with Camera Trap Surveys During Five Years of Large-Scale Mining Disruptions. Wild 2024, 1, 82-95. https://doi.org/10.3390/wild1010007
Higgs RW, Deacon F. Assessing Species Richness with Camera Trap Surveys During Five Years of Large-Scale Mining Disruptions. Wild. 2024; 1(1):82-95. https://doi.org/10.3390/wild1010007
Chicago/Turabian StyleHiggs, Ruan W., and Francois Deacon. 2024. "Assessing Species Richness with Camera Trap Surveys During Five Years of Large-Scale Mining Disruptions" Wild 1, no. 1: 82-95. https://doi.org/10.3390/wild1010007
APA StyleHiggs, R. W., & Deacon, F. (2024). Assessing Species Richness with Camera Trap Surveys During Five Years of Large-Scale Mining Disruptions. Wild, 1(1), 82-95. https://doi.org/10.3390/wild1010007