Generalization of Napoleon–Barlotti Theorem
Abstract
1. Introduction
2. Step One: Proof of Theorem 1 for an Arbitrary Triangle
3. Step Two: Generalization of Theorem 1 to an Arbitrary n-gon
- Construct a perpendicular k to the segment passing through the point Let it intersect the axis g at the point (or ).
- Choose any point on the line k and any point (or ) on the axis It determines
- Construct the affine image of the
- Construct (or ) directly similar to the
- Construct the point in the same relative position with respect to as the position of the point with respect to
- Definition: the image of the point (the foot of the perpendicular from to the line g) is the point
4. Step Three: Final Completion of Theorem 1
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barlotti, A. Una proprieta degli n-agoni che si ottengono transformando in una affinita un n-agono regolare. Boll. Un. Mat. Ital. 1955, 10, 96–98. [Google Scholar]
- Gerber, L. Napoleon’s theorem and the parallelogram inequality for affine-regular polygons. Am. Math. Mon. 1980, 87, 644–648. [Google Scholar] [CrossRef]
- Douglas, J. Geometry of polygons in the complex plane. J. Math. Phys. 1940, 19, 93–130. [Google Scholar] [CrossRef]
- Gray, S.B. Generalizing the Petr-Douglas-Neumann theorem on n-gons. Am. Math. Mon. 2003, 110, 210–227. [Google Scholar] [CrossRef]
- Neumann, B.H. Some remarks on polygons. J. Lond. Math. Soc. 1941, 16, 230–245. [Google Scholar] [CrossRef]
- Pech, P. The harmonic analysis of polygons and Napoleon’s theorem. J. Geom. Graph. 2001, 5, 13–22. [Google Scholar]
- Petr, K. O jedné větě pro mnohoúhelníky rovinné. Čas. Pěst. Mat. Fyz. 1905, 34, 166–172. [Google Scholar] [CrossRef]
- Thébault, V. Solution to problem 169. Natl. Math. Mag. 1937, 12, 92–194. [Google Scholar]
- Van Aubel, H. Note concernant les centres de carrés construits sur les côtés d’un polygon quelconque. Nouv. Corresp. Mathématique 1878, 4, 40–44. [Google Scholar]
- Silvester, J.R. Extensions of a theorem of van Aubel. Math. Gaz. 2006, 90, 2–12. [Google Scholar] [CrossRef]
- Blažek, J.; Pech, P. Generalization of Napoleon’s Theorem: Similar Triangles. Math. Reflections 2024, 5, 1–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blažek, J.; Pech, P. Generalization of Napoleon–Barlotti Theorem. Geometry 2025, 2, 13. https://doi.org/10.3390/geometry2030013
Blažek J, Pech P. Generalization of Napoleon–Barlotti Theorem. Geometry. 2025; 2(3):13. https://doi.org/10.3390/geometry2030013
Chicago/Turabian StyleBlažek, Jiří, and Pavel Pech. 2025. "Generalization of Napoleon–Barlotti Theorem" Geometry 2, no. 3: 13. https://doi.org/10.3390/geometry2030013
APA StyleBlažek, J., & Pech, P. (2025). Generalization of Napoleon–Barlotti Theorem. Geometry, 2(3), 13. https://doi.org/10.3390/geometry2030013