Comparison of Physical Activity Patterns Between Individuals with Early-Stage Alzheimer’s Disease and Cognitively Healthy Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedure
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AIC | Akaike Information Criteria |
aMCI | Amnestic mild cognitive impairment due to Alzheimer’s disease |
B | Beta value |
CI | Confidence interval |
CSSs | Closed-skill sports |
dAD | Early-stage Alzheimer’s dementia patients |
DSM-IV | Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition |
HC | Cognitively healthy control |
MCI | Mild cognitive impairment |
MMSE | Mini-Mental State Examination |
N | Sample size |
NINCDS-ADRDA | National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders Association |
OR | Odds ratio |
OSSs | Open-skill sports |
PA | Physical activity |
PASE | Physical Activity Scale for the Elderly |
SD | Standard deviation |
SE | Standard error |
Appendix A
Name | Source |
---|---|
CERAD Mini-Mental Status | Folstein et al. (1975) [41] |
CERAD Calculations | Thalmann et al. (2002) [42] |
CERAD Clock Drawing Test | Thalmann et al. (2002) [42] |
Basel Verbal Learning Test | The German equivalent to the California Verbal Learning Test (CVLT, Delis et al., 1987) [43] |
Semantic Fluency (60 sec animals, 60 sec fruits, 60 sec vehicles, 60 sec tools) | Straus et al. (2006) [44] |
CERAD Boston Naming Test | Morris et al. (1988) [45] |
16-item Informant Questionnaire on Cognitive Decline in the Elderly | Jorm (1994) [31] |
Appendix B
OSSs | CSSs | |
---|---|---|
Light physical activity | Easy bike training, playing boules, ninepins, water gymnastics, golf with a cart, yoga, tai chi, fishing, and others | |
Medium physical activity | Tennis doubles, pair dancing, volleyball, and others | Golf without a cart, and others |
High physical activity | Tennis singles, aerobic dance, and others | Jogging, swimming, biking, skiing, and others |
References
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical Activity and Brain Health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurol. Engl. Ed. 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimers Dis. 2021, 8, 371–386. [Google Scholar] [CrossRef]
- de La Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; García-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.; et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef]
- Gronek, P.; Balko, S.; Gronek, J.; Zajac, A.; Maszczyk, A.; Celka, R.; Doberska, A.; Czarny, W.; Podstawski, R.; Clark, C.C.T.; et al. Physical Activity and Alzheimer’s Disease: A Narrative Review. Aging Dis. 2019, 10, 1282–1292. [Google Scholar] [CrossRef]
- Gagliardi, C.; Papa, R.; Postacchini, D.; Giuli, C. Association between Cognitive Status and Physical Activity: Study Profile on Baseline Survey of the My Mind Project. Int. J. Environ. Res. Public Health 2016, 13, 585. [Google Scholar] [CrossRef]
- Pedroso, R.V.; Corazza, D.I.; Andreatto, C.A.d.A.; da Silva, T.M.V.; Costa, J.L.R.; Santos-Galduróz, R.F. Cognitive, functional and physical activity impairment in elderly with Alzheimer’s disease. Dement. Neuropsychol. 2018, 12, 28–34. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and dis-tinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Bull, F.C.; Stevens, G.A.; the Country Data Author Group. National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: A pooled analysis of 507 population-based surveys with 5·7 million participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef]
- Blair, S.N.; LaMonte, M.J.; Nichaman, M.Z. The evolution of physical activity recommendations: How much is enough? Am. J. Clin. Nutr. 2004, 79, 913S–920S. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Carraça, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, J.; Wang, Y.; Li, J.; Chang, J.; Jia, Q. Effect of Physical Exercise on Cognitive Function of Alzheimer’s Disease Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Front. Psychiatry 2022, 13, 927128. [Google Scholar] [CrossRef] [PubMed]
- Pisani, S.; Mueller, C.; Huntley, J.; Aarsland, D.; Kempton, M.J. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int. J. Geriatr. Psychiatry 2021, 36, 1471–1487. [Google Scholar] [CrossRef]
- Knapp, B. Skill in Sport: The Atrainment of Proficiency; Abingdon: Routledge, UK, 1967. [Google Scholar]
- Ludyga, S.; Mücke, M.; Andrä, C.; Gerber, M.; Pühse, U. Neurophysiological correlates of interference control and response inhibition processes in children and adolescents engaging in open- and closed-skill sports. J. Sport Health Sci. 2022, 11, 224–233. [Google Scholar] [CrossRef]
- Möhring, W.; Klupp, S.; Ludyga, S.; Grob, A. Executive functions in children engaging in open- and closed-skilled sports. Psychol. Sport Exerc. 2022, 61, 102218. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Pan, C.-Y.; Chen, F.-C.; Tseng, Y.-T. Open- and Closed-Skill Exercise Interventions Produce Different Neu-rocognitive Effects on Executive Functions in the Elderly: A 6-Month Randomized, Controlled Trial. Front. Aging Neurosci. 2017, 9, 294. [Google Scholar] [CrossRef]
- Gu, Q.; Zou, L.; Loprinzi, P.D.; Quan, M.; Huang, T. Effects of Open Versus Closed Skill Exercise on Cognitive Function: A Systematic Review. Front. Psychol. 2019, 10, 1707. [Google Scholar] [CrossRef]
- Wang, B.; Guo, W. Exercise mode and attentional networks in older adults: A cross-sectional study. PeerJ 2020, 8, e8364. [Google Scholar] [CrossRef]
- Yongtawee, A.; Park, J.; Kim, Y.; Woo, M. Athletes have different dominant cognitive functions depending on type of sport. Int. J. Sport Exerc. Psychol. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Ingold, M.; Tulliani, N.; Chan, C.C.H.; Liu, K.P.Y. Cognitive function of older adults engaging in physical activity. BMC Geriatr. 2020, 20, 229. [Google Scholar] [CrossRef]
- Switzerland. Federal Constitution of the Swiss Confederation of 18 April 1999 (Status as of 3 March 2024). 1999. Available online: https://www.fedlex.admin.ch/eli/cc/1999/404/en (accessed on 7 May 2025).
- Swiss Human Research Act (HRA.; SR 810.30), of 30 September 2011 (Status as of 1 March 2023). Available online: https://www.fedlex.admin.ch/eli/cc/2013/617/en (accessed on 7 May 2025).
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Brooks, L.G.; Loewenstein, D.A. Assessing the progression of mild cognitive impairment to Alzheimer’s disease: Current trends and future directions. Alzheimers Res. Ther. 2010, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.-O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- American Psychiatric Association. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Jorm, A.F. A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Development and cross-validation. Psychol. Med. 1994, 24, 145–153. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.4.2). 2020. Available online: https://www.r-project.org/ (accessed on 19 March 2025).
- Posit (Formerly RStudio). RStudio: Integrated Development Environment for R (Version 2024.04.2). 2024. Available online: http://www.posit.co/ (accessed on 19 March 2025).
- McKnight, P.E.; Najab, J. Mann-Whitney U Test. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Wang, Q.; Koval, J.J.; Mills, C.A.; Lee, K.-I.D. Determination of the Selection Statistics and Best Significance Level in Backward Stepwise Logistic Regression. Commun. Stat. Simul. Comput. 2007, 37, 62–72. [Google Scholar] [CrossRef]
- Paradise, M.; Cooper, C.; Livingston, G. Systematic review of the effect of education on survival in Alzheimer’s disease. Int. Psychogeriatr. 2009, 21, 25–32. [Google Scholar] [CrossRef]
- Scheyer, O.; Rahman, A.; Hristov, H.; Berkowitz, C.; Isaacson, R.S.; Diaz Brinton, R.; Mosconi, L. Female Sex and Alzheimer’s Risk: The Menopause Connection. J. Prev. Alzheimers Dis. 2018, 5, 225–230. [Google Scholar] [CrossRef]
- Xia, X.; Jiang, Q.; McDermott, J.; Han, J.-D.J. Aging and Alzheimer’s disease: Comparison and associations from mo-lecular to system level. Aging Cell 2018, 17, e12802. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.S.; Vidoni, E.D.; Loskutova, N.; Johnson, D.K.; Burns, J.M. Measuring Physical Activity in Older Adults With and Without Early Stage Alzheimer’s Disease. Clin. Gerontol. 2013, 36, 356–374. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, W.; Zhang, J.; Yong, L.; Yang, M.; Wang, J.; Yan, J. The Effect of Chinese Square Dance Exercise on Cognitive Function in Older Women With Mild Cognitive Impairment: The Mediating Effect of Mood Status and Quality of Life. Front. Psychiatry 2021, 12, 711079. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Thalmann, B.; Spiegel, R.; Stähelin, H.B.; Brubacher, D.; Ermini-Fünfschilling, D.; Bläsi, S.; Monsch, A.U. Dementia screening in general practice: Optimised scoring for the Clock Drawing Test. Brain Aging. 2002, 2, 36–43. [Google Scholar]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test; Psychological Corporation: New York, NY, USA, 1987. [Google Scholar]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests. In Administration, Norms, and Commentary; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part 1. Clinical and Neuropsychological Assessment of Alzheimer’s Disease. Neurology 1989, 39, 1159–1165. [Google Scholar] [CrossRef]
Overall Sample N = 128 | AD Group n = 50 | NC Group n = 78 | p-Value | ||
---|---|---|---|---|---|
Sex | 0.05 | ||||
Male | n (%) | 70 (55) | 22 (44) | 48 (62) | |
Female | n (%) | 58 (45) | 28 (56) | 30 (38) | |
Age (years) | Mean (SD) | 74.84 (7.10) | 75.78 (7.83) | 74.23 (6.57) | 0.27 |
Education (years) | Mean (SD) | 12.77 (3.22) | 12.12 (2.83) | 13.18 (3.40) | 0.04 |
MMSE | Mean (SD) | 28.19 (3.13) | 27.30 (2.34) | 28.76 (3.45) | <0.01 |
Group Size (n) | Mann–Whitney U Tests (U) | z-Value | p-Value | |
---|---|---|---|---|
Low-level PA frequency | AD = 12 HC = 15 | 1677.0 | −0.79 | 0.43 |
Medium-level PA frequency | AD = 6 HC = 8 | 1698.5 | −0.68 | 0.49 |
High-level PA frequency | AD = 17 HC = 39 | 1651.0 | −1.00 | 0.32 |
Low-level PA duration | AD = 12 HC = 15 | 653.0 | −0.82 | 0.41 |
Medium-level PA duration | AD = 6 HC = 8 | 128.5 | −0.32 | 0.75 |
High-level PA duration | AD = 17 HC = 39 | 348.5 | −1.48 | 0.14 |
Variables | B (SE) | OR | 95% CI | p-Value |
---|---|---|---|---|
OSS | −1.47 (0.75) | 0.23 | 0.05, 0.93 | 0.05 |
PA frequency (high) | 1.03 (0.43) | 2.79 | 1.26, 6.89 | 0.02 |
PA type (high) | −3.11 (1.11) | 0.04 | 0.00, 0.33 | 0.01 |
Fixed variables | ||||
Sex (female) | 0.87 (0.44) | 2.39 | 1.02, 5.78 | 0.05 |
Age | 0.04 (0.03) | 1.04 | 0.98, 1.11 | 0.23 |
Education | −0.10 (0.07) | 0.90 | 0.78, 1.03 | 0.14 |
Variables | B (SE) | OR | 95% CI | p-Value |
---|---|---|---|---|
PA frequency (medium) | 0.98 (0.34) | 2.66 | 1.40, 5.41 | <0.01 |
PA duration (high) | 0.80 (0.25) | 2.23 | 1.37, 3.78 | <0.01 |
Fixed variables | ||||
Sex (female) | 0.07 (0.74) | 1.07 | 0.24, 4.70 | >0.90 |
Age | 0.11 (0.05) | 1.12 | 1.01, 1.24 | 0.03 |
Education | −0.04 (0.12) | 0.96 | 0.75, 1.20 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moll, L.; Häner, M.; Rössler, R.; Krumm, S. Comparison of Physical Activity Patterns Between Individuals with Early-Stage Alzheimer’s Disease and Cognitively Healthy Adults. J. Dement. Alzheimer's Dis. 2025, 2, 23. https://doi.org/10.3390/jdad2030023
Moll L, Häner M, Rössler R, Krumm S. Comparison of Physical Activity Patterns Between Individuals with Early-Stage Alzheimer’s Disease and Cognitively Healthy Adults. Journal of Dementia and Alzheimer's Disease. 2025; 2(3):23. https://doi.org/10.3390/jdad2030023
Chicago/Turabian StyleMoll, Léonie, Michèle Häner, Roland Rössler, and Sabine Krumm. 2025. "Comparison of Physical Activity Patterns Between Individuals with Early-Stage Alzheimer’s Disease and Cognitively Healthy Adults" Journal of Dementia and Alzheimer's Disease 2, no. 3: 23. https://doi.org/10.3390/jdad2030023
APA StyleMoll, L., Häner, M., Rössler, R., & Krumm, S. (2025). Comparison of Physical Activity Patterns Between Individuals with Early-Stage Alzheimer’s Disease and Cognitively Healthy Adults. Journal of Dementia and Alzheimer's Disease, 2(3), 23. https://doi.org/10.3390/jdad2030023