Alterations in Causal Functional Brain Networks in Alzheimer’s Disease: A Resting-State fMRI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Image Acquisition
2.3. fMRI Preprocessing
2.4. Functional Connectivity Analyses
2.4.1. Associative FC
2.4.2. Causal FC
2.5. Alterations of CFC Edges in Alzheimer’s Disease
3. Results
3.1. Subject-Specific CFC
3.2. Altered CFC Sub-Networks in AD
3.3. Brain Regions in the Altered CFC Sub-Networks
4. Discussion
Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Automated Anatomical Labeling (AAL) Atlas
No | Abbr. Name | Short Name | Full Region Name |
---|---|---|---|
1 | PreCG_L | Precentral_L | Precentral gyrus Left |
2 | PreCG_R | Precentral_R | Precentral gyrus Right |
3 | SFG_L | Frontal_Sup_L | Superior frontal gyrus, dorsolateral Left |
4 | SFG_R | Frontal_Sup_R | Superior frontal gyrus, dorsolateral Right |
5 | SFGorb_L | Frontal_Sup_Orb_L | Superior frontal gyrus, pars orbitalis Left |
6 | SFGorb_R | Frontal_Sup_Orb_R | Superior frontal gyrus, pars orbitalis Right |
7 | MFG_L | Frontal_Mid_L | Middle frontal gyrus Left |
8 | MFG_R | Frontal_Mid_R | Middle frontal gyrus Right |
9 | MFGorb_L | Frontal_Mid_Orb_L | Middle frontal gyrus, pars orbitalis Left |
10 | MFGorb_R | Frontal_Mid_Orb_R | Middle frontal gyrus, pars orbitalis Right |
11 | IFGoperc_L | Frontal_Inf_Oper_L | Inferior frontal gyrus, opercular part Left |
12 | IFGoperc_R | Frontal_Inf_Oper_R | Inferior frontal gyrus, opercular part Right |
13 | IFGtriang_L | Frontal_Inf_Tri_L | Inferior frontal gyrus, triangular part Left |
14 | IFGtriang_R | Frontal_Inf_Tri_R | Inferior frontal gyrus, triangular part Right |
15 | IFGorb_L | Frontal_Inf_Orb_L | Inferior frontal gyrus, pars orbitalis, Left |
16 | IFGorb_R | Frontal_Inf_Orb_R | Inferior frontal gyrus, pars orbitalis, Right |
17 | ROL_L | Rolandic_Oper_L | Rolandic operculum Left |
18 | ROL_R | Rolandic_Oper_R | Rolandic operculum Right |
19 | SMA_L | Supp_Motor_Area_L | Supplementary motor area Left |
20 | SMA_R | Supp_Motor_Area_R | Supplementary motor area Right |
21 | OLF_L | Olfactory_L | Olfactory cortex Left |
22 | OLF_R | Olfactory_R | Olfactory cortex Right |
23 | SFGmedial_L | Frontal_Sup_Medial_L | Superior frontal gyrus, medial Left |
24 | SFGmedial_R | Frontal_Sup_Medial_R | Superior frontal gyrus, medial Right |
25 | SFGmedorb_L | Frontal_Med_Orb_L | Superior frontal gyrus, medial orbital Left |
26 | SFGmedorb_R | Frontal_Med_Orb_R | Superior frontal gyrus, medial orbital Right |
27 | REC_L | Rectus_L | Gyrus rectus Left |
28 | REC_R | Rectus_R | Gyrus rectus Right |
29 | INS_L | Insula_L | Insula Left |
30 | INS_R | Insula_R | Insula Right |
31 | ACC_L | Cingulum_Ant_L | Anterior cingulate & paracingulate gyri Left |
32 | ACC_R | Cingulum_Ant_R | Anterior cingulate & paracingulate gyri Right |
33 | MCC_L | Cingulum_Mid_L | Middle cingulate & paracingulate gyri Left |
34 | MCC_R | Cingulum_Mid_R | Middle cingulate & paracingulate gyri Right |
35 | PCC_L | Cingulum_Post_L | Posterior cingulate gyrus Left |
36 | PCC_R | Cingulum_Post_R | Posterior cingulate gyrus Right |
37 | HIP_L | Hippocampus_L | Hippocampus Left |
38 | HIP_R | Hippocampus_R | Hippocampus Right |
39 | PHG_L | ParaHippocampal_L | Parahippocampal gyrus Left |
40 | PHG_R | ParaHippocampal_R | Parahippocampal gyrus Right |
41 | AMYG_L | Amygdala_L | Amygdala Left |
42 | AMYG_R | Amygdala_R | Amygdala Right |
43 | CAL_L | Calcarine_L | Calcarine fissure and surrounding cortex Left |
44 | CAL_R | Calcarine_R | Calcarine fissure and surrounding cortex Right |
45 | CUN_L | Cuneus_L | Cuneus Left |
46 | CUN_R | Cuneus_R | Cuneus Right |
47 | LING_L | Lingual_L | Lingual gyrus Left |
48 | LING_R | Lingual_R | Lingual gyrus Right |
49 | SOG_L | Occipital_Sup_L | Superior occipital gyrus Left |
50 | SOG_R | Occipital_Sup_R | Superior occipital gyrus Right |
51 | MOG_L | Occipital_Mid_L | Middle occipital gyrus Left |
52 | MOG_R | Occipital_Mid_R | Middle occipital gyrus Right |
53 | IOG_L | Occipital_Inf_L | Inferior occipital gyrus Left |
54 | IOG_R | Occipital_Inf_R | Inferior occipital gyrus Right |
55 | FFG_L | Fusiform_L | Fusiform gyrus Left |
56 | FFG_R | Fusiform_R | Fusiform gyrus Right |
57 | PoCG_L | Postcentral_L | Postcentral gyrus Left |
58 | PoCG_R | Postcentral_R | Postcentral gyrus Right |
59 | SPG_L | Parietal_Sup_L | Superior parietal gyrus Left |
60 | SPG_R | Parietal_Sup_R | Superior parietal gyrus Right |
61 | IPG_L | Parietal_Inf_L | Inferior parietal gyrus, excluding supramargina... |
62 | IPG_R | Parietal_Inf_R | Inferior parietal gyrus, excluding supramargina... |
63 | SMG_L | SupraMarginal_L | SupraMarginal gyrus Left |
64 | SMG_R | SupraMarginal_R | SupraMarginal gyrus Right |
65 | ANG_L | Angular_L | Angular gyrus Left |
66 | ANG_R | Angular_R | Angular gyrus Right |
67 | PCUN_L | Precuneus_L | Precuneus Left |
68 | PCUN_R | Precuneus_R | Precuneus Right |
69 | PCL_L | Paracentral_Lobule_L | Paracentral lobule Left |
70 | PCL_R | Paracentral_Lobule_R | Paracentral lobule Right |
71 | CAU_L | Caudate_L | Caudate nucleus Left |
72 | CAU_R | Caudate_R | Caudate nucleus Right |
73 | PUT_L | Putamen_L | Lenticular nucleus, Putamen Left |
74 | PUT_R | Putamen_R | Lenticular nucleus, Putamen Right |
75 | PAL_L | Pallidum_L | Lenticular nucleus, Pallidum Left |
76 | PAL_R | Pallidum_R | Lenticular nucleus, Pallidum Right |
77 | THA_L | Thalamus_L | Thalamus Left |
78 | THA_R | Thalamus_R | Thalamus Right |
79 | HES_L | Heschl_L | Heschl’s gyrus Left |
80 | HES_R | Heschl_R | Heschl’s gyrus Right |
81 | STG_L | Temporal_Sup_L | Superior temporal gyrus Left |
82 | STG_R | Temporal_Sup_R | Superior temporal gyrus Right |
83 | TPOsup_L | Temporal_Pole_Sup_L | Temporal pole: superior temporal gyrus Left |
84 | TPOsup_R | Temporal_Pole_Sup_R | Temporal pole: superior temporal gyrus Right |
85 | MTG_L | Temporal_Mid_L | Middle temporal gyrus Left |
86 | MTG_R | Temporal_Mid_R | Middle temporal gyrus Right |
87 | TPOmid_L | Temporal_Pole_Mid_L | Temporal pole: middle temporal gyrus Left |
88 | TPOmid_R | Temporal_Pole_Mid_R | Temporal pole: middle temporal gyrus Right |
89 | ITG_L | Temporal_Inf_L | Inferior temporal gyrus Left |
90 | ITG_R | Temporal_Inf_R | Inferior temporal gyrus Right |
91 | CERCRU1_L | Cerebellum_Crus1_L | Crus I of cerebellar hemisphere Left |
92 | CERCRU1_R | Cerebellum_Crus1_R | Crus I of cerebellar hemisphere Right |
93 | CERCRU2_L | Cerebellum_Crus2_L | Crus II of cerebellar hemisphere Left |
94 | CERCRU2_R | Cerebellum_Crus2_R | Crus II of cerebellar hemisphere Right |
95 | CER3_L | Cerebellum_3_L | Lobule III of cerebellar hemisphere Left |
96 | CER3_R | Cerebellum_3_R | Lobule III of cerebellar hemisphere Right |
97 | CER4_5_L | Cerebellum_4_5_L | Lobule IV, V of cerebellar hemisphere Left |
98 | CER4_5_R | Cerebellum_4_5_R | Lobule IV, V of cerebellar hemisphere Right |
99 | CER6_L | Cerebellum_6_L | Lobule VI of cerebellar hemisphere Left |
100 | CER6_R | Cerebellum_6_R | Lobule VI of cerebellar hemisphere Right |
101 | CER7b_L | Cerebellum_7b_L | Lobule VIIB of cerebellar hemisphere Left |
102 | CER7b_R | Cerebellum_7b_R | Lobule VIIB of cerebellar hemisphere Right |
103 | CER8_L | Cerebellum_8_L | Lobule VIII of cerebellar hemisphere Left |
104 | CER8_R | Cerebellum_8_R | Lobule VIII of cerebellar hemisphere Right |
105 | CER9_L | Cerebellum_9_L | Lobule IX of cerebellar hemisphere Left |
106 | CER9_R | Cerebellum_9_R | Lobule IX of cerebellar hemisphere Right |
107 | CER10_L | Cerebellum_10_L | Lobule X of cerebellar hemisphere Left |
108 | CER10_R | Cerebellum_10_R | Lobule X of cerebellar hemisphere Right |
109 | VER1_2 | Vermis_1_2 | Lobule I, II of vermis |
110 | VER3 | Vermis_3 | Lobule III of vermis |
111 | VER4_5 | Vermis_4_5 | Lobule IV, V of vermis |
112 | VER6 | Vermis_6 | Lobule VI of vermis |
113 | VER7 | Vermis_7 | Lobule VII of vermis |
114 | VER8 | Vermis_8 | Lobule VIII of vermis |
115 | VER9 | Vermis_9 | Lobule IX of vermis |
116 | VER10 | Vermis_10 | Lobule X of vermis |
Appendix B. The Network-Based Statistics (NBS) Method
References
- de LaCoste, M.C.; White, C.L., III. The role of cortical connectivity in Alzheimer’s disease pathogenesis: A review and model system. Neurobiol. Aging 1993, 14, 1–16. [Google Scholar] [CrossRef]
- Christensen, H.; Griffiths, K.; MacKinnon, A.; Jacomb, P. A quantitative review of cognitive deficits in depression and Alzheimer-type dementia. J. Int. Neuropsychol. Soc. 1997, 3, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Isla, T.; Hyman, B. Connections and cognitive impairment in Alzheimer’s disease. In Connections, Cognition and Alzheimer’s Disease; Springer: Berlin/Heidelberg, Germany, 1997; pp. 149–166. [Google Scholar]
- Perry, R.J.; Hodges, J.R. Attention and executive deficits in Alzheimer’s disease: A critical review. Brain 1999, 122, 383–404. [Google Scholar] [PubMed]
- Delbeuck, X.; Van der Linden, M.; Collette, F. Alzheimer’disease as a disconnection syndrome? Neuropsychol. Rev. 2003, 13, 79–92. [Google Scholar] [CrossRef]
- Geschwind, N. Disconnexion syndromes in animals and man. Brain 1965, 88, 585. [Google Scholar] [CrossRef] [PubMed]
- Bozzali, M.; Padovani, A.; Caltagirone, C.; Borroni, B. Regional grey matter loss and brain disconnection across Alzheimer disease evolution. Curr. Med. Chem. 2011, 18, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Brier, M.R.; Thomas, J.B.; Ances, B.M. Network dysfunction in Alzheimer’s disease: Refining the disconnection hypothesis. Brain Connect. 2014, 4, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, Y.; Lin, L.; Zhou, Y.; Xu, C.; Jiang, T.; Initiative, A.D.N. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 2010, 6, e1001006. [Google Scholar]
- Amlien, I.; Fjell, A. Diffusion tensor imaging of white matter degeneration in Alzheimer’s disease and mild cognitive impairment. Neuroscience 2014, 276, 206–215. [Google Scholar] [PubMed]
- Wang, K.; Liang, M.; Wang, L.; Tian, L.; Zhang, X.; Li, K.; Jiang, T. Altered functional connectivity in early Alzheimer’s disease: A resting-state fMRI study. Hum. Brain Mapp. 2007, 28, 967–978. [Google Scholar] [PubMed]
- Zhao, J.; Du, Y.H.; Ding, X.T.; Wang, X.H.; Men, G.Z. Alteration of functional connectivity in patients with Alzheimer’s disease revealed by resting-state functional magnetic resonance imaging. Neural Regen. Res. 2020, 15, 285–292. [Google Scholar] [PubMed]
- Biswas, R.; Sripada, S. Causal functional connectivity in Alzheimer’s disease computed from time series fMRI data. Front. Comput. Neurosci. 2023, 17, 1251301. [Google Scholar] [CrossRef]
- Buckner, R.L.; Snyder, A.Z.; Shannon, B.J.; LaRossa, G.; Sachs, R.; Fotenos, A.F.; Sheline, Y.I.; Klunk, W.E.; Mathis, C.A.; Morris, J.C.; et al. Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 2005, 25, 7709–7717. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Raichle, M.E.; Snyder, A.Z.; Morris, J.C.; Head, D.; Wang, S.; Mintun, M.A. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 2010, 67, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [PubMed]
- Reid, A.T.; Headley, D.B.; Mill, R.D.; Sanchez-Romero, R.; Uddin, L.Q.; Marinazzo, D.; Lurie, D.J.; Valdés-Sosa, P.A.; Hanson, S.J.; Biswal, B.B.; et al. Advancing functional connectivity research from association to causation. Nat. Neurosci. 2019, 1, 1751–1760. [Google Scholar]
- Biswas, R.; Shlizerman, E. Statistical Perspective on Functional and Causal Neural Connectomics: A Comparative Study. Front. Syst. Neurosci. 2022, 16, 817962. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Raichle, M.E. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 2013, 74, 340–347. [Google Scholar]
- Brier, M.R.; Thomas, J.B.; Fagan, A.M.; Hassenstab, J.; Holtzman, D.M.; Benzinger, T.L.; Morris, J.C.; Ances, B.M. Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol. Aging 2014, 35, 757–768. [Google Scholar]
- Briels, C.T.; Schoonhoven, D.N.; Stam, C.J.; de Waal, H.; Scheltens, P.; Gouw, A.A. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 68. [Google Scholar]
- Biswas, R.; Shlizerman, E. Statistical perspective on functional and causal neural connectomics: The Time-Aware PC algorithm. PLoS Comput. Biol. 2022, 18, 1–27. [Google Scholar] [CrossRef]
- Spirtes, P.; Glymour, C.N.; Scheines, R.; Heckerman, D. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M. Overview of fMRI analysis. Br. J. Radiol. 2004, 77, S167–S175. [Google Scholar] [CrossRef]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef]
- Van Den Heuvel, M.P.; Pol, H.E.H. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.P.; Morgan, V.L.; Newton, A.T.; Gore, J.C. Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 2007, 25, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Ye, J.C. Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Front. Neurosci. 2020, 14, 545464. [Google Scholar] [CrossRef]
- Zalesky, A.; Fornito, A.; Bullmore, E.T. Network-based statistic: Identifying differences in brain networks. Neuroimage 2010, 53, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Yao, H.; Wang, P.; Zhou, B.; Zhang, Z.; An, N.; Ma, J.; Zhang, X.; Liu, Y. Network-based statistic show aberrant functional connectivity in Alzheimer’s disease. IEEE J. Sel. Top. Signal Process. 2016, 10, 1182–1188. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, H.J.; Gao, Y.Q.; Zou, T.X. Functional network-based statistics reveal abnormal resting-state functional connectivity in minimal hepatic encephalopathy. Front. Neurol. 2019, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Castanon, A.; Whitfield-Gabrieli, S. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 21; Hilbert Press: Boston, MA, USA, 2021; Available online: https://www.nitrc.org/projects/conn (accessed on 18 February 2024).
- Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Poline, J.P.; Frith, C.D.; Frackowiak, R.S. Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Mapp. 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Arslan, S.; Ktena, S.I.; Makropoulos, A.; Robinson, E.C.; Rueckert, D.; Parisot, S. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage 2018, 170, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, O.; Ghaoui, L.E.; d’Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 2008, 9, 485–516. [Google Scholar]
- Pervaiz, U.; Vidaurre, D.; Woolrich, M.W.; Smith, S.M. Optimising network modelling methods for fMRI. Neuroimage 2020, 211, 116604. [Google Scholar] [CrossRef] [PubMed]
- Schmittmann, V.D.; Jahfari, S.; Borsboom, D.; Savi, A.O.; Waldorp, L.J. Making large-scale networks from fMRI data. PLoS ONE 2015, 10, e0129074. [Google Scholar] [CrossRef]
- Meinshausen, N.; Bühlmann, P. High-dimensional graphs and variable selection with the lasso. Ann. Stat. 2006, 34, 1436–1462. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Biswas, R.; Mukherjee, S. Consistent causal inference from time series with PC algorithm and its time-aware extension. Stat. Comput. 2024, 34, 14. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef] [PubMed]
- Olivito, G.; Cercignani, M.; Lupo, M.; Iacobacci, C.; Clausi, S.; Romano, S.; Masciullo, M.; Molinari, M.; Bozzali, M.; Leggio, M. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis. Neuroimage Clin. 2017, 14, 719–725. [Google Scholar]
- De Schipper, L.J.; Hafkemeijer, A.; Van der Grond, J.; Marinus, J.; Henselmans, J.M.; Van Hilten, J.J. Altered whole-brain and network-based functional connectivity in Parkinson’s disease. Front. Neurol. 2018, 9, 419. [Google Scholar]
- Zhu, L.; Dang, G.; Wu, W.; Zhou, J.; Shi, X.; Su, X.; Ren, H.; Pei, Z.; Lan, X.; Lian, C.; et al. Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment. Front. Neurosci. 2023, 17, 1135995. [Google Scholar]
- Eliasova, I.; Anderkova, L.; Marecek, R.; Rektorova, I. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: A pilot study. J. Neurol. Sci. 2014, 346, 318–322. [Google Scholar]
- Cajanus, A.; Solje, E.; Koikkalainen, J.; Lötjönen, J.; Suhonen, N.M.; Hallikainen, I.; Vanninen, R.; Hartikainen, P.; de Marco, M.; Venneri, A.; et al. The association between distinct frontal brain volumes and behavioral symptoms in mild cognitive impairment, Alzheimer’s disease, and frontotemporal dementia. Front. Neurol. 2019, 10, 1059. [Google Scholar]
- Harasty, J.A.; Halliday, G.M.; Kril, J.; Code, C. Specific temporoparietal gyral atrophy reflects the pattern of language dissolution in Alzheimer’s disease. Brain 1999, 122, 675–686. [Google Scholar] [PubMed]
- Convit, A.; De Asis, J.; De Leon, M.; Tarshish, C.; De Santi, S.; Rusinek, H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol. Aging 2000, 21, 19–26. [Google Scholar] [PubMed]
- Joachim, C.L.; Morris, J.H.; Selkoe, D.J. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am. J. Pathol. 1989, 135, 309. [Google Scholar] [PubMed]
- Jacobs, H.I.; Hopkins, D.A.; Mayrhofer, H.C.; Bruner, E.; van Leeuwen, F.W.; Raaijmakers, W.; Schmahmann, J.D. The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain 2018, 141, 37–47. [Google Scholar]
- Seeley, W.W.; Crawford, R.K.; Zhou, J.; Miller, B.L.; Greicius, M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Raj, A.; Kuceyeski, A.; Weiner, M. A network diffusion model of disease progression in dementia. Neuron 2012, 73, 1204–1215. [Google Scholar] [CrossRef]
- Hampshire, A.; Chamberlain, S.R.; Monti, M.M.; Duncan, J.; Owen, A.M. The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage 2010, 50, 1313–1319. [Google Scholar] [PubMed]
- Rota, G.; Sitaram, R.; Veit, R.; Erb, M.; Weiskopf, N.; Dogil, G.; Birbaumer, N. Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Hum. Brain Mapp. 2009, 30, 1605–1614. [Google Scholar] [CrossRef]
- Luria, A.R. The Working Brain: An Introduction to Neuropsychology; Tang Long University: Hanoi, Vietnam, 1976. [Google Scholar]
- Benson, D.F. Aphasia, alexia, and agraphia. Arch. Neurol. 1980, 37, 604. [Google Scholar]
- Ojemann, G.; Mateer, C. Human language cortex: Localization of memory, syntax, and sequential motor-phoneme identification systems. Science 1979, 205, 1401–1403. [Google Scholar]
- Damasio, H.; Damasio, A.R. The anatomical basis of conduction aphasia. Brain 1980, 103, 337–350. [Google Scholar] [CrossRef]
- Frackowiak, R.; Pozzilli, C.; Legg, N.d.; Du Boulay, G.; Marshall, J.; Lenzi, G.L.; Jones, T. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain A J. Neurol. 1981, 104, 753–778. [Google Scholar] [CrossRef]
- Mesulam, M.M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1990, 28, 597–613. [Google Scholar]
- Demonet, J.; Wise, R.; Frackowiak, R. Language functions explored in normal subjects by positron emission tomography: A critical review. Hum. Brain Mapp. 1993, 1, 39–47. [Google Scholar]
- Gazzaniga, M.S. Language and the cerebral hemispheres. Discuss. Neurosci. 1993, 10, 106–108. [Google Scholar]
- Paulin, M.G. The role of the cerebellum in motor control and perception. Brain Behav. Evol. 1993, 41, 39–50. [Google Scholar] [CrossRef]
- Akshoomoff, N.A.; Courchesne, E. A new role for the cerebellum in cognitive operations. Behav. Neurosci. 1992, 106, 731. [Google Scholar] [CrossRef] [PubMed]
- Botez, M.I.; Botez, T.; Elie, R.; Attig, E. Role of the cerebellum in complex human behavior. Ital. J. Neurol. Sci. 1989, 10, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013, 80, 807–815. [Google Scholar] [CrossRef]
- Stoodley, C.J. The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum 2012, 11, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Wegiel, J.; Wisniewski, H.M.; Dziewiatkowski, J.; Badmajew, E.; Tarnawski, M.; Reisberg, B.; Mlodzik, B.; De Leon, M.J.; Miller, D.C. Cerebellar atrophy in Alzheimer’s disease—Clinicopathological correlations. Brain Res. 1999, 818, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Sporns, O. Network neuroscience. Nat. Neurosci. 2017, 20, 353–364. [Google Scholar] [CrossRef]
- Smith, S.M.; Miller, K.L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C.F.; Nichols, T.E.; Ramsey, J.D.; Woolrich, M.W. Network modelling methods for FMRI. Neuroimage 2011, 54, 875–891. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Damoiseaux, J.S.; Prater, K.E.; Miller, B.L.; Greicius, M.D. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 828-e19. [Google Scholar] [CrossRef]
Characteristic | CN | AD | p |
---|---|---|---|
Number of subjects | 41 | 34 | - |
Sex (M/F) | |||
Age (years) | |||
Education (years) | |||
MMSE | <10−11 |
(a) CFC sub-network for CN > AD at thresh = 1.80 having p-value = 0.0299 | ||
Edge | Region Name | Reported by |
IFGorb_R → TPOsup_R | Inferior frontal gyrus | Eliasova et al. [47], Cajanus et al. [48] |
TPOmid_R → TPOsup_R | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
TPOmid_R → TPOmid_L | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
CER8_R → TPOmid_R | Cerebellum | Joachim et al. [51], Jacobs et al. [52] |
TPOmid_R → CER8_R | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
CER9_R → CER8_R | Cerebellum | Joachim et al. [51], Jacobs et al. [52] |
CER8_R → CER9_R | Cerebellum | Joachim et al. [51], Jacobs et al. [52] |
(b) CFC sub-network for CN > AD at thresh = 2.20 having p-value = 0.0465 | ||
Edge | Region Name | Reported by |
IFGorb_R → TPOsup_R | Inferior frontal gyrus | Eliasova et al. [47], Cajanus et al. [48] |
TPOmid_R → TPOsup_R | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
TPOmid_R → TPOmid_L | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
(c) CFC sub-network for CN > AD at thresh = 2.30 having p-value = 0.0233 | ||
Edge | Region Name | Reported by |
IFGorb_R → TPOsup_R | Inferior frontal gyrus | Eliasova et al. [47], Cajanus et al. [48] |
TPOmid_R → TPOsup_R | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
TPOmid_R → TPOmid_L | Temporal pole: middle temporal gyrus | Harasty et al. [49], Convit et al. [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, R.; Sripada, S. Alterations in Causal Functional Brain Networks in Alzheimer’s Disease: A Resting-State fMRI Study. J. Dement. Alzheimer's Dis. 2025, 2, 4. https://doi.org/10.3390/jdad2010004
Biswas R, Sripada S. Alterations in Causal Functional Brain Networks in Alzheimer’s Disease: A Resting-State fMRI Study. Journal of Dementia and Alzheimer's Disease. 2025; 2(1):4. https://doi.org/10.3390/jdad2010004
Chicago/Turabian StyleBiswas, Rahul, and SuryaNarayana Sripada. 2025. "Alterations in Causal Functional Brain Networks in Alzheimer’s Disease: A Resting-State fMRI Study" Journal of Dementia and Alzheimer's Disease 2, no. 1: 4. https://doi.org/10.3390/jdad2010004
APA StyleBiswas, R., & Sripada, S. (2025). Alterations in Causal Functional Brain Networks in Alzheimer’s Disease: A Resting-State fMRI Study. Journal of Dementia and Alzheimer's Disease, 2(1), 4. https://doi.org/10.3390/jdad2010004