On d and M Problems for Newtonian Potentials in Euclidean n Space †
Abstract
1. Introduction
2. Notation, Definitions, and Basic Lemmas
3. Proof of Theorem 1
4. Proof of Proposition 1
5. Proof of Theorem 2
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 2010; Volume 259. [Google Scholar]
- Barnard, R.; Lewis, J. Subordination Theorems for Some Classes of Starlike Functions. Pac. J. Math. 1975, 56, 333–366. [Google Scholar] [CrossRef]
- Barnard, R.; Lewis, J. Coefficient Bounds for Some Classes of Starlike Functions. Pac. J. Math. 1975, 56, 325–331. [Google Scholar] [CrossRef]
- Gariepy, R.; Lewis, J. A Maximum Principle with Applications to Subharmonic Functions in N-Space. Ark. Math. 1974, 12, 253–266. [Google Scholar] [CrossRef]
- Hayman, W.K. Subharmonic Functions, Volume 2. In London Mathematical Society Monographs; Academic Press: Cambridge, MA, USA, 1989; Volume 20. [Google Scholar]
- Baernstein, A., II; Drasin, D.; Laugeson, R. Symmetrization in Analysis; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Baernstein, A., II. Proof of Edrei’s Spread Conjecture. Proc. Lond. Math. Soc. 1973, 26, 418–434. [Google Scholar] [CrossRef]
- Baernstein, A., II; Taylor, B.A. Spherical Rearrangements, Subharmonic Functions, and ∗ Functions in n Space. Duke Math. J. 1976, 43, 245–268. [Google Scholar] [CrossRef]
- Lewis, J. An n-Space Analogue of a Theorem of Suffridge. Proc. Lond. Math. Soc. 1975, 30, 444–464. [Google Scholar] [CrossRef]
- Suffridge, T. A Coefficient Problem for a Class of Univalent Functions. Mich. Math. J. 1962, 16, 33–42. [Google Scholar] [CrossRef]
- Hayman, W.K.; Kennedy, P.B. Subharmonic Functions, Volume 1. In London Mathematical Society Monographs; Academic Press: Cambridge, MA, USA, 1976; Volume 9. [Google Scholar]
- Evans, L.C. Partial Differential Equations. In Graduate Studies in Mathematics, 2nd ed.; American Mathematics Society: Providence, RI, USA, 2010; Volume 19. [Google Scholar]
- Kenig, C.; Jerison, D. Boundary Behavior of Harmonic Functions in Non-tangentially Accessible Domains. Adv. Math. 1982, 46, 80–147. [Google Scholar] [CrossRef]
- Silva, D.D.; Savin, O. C∞ Regularity of Certain Thin Free Boundaries. Indiana Univ. Math. J. 2015, 64, 1575–1608. [Google Scholar] [CrossRef]
- Silva, D.D.; Savin, O. Boundary Harnack Estimates in Slit Domains and Applications to Thin Free Boundary Problems. Rev. Mat. Ibero 2016, 32, 891–912. [Google Scholar] [CrossRef]
- Heinonen, J.; Kilpeläinen, T.; Martio, O. Nonlinear Potential Theory Degenerate Elliptic Equations; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, J. On d and M Problems for Newtonian Potentials in Euclidean n Space. Geometry 2025, 2, 14. https://doi.org/10.3390/geometry2030014
Lewis J. On d and M Problems for Newtonian Potentials in Euclidean n Space. Geometry. 2025; 2(3):14. https://doi.org/10.3390/geometry2030014
Chicago/Turabian StyleLewis, John. 2025. "On d and M Problems for Newtonian Potentials in Euclidean n Space" Geometry 2, no. 3: 14. https://doi.org/10.3390/geometry2030014
APA StyleLewis, J. (2025). On d and M Problems for Newtonian Potentials in Euclidean n Space. Geometry, 2(3), 14. https://doi.org/10.3390/geometry2030014