Integrating Artificial Intelligence with Biomarkers to Meet the Challenges of Dementia
Abstract
1. Introduction
2. Understanding the Cellular Physiology of AD
2.1. Amyloid-β Plaques
2.2. Tau Neurofibrillary Tangles
2.3. Inflammation and Microglia
2.4. Mitochondrial Dysfunction
2.5. Neuronal and Synaptic Loss
2.6. Genetic Factors and Gene Expression
2.7. Role of the Gut Microbiome
3. AD and Its Association with Comorbid Conditions
3.1. Type 2 Diabetes
3.2. Cholesterol Levels
3.3. Neurotrauma
3.4. Retinopathy
4. Advances in AI & Data Collection Efforts
5. AI-Based Tools for AD Risk Prediction
| Author | N | Databases Used | Key Findings | Refs |
|---|---|---|---|---|
| ANU-ADRI | ||||
| Anstey et al. | 4304 | Rush Memory and Aging Study, Kungsholmen Project & Cardiovascular Health Cognition Study | For the ANU-ADRI using available data, the Rush Memory and Aging Study c-statistic was 0.637 (95% CI 0.596–0.678), for the Kungsholmen Project study 0.740 (0.712–0.768) and for the Cardiovascular Health Cognition Study 0.733 (0.691–0.776) for predicting AD. | [102] |
| Cherbuin et al. | 461 | - | Every additional risk point on the ANU-ADRI was associated with an 8% increased risk of developing MCI/dementia over a 12-year follow-up | [108] |
| Andrews et al. | 2078 | - | A higher ANU-ADRI score was associated with increased risk of progressing from being cognitively normal to MCI (HR 1.07 [95% CI 1.04–1.11]). | [109] |
| CAIDE Risk Score | ||||
| Kivipelto et al. | 1409 | CAIDE | The CAIDE risk score predicted dementia well (area under curve 0.77; 95% CI 0.71–0.83). When the cut-off of 9 points or more was applied the sensitivity was 0.77, the specificity was 0.63, and the negative predictive value was 0.98. | [103] |
| Rundek et al. | 1290 | Northern Manhattan Study | The CAIDE score was associated with worse global cognition at initial assessment (Beta per SD = −0.347, p < 0.0001), and with greater decline over time (Beta per SD = −0.033, p = 0.02). However, these associations in cognitive decline were not significant after adjusting for age, sex, and education. | [110] |
| Fayosse et al. | 7553 | Whitehall II study | The predictive performance of CAIDE (C-statistic = 0.714; 95% CI 0.690–0.739) and Framingham cardiovascular Risk Score (C-statistic = 0.719; 95% CI 0.693–0.745) was better than FINDRISC risk score (C-statistic = 0.630; 95% CI 0.602–0.659); p < 0.001), Akaike’s information criterion difference > 3; R2 32.5%, 32.0%, and 12.5%, respectively. However, when the effect of age in these risk scores was removed the association with dementia in all age groups remained for Framingham cardiovascular Risk Score and FINDRISC risk score, but not for CAIDE. | [111] |
| Exalto et al. | 9480 | - | The CAIDE score predicted well within different race strata. The risk score allowed stratification of participants into those with 40-year low (9%) and high (29%) dementia risk. | [112] |
| Chosy et al. | 3582 | Honolulu Heart Program | The CAIDE dementia risk score demonstrated significant association with later-life severe cognitive impairment (OR = 1.477, 95% CI: 1.39–1.58). However, the area under the receiver-operating characteristic curve c-statistics suggested poor predictive ability (c = 0.645, 95% CI: 0.62–0.67). Using a score cut-point of 10, the accuracy was acceptable (0.82), but the sensitivity was low (0.50). | [114] |
| LIBRA Dementia Risk Tool | ||||
| Schiepers et al. | 949 | Maastricht Ageing Study | A one-point increase in LIBRA score was found to relate to 19% higher risk for dementia and 9% higher risk for cognitive impairment. | [104] |
| Pons et al. | 484 | - | Those with MCI showed a significantly higher LIBRA score compared to those with subjective cognitive complaints. multiple cognitive domains, in particular executive functioning, were associated with a higher LIBRA score, with stronger correlations in people with MCI. | [115] |
| Deckers et al. | 278 | Cambridge City over-75s cohort study | LIBRA score was not significantly associated with increased risk of severe cognitive impairment or dementia. | [117] |
| Vos et al. | 9387 | DESCRIPA study | In midlife (55–69 y) and late life (70–79 y), the risk for dementia increased with higher LIBRA scores. Individuals in the intermediate- and high-risk groups had a higher risk of dementia than those in the low-risk group. While in the oldest-old (80–97 y), higher LIBRA scores did not increase the risk for dementia. | [116] |
| UKBiobank Dementia Risk Score | ||||
| You et al. | 425,159 | UKBioBank | The UKB-DRP model was able to achieve a high discriminative accuracy in dementia (AUC 0.848 ± 0.007) and even better in AD (AUC 0.862 ± 0.015). | [105] |
6. AI-Based Tools for Early AD Diagnosis
6.1. Imaging-Based Tools
6.2. Cognitive Function Tools
6.3. Speech-Based Tools
6.4. Movement-Based Tools
| Author | N | Databases Used | Key Findings | Refs |
|---|---|---|---|---|
| Imaging-based tools | ||||
| Xue et al. | 51,269 | 4 Repeat Tauopathy Neuroimaging Initiative, ADNI, AIBL, Framingham Heart Study, NACC, Neuroimaging in Frontotemporal Dementia, Open Access Series of Imaging Studies, and Parkinson’s Progression Markers Initiative | Their model achieved an AUROC of 0.94 in classifying individuals with normal cognition, mild cognitive impairment, and dementia. Also, the AUROC was 0.96 in differentiating dementia etiologies. | [122] |
| De Francesco et al. | 506 | ADNI, NACC, Frontotemporal Lobar Degeneration Neuroimaging Initiative and NIH Parkinson’s Disease Biomarkers Program | Their predictive model performed with an overall AUC of 98%, high overall precision (88%), recall (88%), and F1-scores (88%) in differentiating different dementia subtypes. | [123] |
| Ji et al. | 1500 | ADNI | Using an ensemble model of the ResNet-50, NASNet, and MobileNet CNNs on image slices of grey and white matter from MRIs, they achieved diagnostic accuracies of 97.65% for AD/MCI and 88.37% for MCI/CN controls. | [125] |
| Kang et al. | 1500 | ADNI | Their ensemble approach achieved accuracy values of 90.36%, 77.19%, and 72.36% when classifying AD versus CN, AD versus MCI, and MCI versus CN, respectively. | [126] |
| Cognitive function tools | ||||
| Maruff et al. | 653 | - | Large magnitude impairments in MCI (g = 2.2) and AD (g = 3.3) were identified for the learning/working memory composite, and smaller impairments observed for the attention/psychomotor composite (g’s = 0.5 and 1, respectively). The cut-score associated with optimal sensitivity and specificity in identifying MCI-related cognitive impairment on the learning/working memory composite was −1SD, and in the AD group, this optimal value was −1.7SD. | [129] |
| White et al. | 5055 | - | Individual CogState Brief Battery measures of learning and working memory showed high discriminability for AD-related cognitive impairment for Clinical Dementia Rating of 0.5 (AUCs ∼ 0.79–0.88), and Clinical Dementia Rating > 0.5 (AUCs ∼ 0.89–0.96) groups. Discrimination ability for theoretically derived CBB composite measures was high, particularly for the Learning and Working Memory (LWM) composite (CDR 0.5 AUC = 0.90, CDR > 0.5 AUC = 0.97). | [130] |
| Lim et al. | 195 | AIBL | When performed at baseline, the CogState battery of tests was able to detect AD-related cognitive impairment. | [131] |
| Stricker et al. | 240 | - | The learning/working memory composite did not differentiate Aβ+Tau+ or Aβ+Tau− from Aβ−Tau− participants. Auditory verbal learning test differentiated both Aβ+Tau+ and Aβ+Tau− from Aβ−Tau− participants; 45% of Aβ+Tau+ and 25% of Aβ+Tau− participants met subtle objective cognitive impairment criteria. | [132] |
| Sato et al. | - | National Health and Aging Trends Study | The trained DNN model achieved a balanced accuracy of 90.1 ± 0.6% in identifying those with a decline in executive function compared to those without [positive likelihood ratio (PLH) = 16.3 ± 6.8, negative likelihood ratio (NLH) = 0.14 ± 0.03], and 77.2 ± 2.7% balanced accuracy for identifying those with probable dementia from those without (PLH = 5.1 ± 0.5, NLH = 0.37 ± 0.07). | [134] |
| Chen et al. | 1315 | - | After testing various DL architectures, they achieved accuracies of 96.65% for screening and up to 98.54% for the scoring of dementia severity. | [135] |
| Speech-based tools | ||||
| Yamada et al. | 114 | - | Their machine-learning speech classifier achieved 78.6% accuracy for classifying AD, MCI, and CN through nested cross-validation (AD versus CN: 91.2% accuracy; MCI versus CN: 87.6% accuracy). | [139] |
| Toth et al. | 86 | - | Using a random forest classifier, they were able to separate older MCI patients from an age-matched control group with an accuracy of 75%. | [140] |
| Bertini et al. | 96 | - | The proposed method obtained good classification results compared to the state-of-the-art neuropsychological screening tests, with an accuracy of 90.57%. | [142] |
| Roshanzamir et al. | 269 | DementiaBank Dataset | Utilising a deep transformer-based neural network language model with a simple logistic regression classifier to assess targeted speech from old CN controls and AD sufferers, they achieved classification accuracies of 88.08%, which improves the state of the art by 2.48%. | [143] |
| Movement-based tools | ||||
| You et al. | 88 | - | Using the Long Short-Term Memory-based model, they achieved 90.48%, 92.00%, and 88.24% in accuracy, sensitivity, and specificity, respectively, in distinguishing AD. | [144] |
| Mielke et al. | 1478 | Mayo Clinic Study of Aging | A faster gait speed was associated with better performance in memory, executive function, and global cognition. Both cognitive scores and gait speed declined over time. A faster gait speed at baseline was associated with less cognitive decline across all domain-specific and global scores. | [145] |
| Camicioli et al. | 85 | - | Those who developed cognitive impairment were found to display slower finger tapping and took longer to walk 30 feet before or at the time of cognitive impairment. Coordination was more impaired and steps, but not balance. | [146] |
| Buracchio et al. | 204 | - | The rates of change, with ageing, in gait speed (p < 0.001) and finger-tapping speed in the dominant hand (p = 0.003) and nondominant hand (p < 0.001) were significantly different between participants who developed MCI (converters) and those who did not (nonconverters). | [147] |
| Ghoraani et al. | 78 | - | They reported a five-fold classification accuracy of 78%, which was slightly lower than the 83% accuracy achieved using the Montreal Cognitive Assessment test. | [148] |
| Mc Ardle et al. | 80 | - | The wearable was able to differentiate dementia disease subtypes (p ≤ 0.05) and demonstrated significant differences between the groups in 7 gait characteristics with modest accuracy. | [150] |
| Yu et al. | 36 | - | The accuracy control of the graphic drawing in the AD and MCI groups was significantly lower than that for the subjects in the normal group. These two groups also showed longer pauses in stroke movement with the handwriting tasks. The handwriting accuracy in the AD and MCI groups was found to be significantly different from that of the subjects in the normal group. | [152] |
| Mitra et al. | 178 | Their ensemble model achieved a 97.14% accuracy, 95% sensitivity, 100% specificity, 100% precision, 97.44% F1-score in detecting AD based on the analysis of handwriting kinetics. | [155] | |
| Fraser et al. | 57 | Gothenburg MCI study | Based on eye movements during a reading task, they were able to distinguish between participants with and without cognitive impairment with up to 86% accuracy. | [156] |
| Zhang et al. | 15 | - | They found it possible to infer people’s cognitive function by analysing natural gaze behaviour. | [157] |
7. AI-Based Tools for the Monitoring of AD
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| Aβ | Amyloid-β |
| AD | Alzheimer’s Disease |
| AI | Artificial Intelligence |
| AIBL | Australian Imaging, Biomarkers and Lifestyle Study |
| ANU-ADRI | Australian National University-Alzheimer’s Disease Risk Index |
| ApoE | Apolipoprotein E |
| APP | Amyloid Precursor Protein |
| AUC | Area Under the Curve |
| CAIDE | Cardiovascular Risk Factors, Aging and Dementia |
| CDT | Clock Drawing Test |
| CN | Cognitively Normal |
| CNN | Convolutional Neural Network |
| CSF | Cerebrospinal Fluid |
| DL | Deep Learning |
| GWAS | Genome-Wide Association Studies |
| HSV-1 | Herpes Simplex Virus Type 1 |
| KP | Kungsholmen Project |
| LIBRA | LIfestyle for BRAin Health |
| MCI | Mild Cognitive Impairment |
| MRI | Magnetic Resonance Imaging |
| ML | Machine Learning |
| NFT | Neurofibrillary Tangles |
| PET | Position Emission Tomography |
| SVM | Support Vector Machine |
| TBI | Traumatic Brain Injury |
References
- Alzheimer’s Association. What is Dementia? Available online: https://www.alz.org/alzheimers-dementia/what-is-dementia (accessed on 19 July 2025).
- Chen, Y.; Bandosz, P.; Stoye, G.; Liu, Y.; Wu, Y.; Lobanov-Rostovsky, S.; French, E.; Kivimaki, M.; Livingston, G.; Liao, J.; et al. Dementia incidence trend in England and Wales, 2002–19, and projection for dementia burden to 2040: Analysis of data from the English Longitudinal Study of Ageing. Lancet Public Health 2023, 8, e859–e867. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Fact Sheet: Dementia. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 14 May 2024).
- Wu, H.; Gu, Y.; Meng, G.; Wu, H.; Zhang, S.; Wang, X.; Zhang, J.; Huang, T.; Niu, K. Quality of plant-based diet and the risk of dementia and depression among middle-aged and older population. Age Ageing 2023, 52, afad070. [Google Scholar] [CrossRef]
- Wanigatunga, A.A.; Dong, Y.; Jin, M.; Leroux, A.; Cui, E.; Zhou, X.; Zhao, A.; Schrack, J.A.; Bandeen-Roche, K.; Walston, J.D.; et al. Moderate-to-Vigorous Physical Activity at any Dose Reduces All-Cause Dementia Risk Regardless of Frailty Status. J. Am. Med. Dir. Assoc. 2025, 26, 105456. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Ranson, J.M.; Gregory, S.; Macpherson, H.; Milte, C.; Lentjes, M.; Mulligan, A.; McEvoy, C.; Griffiths, A.; Matu, J.; et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: Findings from the UK Biobank prospective cohort study. BMC Med. 2023, 21, 81. [Google Scholar] [CrossRef]
- Alzheimer’s Society. What Are the Costs of Dementia Care in the UK? 2024. Available online: https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-scale-impact-numbers (accessed on 21 March 2024).
- Nagaratnam, K.; Neuhaus, A.; Briggs, J.H.; Ford, G.A.; Woodhead, Z.V.J.; Maharjan, D.; Harston, G. Artificial intelligence-based decision support software to improve the efficacy of acute stroke pathway in the NHS: An observational study. Front. Neurol. 2024, 14, 1329643. [Google Scholar] [CrossRef]
- Fairbairn, T.A.; Mullen, L.; Nicol, E.; Lip, G.Y.H.; Schmitt, M.; Shaw, M.; Tidbury, L.; Kemp, I.; Crooks, J.; Burnside, G.; et al. Implementation of a national AI technology program on cardiovascular outcomes and the health system. Nat. Med. 2025, 31, 1903–1910. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 40. [Google Scholar] [CrossRef]
- Dohm-Hansen, S.; English, J.A.; Lavelle, A.; Fitzsimons, C.P.; Lucassen, P.J.; Nolan, Y.M. The “middle-aging“ brain. Trends Neurosci. 2024, 47, 259–272. [Google Scholar] [CrossRef] [PubMed]
- González-Velasco, O.; Papy-García, D.; Le Douaron, G.; Sánchez-Santos, J.M.; De Las Rivas, J. Transcriptomic landscape, gene signatures and regulatory profile of aging in the human brain. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2020, 1863, 194491. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; Jansen, W.J.; Rabinovici, G.D.; Knol, D.L.; van der Flier, W.M.; van Berckel, B.N.M.; Scheltens, P.; Visser, P.J.; Verfaillie, S.C.J.; Zwan, M.D.; et al. Prevalence of Amyloid PET Positivity in Dementia Syndromes. JAMA 2015, 313, 1939. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Sawa, M.; Mobley, W.C. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic. Biol. Med. 2018, 114, 52–61. [Google Scholar] [CrossRef]
- Younkin, S.G. The role of Aβ42 in Alzheimer’s disease. J. Physiol. Paris 1998, 92, 289–292. [Google Scholar] [CrossRef]
- Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002, 58, 1791–1800. [Google Scholar] [CrossRef]
- Błaszczyk, J.W. Pathogenesis of Dementia. Int. J. Mol. Sci. 2022, 24, 543. [Google Scholar] [CrossRef]
- Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef]
- Montine, K.S.; Berson, E.; Phongpreecha, T.; Huang, Z.; Aghaeepour, N.; Zou, J.Y.; MacCoss, M.J.; Montine, T.J. Understanding the molecular basis of resilience to Alzheimer’s disease. Front. Neurosci. 2023, 17, 1311157. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Merrihew, G.E.; Larson, E.B.; Park, J.; Plubell, D.; Fox, E.J.; Montine, K.S.; Latimer, C.S.; Dirk Keene, C.; Zou, J.Y.; et al. Brain proteomic analysis implicates actin filament processes and injury response in resilience to Alzheimer’s disease. Nat. Commun. 2023, 14, 2747. [Google Scholar] [CrossRef]
- St-Onge, F.; Chapleau, M.; Breitner, J.C.; Villeneuve, S.; Binette, A.P. Tau accumulation and its spatial progression across the Alzheimer’s disease spectrum. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Vana, L.; Kanaan, N.M.; Ugwu, I.C.; Wuu, J.; Mufson, E.J.; Binder, L.I. Progression of Tau Pathology in Cholinergic Basal Forebrain Neurons in Mild Cognitive Impairment and Alzheimer’s Disease. Am. J. Pathol. 2011, 179, 2533–2550. [Google Scholar] [CrossRef] [PubMed]
- Cantero, J.L.; Atienza, M.; Lage, C.; Zaborszky, L.; Vilaplana, E.; Lopez-Garcia, S.; Pozueta, A.; Rodriguez-Rodriguez, E.; Blesa, R.; Alcolea, D.; et al. Atrophy of Basal Forebrain Initiates with Tau Pathology in Individuals at Risk for Alzheimer’s Disease. Cereb. Cortex 2020, 30, 2083–2098. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, Z.; Jiang, M.; Bao, B.; Li, D.; Yin, X.; Wang, X.; Liu, D.; Zhu, L.-Q. Friend or foe: Role of pathological tau in neuronal death. Mol. Psychiatry 2023, 28, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; et al. A walk through tau therapeutic strategies. Acta Neuropathol. Commun. 2019, 7, 22. [Google Scholar] [CrossRef]
- Hwang, K.; Vaknalli, R.N.; Addo-Osafo, K.; Vicente, M.; Vossel, K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front. Aging Neurosci. 2022, 14, 903973. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, M.; Yin, X.; Chen, K.; Hu, Z.; Zhou, Q.; Cao, X.; Chen, Z.; Liu, D. The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Transl. Neurodegener. 2021, 10, 45. [Google Scholar] [CrossRef]
- Ashton, N.J.; Brum, W.S.; Di Molfetta, G.; Benedet, A.L.; Arslan, B.; Jonaitis, E.; Langhough, R.E.; Cody, K.; Wilson, R.; Carlsson, C.M.; et al. Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol. 2024, 81, 255–263. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- McGeer, P.L.; Rogers, J.; McGeer, E.G. Inflammation, Antiinflammatory Agents, and Alzheimer’s Disease: The Last 22 Years. J. Alzheimer’s Dis. 2016, 54, 853–857. [Google Scholar] [CrossRef]
- Yip, A.G.; Green, R.C.; Huyck, M.; Cupples, L.A.; Farrer, L.A. Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease risk: The MIRAGE Study. BMC Geriatr. 2005, 5, 2. [Google Scholar] [CrossRef]
- Dalakas, M.C.; Alexopoulos, H.; Spaeth, P.J. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat. Rev. Neurol. 2020, 16, 601–617. [Google Scholar] [CrossRef]
- Shah, A.; Kishore, U.; Shastri, A. Complement System in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 13647. [Google Scholar] [CrossRef]
- Barbour, J.A.; Turner, N. Mitochondrial Stress Signaling Promotes Cellular Adaptations. Int. J. Cell Biol. 2014, 2014, 156020. [Google Scholar] [CrossRef]
- Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2000, 1502, 139–144. [Google Scholar] [CrossRef]
- Martínez Leo, E.E.; Segura Campos, M.R. Systemic Oxidative Stress: A Key Point in Neurodegeneration—A Review. J. Nutr. Health Aging 2019, 23, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-J.; Zhang, X.; Chen, W.-W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Tramutola, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017, 133, 88–96. [Google Scholar] [CrossRef]
- Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal cell death mechanisms in Alzheimer’s disease: An insight. Front. Mol. Neurosci. 2022, 15, 937133. [Google Scholar] [CrossRef] [PubMed]
- Balusu, S.; Horré, K.; Thrupp, N.; Craessaerts, K.; Snellinx, A.; Serneels, L.; T’Syen, D.; Chrysidou, I.; Arranz, A.M.; Sierksma, A.; et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 2023, 381, 1176–1182. [Google Scholar] [CrossRef]
- Selkoe, D.J. Alzheimer’s Disease Is a Synaptic Failure. Science 2002, 298, 789–791. [Google Scholar] [CrossRef]
- Herrup, K. The contributions of unscheduled neuronal cell cycle events to the death of neurons in Alzheimer s disease. Front. Biosci. 2012, E4, 527. [Google Scholar] [CrossRef]
- Cirrito, J.R.; Yamada, K.A.; Finn, M.B.; Sloviter, R.S.; Bales, K.R.; May, P.C.; Schoepp, D.D.; Paul, S.M.; Mennerick, S.; Holtzman, D.M. Synaptic Activity Regulates Interstitial Fluid Amyloid-β Levels In Vivo. Neuron 2005, 48, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Børte, S.; Winsvold, B.S.; Drange, O.K.; et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Andrews, S.J.; Renton, A.E.; Fulton-Howard, B.; Podlesny-Drabiniok, A.; Marcora, E.; Goate, A.M. The complex genetic architecture of Alzheimer’s disease: Novel insights and future directions. EBioMedicine 2023, 90, 104511. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef]
- Frieden, C.; Garai, K. Structural differences between apoE3 and apoE4 may be useful in developing therapeutic agents for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2012, 109, 8913–8918. [Google Scholar] [CrossRef]
- Abou Izzeddine, N.; Ahmad, K.; Bacha, C.; Jabbour, M.; Najjar, M.; Salhab, S.; Ghadieh, H.E.; Kanaan, A.; Azar, S.; Khattar, Z.A.; et al. The microbial guardians: Unveiling the role of gut microbiota in shaping neurodegenerative disease. IBRO Neurosci. Rep. 2025, 19, 17–37. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Bicknell, B.; Liebert, A.; Borody, T.; Herkes, G.; McLachlan, C.; Kiat, H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int. J. Mol. Sci. 2023, 24, 9577. [Google Scholar] [CrossRef]
- Miller, A.L.; Bessho, S.; Grando, K.; Tükel, Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front. Immunol. 2021, 12, 638867. [Google Scholar] [CrossRef] [PubMed]
- Asti, A.; Gioglio, L. Can a Bacterial Endotoxin be a Key Factor in the Kinetics of Amyloid Fibril Formation? J. Alzheimer’s Dis. 2014, 39, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Roy Sarkar, S.; Banerjee, S. Gut microbiota in neurodegenerative disorders. J. Neuroimmunol. 2019, 328, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Beeri, M.S.; Bendlin, B.B. The link between type 2 diabetes and dementia: From biomarkers to treatment. Lancet Diabetes Endocrinol. 2020, 8, 736–738. [Google Scholar] [CrossRef]
- Beeri, M.S.; Uribarri, J.; Cai, W.; Buchman, A.S.; Haroutunian, V. Human Brain and Serum Advanced Glycation end Products are Highly Correlated: Preliminary Results of Their Role in Alzheimer Disease and Type 2 Diabetes. Endocr. Pract. 2020, 26, 576–577. [Google Scholar] [CrossRef]
- Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.-T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef]
- Biessels, G.J.; Nobili, F.; Teunissen, C.E.; Simó, R.; Scheltens, P. Understanding multifactorial brain changes in type 2 diabetes: A biomarker perspective. Lancet Neurol. 2020, 19, 699–710. [Google Scholar] [CrossRef]
- Ferreira, S.T.; Clarke, J.R.; Bomfim, T.R.; De Felice, F.G. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, S76–S83. [Google Scholar] [CrossRef] [PubMed]
- Cholerton, B.; Baker, L.D.; Montine, T.J.; Craft, S. Type 2 Diabetes, Cognition, and Dementia in Older Adults: Toward a Precision Health Approach. Diabetes Spectr. 2016, 29, 210–219. [Google Scholar] [CrossRef]
- Hoscheidt, S.M.; Kellawan, J.M.; Berman, S.E.; Rivera-Rivera, L.A.; Krause, R.A.; Oh, J.M.; Beeri, M.S.; Rowley, H.A.; Wieben, O.; Carlsson, C.M.; et al. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults. J. Cereb. Blood Flow Metab. 2017, 37, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Kapasi, A.; Schneider, J.A. Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016, 1862, 878–886. [Google Scholar] [CrossRef]
- Loera-Valencia, R.; Goikolea, J.; Parrado-Fernandez, C.; Merino-Serrais, P.; Maioli, S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: Potential novel targets for treatment. J. Steroid Biochem. Mol. Biol. 2019, 190, 104–114. [Google Scholar] [CrossRef]
- Gamba, P.; Testa, G.; Sottero, B.; Gargiulo, S.; Poli, G.; Leonarduzzi, G. The link between altered cholesterol metabolism and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2012, 1259, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Gamba, P.; Testa, G.; Gargiulo, S.; Staurenghi, E.; Poli, G.; Leonarduzzi, G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 119. [Google Scholar] [CrossRef]
- Etgen, A.M. Estrogens and Alzheimer’s Disease: Is Cholesterol a Link? Endocrinology 2008, 149, 4253–4255. [Google Scholar] [CrossRef]
- Iwagami, M.; Qizilbash, N.; Gregson, J.; Douglas, I.; Johnson, M.; Pearce, N.; Evans, S.; Pocock, S. Blood Cholesterol and Risk of Dementia in More than 1·8 Million People over Two Decades: A Retrospective Cohort Study. Lancet Healthy Longev. 2021, 2, e498–e506. [Google Scholar] [CrossRef]
- LoBue, C.; Munro, C.; Schaffert, J.; Didehbani, N.; Hart, J.; Batjer, H.; Cullum, C.M. Traumatic Brain Injury and Risk of Long-Term Brain Changes, Accumulation of Pathological Markers, and Developing Dementia: A Review. J. Alzheimer’s Dis. 2019, 70, 629–654. [Google Scholar] [CrossRef]
- Walker, K.R.; Tesco, G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front. Aging Neurosci. 2013, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.C.; Lucke-Wold, B.P.; Robson, M.J.; Lee, J.M.; Bailes, J.E. Alzheimer’s disease and chronic traumatic encephalopathy: Distinct but possibly overlapping disease entities. Brain Inj. 2016, 30, 1279–1292. [Google Scholar] [CrossRef]
- Jellinger, K.A. Head injury and dementia. Curr. Opin. Neurol. 2004, 17, 719–723. [Google Scholar] [CrossRef]
- Cairns, D.M.; Smiley, B.M.; Smiley, J.A.; Khorsandian, Y.; Kelly, M.; Itzhaki, R.F.; Kaplan, D.L. Repetitive injury induces phenotypes associated with Alzheimer’s disease by reactivating HSV-1 in a human brain tissue model. Sci. Signal. 2025, 18, eado6430. [Google Scholar] [CrossRef] [PubMed]
- Koronyo, Y.; Rentsendorj, A.; Mirzaei, N.; Regis, G.C.; Sheyn, J.; Shi, H.; Barron, E.; Cook-Wiens, G.; Rodriguez, A.R.; Medeiros, R.; et al. Retinal pathological features and proteome signatures of Alzheimer’s disease. Acta Neuropathol. 2023, 145, 409–438. [Google Scholar] [CrossRef] [PubMed]
- Pead, E.; Thompson, A.C.; Grewal, D.S.; McGrory, S.; Robbins, C.B.; Ma, J.P.; Johnson, K.G.; Liu, A.J.; Hamid, C.; Trucco, E.; et al. Retinal Vascular Changes in Alzheimer’s Dementia and Mild Cognitive Impairment: A Pilot Study Using Ultra-Widefield Imaging. Transl. Vis. Sci. Technol. 2023, 12, 13. [Google Scholar] [CrossRef]
- UKBiobank. 2024. Available online: https://www.ukbiobank.ac.uk/ (accessed on 13 January 2024).
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- National Alzheimer’s Coordinating Center. 2024. Available online: https://naccdata.org/ (accessed on 13 January 2024).
- Beekly, D.L.; Ramos, E.M.; Lee, W.W.; Deitrich, W.D.; Jacka, M.E.; Wu, J.; Hubbard, J.L.; Koepsell, T.D.; Morris, J.C.; Kukull, W.A. The National Alzheimer’s Coordinating Center (NACC) Database: The Uniform Data Set. Alzheimer Dis. Assoc. Disord. 2007, 21, 249–258. [Google Scholar] [CrossRef]
- Alzheimer’s Disease Neuroimaging Initiative. 2024. Available online: https://adni.loni.usc.edu/ (accessed on 13 January 2024).
- Bennett, D.A.; Buchman, A.S.; Boyle, P.A.; Barnes, L.L.; Wilson, R.S.; Schneider, J.A. Religious Orders Study and Rush Memory and Aging Project. J. Alzheimer’s Dis. 2018, 64, S161–S189. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Arvanitakis, Z.; Wilson, R.S. Overview and Findings from the Religious Orders Study. Curr. Alzheimer Res. 2012, 9, 628–645. [Google Scholar] [CrossRef]
- Deary, I.J.; Gow, A.J.; Pattie, A.; Starr, J.M. Cohort Profile: The Lothian Birth Cohorts of 1921 and 1936. Int. J. Epidemiol. 2012, 41, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Mendes de Leon, C.; Bienias, J.L.; Wilson, R.S. The Rush Memory and Aging Project: Study Design and Baseline Characteristics of the Study Cohort. Neuroepidemiology 2005, 25, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Kungsholms Projektet. The Kungsholmen Project. Available online: http://www.kungsholmenproject.se/ (accessed on 27 July 2025).
- Fleming, J.; Zhao, E.; O’Connor, D.W.; Pollitt, P.A.; Brayne, C. Cohort Profile: The Cambridge City over-75s Cohort (CC75C). Int. J. Epidemiol. 2007, 36, 40–46. [Google Scholar] [CrossRef]
- Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Cha, R.H.; Pankratz, V.S.; Boeve, B.F.; Ivnik, R.J.; Tangalos, E.G.; Petersen, R.C.; Rocca, W.A. The Mayo Clinic Study of Aging: Design and Sampling, Participation, Baseline Measures and Sample Characteristics. Neuroepidemiology 2008, 30, 58–69. [Google Scholar] [CrossRef]
- AIBL. The AIBL Study. Available online: https://aibl.org.au/ (accessed on 27 July 2025).
- Wallin, A.; Nordlund, A.; Jonsson, M.; Lind, K.; Edman, Å.; Göthlin, M.; Stålhammar, J.; Eckerström, M.; Kern, S.; Börjesson-Hanson, A.; et al. The Gothenburg MCI study: Design and distribution of Alzheimer’s disease and subcortical vascular disease diagnoses from baseline to 6-year follow-up. J. Cereb. Blood Flow Metab. 2016, 36, 114–131. [Google Scholar] [CrossRef]
- Lanzi, A.M.; Saylor, A.K.; Fromm, D.; Liu, H.; MacWhinney, B.; Cohen, M.L. DementiaBank: Theoretical Rationale, Protocol, and Illustrative Analyses. Am. J. Speech Lang. Pathol. 2023, 32, 426–438. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sharma, V. Dementia Identification Using Machine Learning Algorithms: Comparative Analysis. In Proceedings of the 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 9–11 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Ranson, J.M.; Bucholc, M.; Lyall, D.; Newby, D.; Winchester, L.; Oxtoby, N.P.; Veldsman, M.; Rittman, T.; Marzi, S.; Skene, N.; et al. Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Inform. 2023, 10, 6. [Google Scholar] [CrossRef]
- Senanarong, V. Application of Artificial Intelligence-Machine Learning in Dementia. Significances Bioeng. Biosci. 2021, 5, 484–486. [Google Scholar] [CrossRef]
- Tsang, G.; Xie, X.; Zhou, S.-M. Harnessing the Power of Machine Learning in Dementia Informatics Research: Issues, Opportunities, and Challenges. IEEE Rev. Biomed. Eng. 2020, 13, 113–129. [Google Scholar] [CrossRef]
- Manuello, J.; Min, J.; McCarthy, P.; Alfaro-Almagro, F.; Lee, S.; Smith, S.; Elliott, L.T.; Winkler, A.M.; Douaud, G. The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nat. Commun. 2024, 15, 2576. [Google Scholar] [CrossRef]
- Dung, P.M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 1995, 77, 321–357. [Google Scholar] [CrossRef]
- Lyons, T.J. Differential equations driven by rough signals. Rev. Mat. Iberoam. 1998, 14, 215–310. [Google Scholar] [CrossRef]
- Anstey, K.J.; Cherbuin, N.; Herath, P.M. Development of a New Method for Assessing Global Risk of Alzheimer’s Disease for Use in Population Health Approaches to Prevention. Prev. Sci. 2013, 14, 411–421. [Google Scholar] [CrossRef]
- Kivipelto, M.; Ngandu, T.; Laatikainen, T.; Winblad, B.; Soininen, H.; Tuomilehto, J. Risk score for the prediction of dementia risk in 20 years among middle aged people: A longitudinal, population-based study. Lancet Neurol. 2006, 5, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Schiepers, O.J.G.; Köhler, S.; Deckers, K.; Irving, K.; O’Donnell, C.A.; van den Akker, M.; Verhey, F.R.J.; Vos, S.J.B.; de Vugt, M.E.; van Boxtel, M.P.J. Lifestyle for Brain Health (LIBRA): A new model for dementia prevention. Int. J. Geriatr. Psychiatry 2017, 33, 167–175. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, Y.-R.; Wang, H.-F.; Yang, M.; Feng, J.-F.; Yu, J.-T.; Cheng, W. Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study. EClinicalMedicine 2022, 53, 101665. [Google Scholar] [CrossRef]
- Anstey, K.J.; Zheng, L.; Peters, R.; Kootar, S.; Barbera, M.; Stephen, R.; Dua, T.; Chowdhary, N.; Solomon, A.; Kivipelto, M. Dementia Risk Scores and Their Role in the Implementation of Risk Reduction Guidelines. Front. Neurol. 2022, 12, 765454. [Google Scholar] [CrossRef]
- Anstey, K.J.; Cherbuin, N.; Herath, P.M.; Qiu, C.; Kuller, L.H.; Lopez, O.L.; Wilson, R.S.; Fratiglioni, L. A Self-Report Risk Index to Predict Occurrence of Dementia in Three Independent Cohorts of Older Adults: The ANU-ADRI. PLoS ONE 2014, 9, e86141. [Google Scholar] [CrossRef]
- Cherbuin, N.; Shaw, M.; Walsh, E.; Sachdev, P.; Anstey, K. Validated Alzheimer’s Disease Risk Index (ANU-ADRI) is associated with smaller volumes in the default mode network in the early 60s. Brain Imaging Behav. 2017, 13, 65–74. [Google Scholar] [CrossRef]
- Andrews, S.J.; Eramudugolla, R.; Velez, J.I.; Cherbuin, N.; Easteal, S.; Anstey, K.J. Validating the role of the Australian National University Alzheimer’s Disease Risk Index (ANU-ADRI) and a genetic risk score in progression to cognitive impairment in a population-based cohort of older adults followed for 12 years. Alzheimers Res. Ther. 2017, 9, 16. [Google Scholar] [CrossRef]
- Rundek, T.; Gardener, H.; Dias Saporta, A.S.; Loewenstein, D.A.; Duara, R.; Wright, C.B.; Dong, C.; Levin, B.; Elkind, M.S.V.; Sacco, R.L. Global Vascular Risk Score and CAIDE Dementia Risk Score Predict Cognitive Function in the Northern Manhattan Study. J. Alzheimer’s Dis. 2020, 73, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Fayosse, A.; Nguyen, D.-P.; Dugravot, A.; Dumurgier, J.; Tabak, A.G.; Kivimäki, M.; Sabia, S.; Singh-Manoux, A. Risk prediction models for dementia: Role of age and cardiometabolic risk factors. BMC Med. 2020, 18, 107. [Google Scholar] [CrossRef] [PubMed]
- Exalto, L.G.; Quesenberry, C.P.; Barnes, D.; Kivipelto, M.; Biessels, G.J.; Whitmer, R.A. Midlife risk score for the prediction of dementia four decades later. Alzheimer’s Dement. 2014, 10, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Low, A.; Prats-Sedano, M.A.; Stefaniak, J.D.; McKiernan, E.F.; Carter, S.F.; Douvani, M.-E.; Mak, E.; Su, L.; Stupart, O.; Muniz, G.; et al. CAIDE dementia risk score relates to severity and progression of cerebral small vessel disease in healthy midlife adults: The PREVENT-Dementia study. J. Neurol. Neurosurg. Psychiatry 2022, 93, 481–490. [Google Scholar] [CrossRef]
- Chosy, E.J.; Edland, S.D.; Gross, N.; Meyer, M.J.; Liu, C.Y.; Launer, L.J.; White, L.R. The CAIDE Dementia Risk Score and the Honolulu-Asia Aging Study. Dement. Geriatr. Cogn. Disord. 2020, 48, 164–171. [Google Scholar] [CrossRef]
- Pons, A.; LaMonica, H.M.; Mowszowski, L.; Köhler, S.; Deckers, K.; Naismith, S.L. Utility of the LIBRA Index in Relation to Cognitive Functioning in a Clinical Health Seeking Sample. J. Alzheimer’s Dis. 2018, 62, 373–384. [Google Scholar] [CrossRef]
- Vos, S.J.B.; van Boxtel, M.P.J.; Schiepers, O.J.G.; Deckers, K.; de Vugt, M.; Carrière, I.; Dartigues, J.-F.; Peres, K.; Artero, S.; Ritchie, K.; et al. Modifiable Risk Factors for Prevention of Dementia in Midlife, Late Life and the Oldest-Old: Validation of the LIBRA Index. J. Alzheimer’s Dis. 2017, 58, 537–547. [Google Scholar] [CrossRef]
- Deckers, K.; Köhler, S.; van Boxtel, M.; Verhey, F.; Brayne, C.; Fleming, J. Lack of associations between modifiable risk factors and dementia in the very old: Findings from the Cambridge City over-75s cohort study. Aging Ment. Health 2017, 22, 1272–1278. [Google Scholar] [CrossRef]
- Mohtasib, R.; Alghamdi, J.; Jobeir, A.; Masawi, A.; Pedrosa de Barros, N.; Billiet, T.; Struyfs, H.; Phan, T.V.; Van Hecke, W.; Ribbens, A. MRI biomarkers for Alzheimer’s disease: The impact of functional connectivity in the default mode network and structural connectivity between lobes on diagnostic accuracy. Heliyon 2022, 8, e08901. [Google Scholar] [CrossRef]
- Hameed, S.; Fuh, J.-L.; Senanarong, V.; Ebenezer, E.G.M.; Looi, I.; Dominguez, J.C.; Park, K.W.; Karanam, A.K.; Simon, O. Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and its Clinical Implication in the Management of Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2020, 4, 21–37. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Lawler, K.; Garg, S.; Bai, Q.; Alty, J. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. J. Biomed. Inform. 2022, 127, 104030. [Google Scholar] [CrossRef]
- Pellegrini, E.; Ballerini, L.; Hernandez, M.d.C.V.; Chappell, F.M.; González-Castro, V.; Anblagan, D.; Danso, S.; Muñoz-Maniega, S.; Job, D.; Pernet, C.; et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 519–535. [Google Scholar] [CrossRef]
- Xue, C.; Kowshik, S.S.; Lteif, D.; Puducheri, S.; Jasodanand, V.H.; Zhou, O.T.; Walia, A.S.; Guney, O.B.; Zhang, J.D.; Pham, S.T.; et al. AI-based differential diagnosis of dementia etiologies on multimodal data. Nat. Med. 2024, 30, 2977–2989. [Google Scholar] [CrossRef]
- De Francesco, S.; Crema, C.; Archetti, D.; Muscio, C.; Reid, R.I.; Nigri, A.; Bruzzone, M.G.; Tagliavini, F.; Lodi, R.; D’Angelo, E.; et al. Differential diagnosis of neurodegenerative dementias with the explainable MRI based machine learning algorithm MUQUBIA. Sci. Rep. 2023, 13, 17355. [Google Scholar] [CrossRef]
- Fathi, S.; Ahmadi, M.; Dehnad, A. Early diagnosis of Alzheimer’s disease based on deep learning: A systematic review. Comput. Biol. Med. 2022, 146, 105634. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Z.; Yan, W.Q.; Klette, R. Early Diagnosis of Alzheimer’s Disease Using Deep Learning. In Proceedings of the 2nd International Conference on Control and Computer Vision, Jeju, Republic of Korea, 15–18 June 2019; ACM: New York, NY, USA, 2019; pp. 87–91. [Google Scholar]
- Kang, W.; Lin, L.; Zhang, B.; Shen, X.; Wu, S. Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis. Comput. Biol. Med. 2021, 136, 104678. [Google Scholar] [CrossRef]
- Corey-Bloom, J. The ABC of Alzheimer’s Disease: Cognitive Changes and Their Management in Alzheimer’s Disease and Related Dementias. Int. Psychogeriatr. 2002, 14, 51–75. [Google Scholar] [CrossRef] [PubMed]
- Henkel, C.; Seibert, S.; Widmann, C.N. Current Advances in Computerized Cognitive Assessment for Mild Cognitive Impairment and Dementia in Older Adults: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2024, 54, 109–119. [Google Scholar] [CrossRef]
- Maruff, P.; Lim, Y.Y.; Darby, D.; Ellis, K.A.; Pietrzak, R.H.; Snyder, P.J.; Bush, A.I.; Szoeke, C.; Schembri, A.; Ames, D.; et al. Clinical utility of the cogstate brief battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer’s disease. BMC Psychol. 2013, 1, 30. [Google Scholar] [CrossRef] [PubMed]
- White, J.P.; Schembri, A.; Prenn-Gologranc, C.; Ondrus, M.; Katina, S.; Novak, P.; Lim, Y.Y.; Edgar, C.; Maruff, P. Sensitivity of Individual and Composite Test Scores from the Cogstate Brief Battery to Mild Cognitive Impairment and Dementia Due to Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 96, 1781–1799. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Jaeger, J.; Harrington, K.; Ashwood, T.; Ellis, K.A.; Stoffler, A.; Szoeke, C.; Lachovitzki, R.; Martins, R.N.; Villemagne, V.L.; et al. Three-Month Stability of the CogState Brief Battery in Healthy Older Adults, Mild Cognitive Impairment, and Alzheimer’s Disease: Results from the Australian Imaging, Biomarkers, and Lifestyle-Rate of Change Substudy (AIBL-ROCS). Arch. Clin. Neuropsychol. 2013, 28, 320–330. [Google Scholar] [CrossRef]
- Stricker, N.H.; Lundt, E.S.; Albertson, S.M.; Machulda, M.M.; Pudumjee, S.B.; Kremers, W.K.; Jack, C.R.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. Diagnostic and Prognostic Accuracy of the Cogstate Brief Battery and Auditory Verbal Learning Test in Preclinical Alzheimer’s Disease and Incident Mild Cognitive Impairment: Implications for Defining Subtle Objective Cognitive Impairment. J. Alzheimer’s Dis. 2020, 76, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Sabahi, Z.; Farhoudi, M.; Naseri, A.; Talebi, M. Working memory assessment using cambridge neuropsychological test automated battery can help in the diagnosis of mild cognitive impairment: A systematic review and meta-analysis. Dement. Neuropsychol. 2022, 16, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Niimi, Y.; Mano, T.; Iwata, A.; Iwatsubo, T. Automated Evaluation of Conventional Clock-Drawing Test Using Deep Neural Network: Potential as a Mass Screening Tool to Detect Individuals With Cognitive Decline. Front. Neurol. 2022, 13, 896403. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Stromer, D.; Alabdalrahim, H.A.; Schwab, S.; Weih, M.; Maier, A. Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Sci. Rep. 2020, 10, 20854. [Google Scholar] [CrossRef]
- Binaco, R.; Calzaretto, N.; Epifano, J.; McGuire, S.; Umer, M.; Emrani, S.; Wasserman, V.; Libon, D.J.; Polikar, R. Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2020, 26, 690–700. [Google Scholar] [CrossRef]
- Szatloczki, G.; Hoffmann, I.; Vincze, V.; Kalman, J.; Pakaski, M. Speaking in Alzheimer’s Disease, is That an Early Sign? Importance of Changes in Language Abilities in Alzheimer’s Disease. Front. Aging Neurosci. 2015, 7, 195. [Google Scholar] [CrossRef]
- Martínez-Nicolás, I.; Llorente, T.E.; Martínez-Sánchez, F.; Meilán, J.J.G. Ten Years of Research on Automatic Voice and Speech Analysis of People With Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review Article. Front. Psychol. 2021, 12, 620251. [Google Scholar] [CrossRef]
- Yamada, Y.; Shinkawa, K.; Nemoto, M.; Nemoto, K.; Arai, T. A mobile application using automatic speech analysis for classifying Alzheimer’s disease and mild cognitive impairment. Comput. Speech Lang. 2023, 81, 101514. [Google Scholar] [CrossRef]
- Toth, L.; Hoffmann, I.; Gosztolya, G.; Vincze, V.; Szatloczki, G.; Banreti, Z.; Pakaski, M.; Kalman, J. A A Speech Recognition-based Solution for the Automatic Detection of Mild Cognitive Impairment from Spontaneous Speech. Curr. Alzheimer Res. 2018, 15, 130–138. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Ding, X.; Xu, F.; Ling, Z. Deep learning-based speech analysis for Alzheimer’s disease detection: A literature review. Alzheimers Res. Ther. 2022, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Bertini, F.; Allevi, D.; Lutero, G.; Montesi, D.; Calzà, L. Automatic Speech Classifier for Mild Cognitive Impairment and Early Dementia. ACM Trans. Comput. Health. 2022, 3, 8. [Google Scholar] [CrossRef]
- Roshanzamir, A.; Aghajan, H.; Baghshah, M.S. Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech. BMC Med. Inform. Decis. Mak. 2021, 21, 92. [Google Scholar] [CrossRef]
- You, Z.; You, Z.; Li, Y.; Zhao, S.; Ren, H.; Hu, X. Alzheimer’s Disease Distinction Based On Gait Feature Analysis. In Proceedings of the 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 1–2 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Mielke, M.M.; Roberts, R.O.; Savica, R.; Cha, R.; Drubach, D.I.; Christianson, T.; Pankratz, V.S.; Geda, Y.E.; Machulda, M.M.; Ivnik, R.J.; et al. Assessing the Temporal Relationship Between Cognition and Gait: Slow Gait Predicts Cognitive Decline in the Mayo Clinic Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Camicioli, R.; Howieson, D.; Oken, B.; Sexton, G.; Kaye, J. Motor slowing precedes cognitive impairment in the oldest old. Neurology 1998, 50, 1496–1498. [Google Scholar] [CrossRef]
- Buracchio, T.; Dodge, H.H.; Howieson, D.; Wasserman, D.; Kaye, J. The Trajectory of Gait Speed Preceding Mild Cognitive Impairment. Arch. Neurol. 2010, 67, 980–986. [Google Scholar] [CrossRef]
- Ghoraani, B.; Boettcher, L.N.; Hssayeni, M.D.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 2021, 64, 102249. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Callisaya, M.L.; De Cock, A.-M.; Helbostad, J.L.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.-P.; Blumen, H.M.; Verghese, J.; et al. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 482–490. [Google Scholar] [CrossRef]
- Mc Ardle, R.; Del Din, S.; Galna, B.; Thomas, A.; Rochester, L. Differentiating dementia disease subtypes with gait analysis: Feasibility of wearable sensors? Gait Posture 2020, 76, 372–376. [Google Scholar] [CrossRef]
- Impedovo, D.; Pirlo, G.; Vessio, G.; Angelillo, M.T. A Handwriting-Based Protocol for Assessing Neurodegenerative Dementia. Cogn. Comput. 2019, 11, 576–586. [Google Scholar] [CrossRef]
- Yu, N.-Y.; Chang, S.-H. Characterization of the fine motor problems in patients with cognitive dysfunction—A computerized handwriting analysis. Hum. Mov. Sci. 2019, 65, 71–79. [Google Scholar] [CrossRef]
- Vessio, G. Dynamic Handwriting Analysis for Neurodegenerative Disease Assessment: A Literary Review. Appl. Sci. 2019, 9, 4666. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Montalvo, G.; Caligiuri, M.; Pertsinakis, M.; Guimarães, J. Handwriting Changes in Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. 2023, 96, 1–11. [Google Scholar] [CrossRef]
- Mitra, U.; Rehman, S.U. ML-Powered Handwriting Analysis for Early Detection of Alzheimer’s Disease. IEEE Access 2024, 12, 69031–69050. [Google Scholar] [CrossRef]
- Fraser, K.C.; Lundholm Fors, K.; Kokkinakis, D.; Nordlund, A. An analysis of eye-movements during reading for the detection of mild cognitive impairment. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 1016–1026. [Google Scholar]
- Zhang, Y.; Wilcockson, T.; Kim, K.I.; Crawford, T.; Gellersen, H.; Sawyer, P. Monitoring Dementia with Automatic Eye Movements Analysis. In Intelligent Decision Technologies 2016: Proceedings of the 8th KES International Conference on Intelligent Decision Technologies (KES-IDT 2016)–Part II, Puerto de la Cruz, Spain, 15–17 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 299–309. [Google Scholar]
- Tokushige, S.; Matsumoto, H.; Matsuda, S.; Inomata-Terada, S.; Kotsuki, N.; Hamada, M.; Tsuji, S.; Ugawa, Y.; Terao, Y. Early detection of cognitive decline in Alzheimer’s disease using eye tracking. Front. Aging Neurosci. 2023, 15, 1123456. [Google Scholar] [CrossRef]
- Moravveji, S.; Doyon, N.; Mashreghi, J.; Duchesne, S. A scoping review of mathematical models covering Alzheimer’s disease progression. Front. Neurosci. 2024, 18, 1281656. [Google Scholar] [CrossRef] [PubMed]
- Bringas, S.; Salomón, S.; Duque, R.; Lage, C.; Montaña, J.L. Alzheimer’s Disease stage identification using deep learning models. J. Biomed. Inform. 2020, 109, 103514. [Google Scholar] [CrossRef] [PubMed]
- Bringas, S.; Duque, R.; Lage, C.; Montaña, J.L. CLADSI: Deep Continual Learning for Alzheimer’s Disease Stage Identification Using Accelerometer Data. IEEE J. Biomed. Health Inform. 2024, 28, 3401–3410. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-Y.; Tsang, N.W.-H.; Han, S.; Zhang, W.; Ng, J.K.-Y.; Nath, A. Activity tracking and monitoring of patients with alzheimer’s disease. Multimed. Tools Appl. 2017, 76, 489–521. [Google Scholar] [CrossRef]
- Ziyad, S.R.; Altulyan, M.; Alharbi, M. SHMAD: A Smart Health Care System to Monitor Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2023, 95, 1545–1557. [Google Scholar] [CrossRef]
- Gowda, V.M.; Arakeri, M.P.; Prasad, V.R.R. Multimodal Classification Technique for Fall Detection of Alzheimer’s Patients by Integration of a Novel Piezoelectric Crystal Accelerometer and Aluminum Gyroscope with Vision Data. Adv. Mater. Sci. Eng. 2022, 2022, 9258620. [Google Scholar] [CrossRef]

| Database Name | N | Type of Subjects | Dementia Specific Information | Public Availability | Refs |
|---|---|---|---|---|---|
| UK Biobank | 500,000 | UK participants aged 40–69 | Medical history, physical evaluations, lifestyle information, cognitive assessments, neuroimaging (MRI), biospecimen (blood, urine, saliva), genotyping (ApoE, whole genome sequencing data), cause of death | Available for research purposes only; Application required | [80] |
| National Alzheimer’s Coordinating Centre (NACC) | 48,600 | US participants with MCI, dementia and controls | Neuroimaging (MRI, PET), biospecimen (CSF), genotyping (ApoE), neuropathology | Available for research purposes only on request | [82,83] |
| Alzheimer’s Disease Neuroimaging Initiative (ADNI) | 1500 | US/Canadian participants with MCI or mild AD and elderly controls aged 55–90 | Demographics, physical evaluations, cognitive assessments, neuroimaging (MRI, PET), biospecimen (blood, CSF), genotyping (ApoE, GWAS/whole genome sequencing data) | Available for research purposes only; Application required | [84] |
| Religious Orders Study (ROS) | 1100 | Religious clergy members from across the US without known dementia aged 65 and over | Demographics, socioeconomic status, clinical evaluation, medical history, cognitive assessments, motor function, activities of daily living, biospecimen (blood), genotyping (ApoE, GWAS), neuropathology (post-mortem brain tissue) | Available for research purposes only on request | [85,86] |
| Lothian birth cohort 1921 & 1936 (LBC1921 & LBC1936) | 550 & 1091 | Individuals born in Lothian Scotland in 1921 & 1936 | Demographics, socioeconomic status, physical and fitness measurements, medical history, lifestyle information, cognitive assessments, neuroimaging (MRI) genotyping (ApoE, GWAS), biospecimen (blood, urine), neuropathology (post-mortem brain tissue), cause of death | Available for research purposes only on request | [87] |
| Memory and Aging Project (MAP) | 1556 | US participants without known dementia aged 40 and over | Demographics, socioeconomic status, cognitive assessments, medical history physical and fitness measurements, daily activity and sleep, motor function and frailty, gait assessment, genotyping (ApoE, GWAS), biospecimen (blood), neuropathology (post-mortem brain tissue) | Limited data are publicly accessible; Registration is required to view the full dataset | [85,88] |
| Kungsholmen Project (KP) | 2368 | Those living in the Kungsholmen area aged ≥75 | Demographics, socioeconomic status, cognitive assessments, medical history, physical and fitness measurements, activities of daily living, biological specimen (blood), cause of death | Available for research purposes only on request | [89] |
| Cambridge City Over 75s Cohort | 2600 | Individuals living in Cambridge, UK, aged ≥75 | Demographics, socioeconomic status, physical and fitness measurements, medical history, lifestyle information, cognitive assessment, neuroimaging (MRI), biological specimen (blood, saliva) | Available for research purposes only; Application required | [90] |
| Mayo Clinic Study of Ageing (MCSA) | 6000 | Those living in Olmsted County, Minnesota, aged 70–89 | Demographics, physical evaluations, lifestyle information, cognitive assessment, biological specimen (blood, CSF), neuroimaging (MRI, PET), genotyping | Available for research purposes only on request | [91] |
| Australian Imaging, Biomarkers, and Lifestyle Study (AIBL) | 3000 | Australian participants aged over 50 | Lifestyle information, cognitive assessments, neuroimaging (MRI, PET), biospecimen (blood, CSF), genotyping | Available for research purposes only on request | [92] |
| Database Name | N | Type of Subjects | Dementia Specific Information | Public Availability | Refs |
|---|---|---|---|---|---|
| Gothenburg MCI study | 664 | Memory clinic patients from Sweden aged 50–79 | Physical evaluations, Cognitive assessment, biological specimen (blood, saliva), neuroimaging (EEG, MRI, SPECT) | Available for research purposes only on request | [93] |
| DementiaBank Dataset | 210 | AD patients and healthy controls | Audio recordings | Available for research purposes only on request | [94] |
| Author | N | Databases Used | Key Findings | Refs |
|---|---|---|---|---|
| Physical Activity | ||||
| Bringas et al. | 35 | - | The CNN-based method achieved a 90.91% accuracy and an F1-score of 0.897 in determining AD stage. | [160] |
| Bringas et al. | 35 | - | The CNN achieves an accuracy of 86,94%, 86,48% and 84,37% for 2, 3 and 4 experiences, respectively, in classifying AD stage. | [161] |
| Falls | ||||
| Lam et al. | 1 | - | The support vector machine and naive bayes achieved an accuracy of higher than 97% while the random forest gave an accuracy of around 73% in detecting falls. | [162] |
| Ziyad et al. | 10 | IMU open dataset | The AdaBoost classifier showed 100% accuracy for the IMU dataset. | [163] |
| Mohan Gowda et al. | 17 | - | Using Random Forest, long-term recurrent convolution networks and an ensemble approach they achieved an accuracy of 99.2% in detecting falls. | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginn, C.; Walker, R.; Cruickshank, G.; Patel, B. Integrating Artificial Intelligence with Biomarkers to Meet the Challenges of Dementia. J. Dement. Alzheimer's Dis. 2025, 2, 39. https://doi.org/10.3390/jdad2040039
Ginn C, Walker R, Cruickshank G, Patel B. Integrating Artificial Intelligence with Biomarkers to Meet the Challenges of Dementia. Journal of Dementia and Alzheimer's Disease. 2025; 2(4):39. https://doi.org/10.3390/jdad2040039
Chicago/Turabian StyleGinn, Claire, Robert Walker, Garth Cruickshank, and Bipin Patel. 2025. "Integrating Artificial Intelligence with Biomarkers to Meet the Challenges of Dementia" Journal of Dementia and Alzheimer's Disease 2, no. 4: 39. https://doi.org/10.3390/jdad2040039
APA StyleGinn, C., Walker, R., Cruickshank, G., & Patel, B. (2025). Integrating Artificial Intelligence with Biomarkers to Meet the Challenges of Dementia. Journal of Dementia and Alzheimer's Disease, 2(4), 39. https://doi.org/10.3390/jdad2040039

