Unveiling the Wing Shape Variation in Northern Altiplano Ecosystems: The Example of the Butterfly Phulia nymphula Using Geometric Morphometrics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Data Acquisition
2.2. Geometric Morphometric Analyses
2.3. Wing Shape and Environment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Lau, K. Does a monsoon climate exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Aceituno, P. Aspectos generales del clima en el altiplano sudamericano. In Proceedings of the El altiplano: Ciencia y conciencia en los Andes. Actas del 21 Simposio Internacional de Estudios Altipl Anicos, Arica, Chile, 19–21 October 1993; Universidad de Chile: Santiago, Chile; pp. 63–69. [Google Scholar]
- Dejoux, C.; Iltis, A. El lago Titicaca: Síntesis del Conocimiento limnológico Actual; IRD Editions: Paris, France, 1991. [Google Scholar]
- Raggi Saini, L.A. La fauna altiplánica. In El Altiplano: Ciencia y Conciencia en los Andes; Vicerrectoría Académica y Estudiantil Universidad de Chile: Santiago, Chile, 1997; pp. 199–202. [Google Scholar]
- Cattan, P.E. Fauna de Vertebrados del Altiplano: Un Análisis Comparativo en el Extremo norte de Chile; INIA: Santiago, Chile, 1997. [Google Scholar]
- Marconi, P.; Arengo, F.; Clark, A. The arid Andean plateau waterscapes and the lithium triangle: Flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetl. Ecol. Manag. 2022, 30, 827–852. [Google Scholar] [CrossRef]
- Despland, E. Butterflies of the high-altitude Atacama Desert: Habitat use and conservation. Front. Genet. 2014, 5, 334. [Google Scholar] [CrossRef] [PubMed]
- Despland, E.; Humire, R.; Martín, S.S. Species richness and phenology of butterflies along an altitude gradient in the desert of Northern Chile. Arct. Antarct. Alp. Res. 2012, 44, 423–431. [Google Scholar] [CrossRef]
- Vargas, H.A. Lycaenid caterpillars (Lepidoptera, Lycaenidae) eating flowers of Dalea pennellii var. chilensis (Fabaceae) in the northern Chilean Andes. Rev. Bras. Entomol. 2014, 58, 309–312. [Google Scholar] [CrossRef]
- Benítez, H.A.; Villalobos-Leiva, A.; Ordenes, R.; Cruz-Jofré, F. Elevational record of Vanessa carye (Hübner 1812) (Lepidoptera Nymphalidae) in the northern Chilean Altiplano Highlands. Nota Lepidopterol. 2019, 42, 157. [Google Scholar] [CrossRef]
- Villalobos-Leiva, A.; Ordenes-Clavería, R.; Cruz-Jofré, F.; Escobar-Suárez, S.; Lobos, I.; Benítez, H.A. The life history of Itylos titicaca (Weymer 1890) (Lepidoptera, Lycaenidae, Polyommatina) at 5200 m in the Chilean altiplano. Nota Lepidopterol. 2022, 45, 263–268. [Google Scholar] [CrossRef]
- Escobar-Suárez, S.; Villalobos-Leiva, A.; Fabres, A.; Órdenes-Clavería, R.; Cruz-Jofré, F.; Laroze, D.; Correa, M.; Valladares, M.A.; Cáceres, J.S.D.; Benítez, H.A. A geometric morphometrics and genetics characterization of Vanessa carye in an extreme elevational gradient in the Chilean Altiplano. Zool. Anz. 2023, 304, 105–112. [Google Scholar] [CrossRef]
- Peña, L.E.; Ugarte, A.J. Butterflies of Chile; Editorial Universitaria: Santiago, Chile, 1996. [Google Scholar]
- Field, W.D. A redefinition of the butterfly genera Tatochila, Phulia, Piercolias, and Baltia, with descriptions of related genera and subgenera. Proc. United States Natl. Mus. 1958, 108, 3396. [Google Scholar] [CrossRef]
- Shapiro, A. Use of an exotic weed as an oviposition substrate of the high-Andean Pierid Phulia nymphula. J. Lepid. Soc. 2006, 60, 100. [Google Scholar]
- Zhang, J.; Cong, Q.; Shen, J.; Opler, P.A.; Grishin, N.V. Genomics-guided refinement of butterfly taxonomy. Taxon. Rep. Int. Lepid. Surv. 2021, 9, 3. [Google Scholar] [PubMed]
- Pyrcz, T.W.; Willmott, K.R.; Lamas, G.; Boyer, P.; Florczyk, K.; Fåhraeus, C.; Mahecha, O.; Cerdeña, J.; Mrozek, A.; Farfán, J. Considerations on the systematics of Neotropical Pierina, with the description of two new species of Phulia Herrich-Schäffer from the Peruvian Andes (Lepidoptera: Pieridae, Pierinae, Pierini). Neotrop. Entomol. 2022, 51, 840–859. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.M.; Courtney, S.P. The life history of Pierphulia rosea annamariea, an unusual butterfly from the Peruvian altiplano (Lepidoptera: Pieridae). J. N. Y. Entomol. Soc. 1986, 94, 536–541. [Google Scholar]
- Shapiro, A.M. Why Are There So Few Butterflies In The High. J. Res. Lepid. 1992, 31, 35–56. [Google Scholar] [CrossRef]
- Strauss, R.E. Patterns of quantitative variation in lepidopteran wing morphology: The convergent groups Heliconiinae and Ithomiinae (Papilionoidea: Nymphalidae). Evolution 1990, 44, 86–103. [Google Scholar] [CrossRef] [PubMed]
- Altizer, S.; Davis, A.K. Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evol. Int. J. Org. Evol. 2010, 64, 1018–1028. [Google Scholar] [CrossRef]
- Le Roy, C.; Debat, V.; Llaurens, V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 2019, 94, 1261–1281. [Google Scholar] [CrossRef]
- DeVries, P.; Penz, C.M.; Hill, R.I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 2010, 79, 1077–1085. [Google Scholar] [CrossRef]
- Mérot, C.; Oomen, R.A.; Tigano, A.; Wellenreuther, M. A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends Ecol. Evol. 2020, 35, 561–572. [Google Scholar] [CrossRef]
- Ellington, C.P. The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. London B Biol. Sci. 1984, 305, 17–40. [Google Scholar]
- Kingsolver, J.G. Experimental analyses of wing size, flight, and survival in the western white butterfly. Evolution 1999, 53, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Betz, O. Ecomorphology: Integration of form, function, and ecology in the analysis of morphological structures. Mitteilungen Dtsch. Ges. Für Allg. Angew. Entomol. 2006, 15, 409–416. [Google Scholar]
- Sanzana, M.-J.; Parra, L.E.; Sepulveda-Zuniga, E.; Benitez, H.A. Latitudinal gradient effect on the wing geometry of Auca coctei (Guerin) (Lepidoptera, Nymphalidae). Rev. Bras. De Entomol. 2013, 57, 411–416. [Google Scholar] [CrossRef]
- Akand, S.; Bashar, M.; Rahman, S.; Khan, H. Morphometric variation in the species of two subfamilies of lycaenid butterflies (Lepidoptera: Lycaenidae) of Bangladesh. J. Biodivers. Conserv. Bioresour. Manag. 2017, 3, 9–16. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Marcus, L.F. A revolution in morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef]
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix-Ital. J. Mammal. 2013, 24, 7–14. [Google Scholar] [CrossRef]
- Benítez, H.A.; Püschel, T.A. Modelando la Varianza de la Forma: Morfometría Geométrica Aplicaciones en Biología Evolutiva. Int. J. Morphol. 2014, 32, 998–1008. [Google Scholar] [CrossRef]
- Toro Ibacache, M.V.; Manriquez Soto, G.; Suazo Galdames, I. Morfometría geométrica y el estudio de las formas biológicas: De la morfología descriptiva a la morfología cuantitativa. Int. J. Morphol. 2010, 28, 977–990. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Slice, D. Extensions of the Procustes methods for the optimal superimposition of landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef]
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Ital. J. Zool. 2004, 71, 5–16. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix-Ital. J. Mammal. 2013, 24, 15–24. [Google Scholar] [CrossRef]
- Villalobos-Leiva, A.; Benítez, H.A. Morfometría Geométrica y sus Nuevas Aplicaciones en Ecología y Biología Evolutiva. Parte 2. Int. J. Morphol. 2020, 38, 1818–1836. [Google Scholar] [CrossRef]
- Lemic, D.; Viric Gasparic, H.; Majcenic, P.; Pajač Živković, I.; Bjeliš, M.; Suazo, M.J.; Correa, M.; Hernández, J.; Benítez, H.A. Wing shape variation between terrestrial and coastal populations of the invasive box tree moth, Cydalima perspectalis, in Croatia. Animals 2023, 13, 3044. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas Muñoz, R.E.; Checa Villafuerte, M.F. Forest stratification shapes allometry and flight morphology of tropical butterflies. R. Soc. 2020, 287, 1–10. [Google Scholar]
- Rohlf, F.J. The tps series of software. Hystrix 2015, 26, 9–12. [Google Scholar]
- Arnqvist, G.; Martensson, T. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zool. Acad. Sci. Hung. 1998, 44, 73–96. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Campbell, N.A.; Atchley, W.R. The Geometry of Canonical Variate Analysis. Syst. Zool. 1981, 30, 268–280. [Google Scholar] [CrossRef]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Baken, E.K.; Collyer, M.L.; Kaliontzopoulou, A.; Adams, D.C. geomorph v4. 0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 2021, 12, 2355–2363. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Muñoz, R.C.; Falvey, M.J.; Arancibia, M.; Astudillo, V.I.; Elgueta, J.; Ibarra, M.; Santana, C.; Vásquez, C. Wind energy exploration over the Atacama desert: A numerical model–guided observational program. Bull. Am. Meteorol. Soc. 2018, 99, 2079–2092. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Risacher, F.; Alonso, H.; Salazar, C. The origin of brines and salts in Chilean salars: A hydrochemical review. Earth-Sci. Rev. 2003, 63, 249–293. [Google Scholar] [CrossRef]
- Cárcamo-Tejer, V.; Vila, I.; Llanquín-Rosas, F.; Sáez-Arteaga, A.; Guerrero-Jiménez, C. Phylogeography of high Andean killifishes Orestias (Teleostei: Cyprinodontidae) in Caquena and Lauca sub-basins of the Altiplano (Chile): Mitochondrial and nuclear analysis of an endangered fish. PeerJ 2021, 9, e11917. [Google Scholar] [CrossRef] [PubMed]
- Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Dockx, C. Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biol. J. Linn. Soc. 2007, 92, 605–616. [Google Scholar] [CrossRef]
- Kölliker-Ott, U.M.; Blows, M.W.; Hoffmann, A.A. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 2003, 100, 563–573. [Google Scholar] [CrossRef]
- Mikitová, B.; Šemeláková, M.; Panigaj, Ľ. Morphological variability of Argynnis paphia (Lepidoptera: Nymphalidae) across different environmental conditions in eastern Slovakia. Biologia 2021, 76, 2941–2956. [Google Scholar] [CrossRef]
- Carneiro, L.; Aguiar, C.M.L.; Aguiar, W.M.; Aniceto, E.S.; Nunes, L.A.; Ferreira, V.S. Morphometric variability among populations of Euglossa cordata (Hymenoptera: Apidae: Euglossini) from different phytophysiognomies. Sociobiology 2019, 66, 575–581. [Google Scholar] [CrossRef]
- Minvielle, M.; Garreaud, R.D. Projecting rainfall changes over the South American Altiplano. J. Clim. 2011, 24, 4577–4583. [Google Scholar] [CrossRef]
- Valdivia, C.; Thibeault, J.; Gilles, J.L.; García, M.; Seth, A. Climate trends and projections for the Andean Altiplano and strategies for adaptation. Adv. Geosci. 2013, 33, 69–77. [Google Scholar] [CrossRef]
- Clavero, J.; Sparks, R.; Huppert, H.; Dade, W. Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull. Volcanol. 2002, 64, 40–54. [Google Scholar] [CrossRef]
- Guerrero-Jiménez, C.J.; Peña, F.; Morales, P.; Méndez, M.; Sallaberry, M.; Vila, I.; Poulin, E. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias. PLoS ONE 2017, 12, e0170380. [Google Scholar]
- Boggs, C.L.; Niitepõld, K. Effects of larval dietary restriction on adult morphology, with implications for flight and life history. Entomol. Exp. Appl. 2016, 159, 189–196. [Google Scholar] [CrossRef]
- Kircher, H. Chemical composition of cacti and its relationship to Sonoran Desert Drosophila. In Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System; Barker, J.S.F., Starmer, W.T., Eds.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Shapiro, A.M. Behavioral and ecological observations of Peruvian High-Andean Pierid butterflies (Lepidoptera). Stud. Neotrop. Fauna Environ. 1985, 20, 1–13. [Google Scholar] [CrossRef]
- Ortega Ancel, A.; Eastwood, R.; Vogt, D.; Ithier, C.; Smith, M.; Wood, R.; Kovač, M. Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots. Interface Focus 2017, 7, 20160087. [Google Scholar] [CrossRef]
- Francuski, L.; Ludoški, J.; Vujić, A.; Milankov, V. Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zool. Sci. 2009, 26, 301–308. [Google Scholar] [CrossRef]
- Huey, R.B.; Gilchrist, G.W.; Carlson, M.L.; Berrigan, D.; Serra, L.s. Rapid Evolution of a Geographic Cline in Size in an Introduced Fly. Science 2000, 287, 308–309. [Google Scholar] [CrossRef]
- Milankov, V.; Ludoški, J.; Ståhls, G.; Stamenković, J.; Vujić, A. High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): Cryptic speciation in a diverse insect taxon. Zool. J. Linn. Soc. 2009, 155, 819–833. [Google Scholar] [CrossRef]
Distances/p-Values | Caquena | Chungará | Casiri Macho Lake | Sorapata Lake | Surire Salt Flat |
---|---|---|---|---|---|
Chungará | 7.6499 0.0424 | ||||
Casiri Macho Lake | 7.3830 <0.0001 | 8.6599 0.0058 | |||
Sorapata Lake | 6.7149 <0.0001 | 9.0319 0.0036 | 2.4913 0.0084 | ||
Surire Salt Flat | 5.7120 <0.0001 | 4.6412 0.0368 | 5.6889 <0.0001 | 5.6086 0.0505 | |
Visviri | 7.2949 <0.0291 | 5.2953 0.3342 | 7.9680 0.0050 | 8.2105 0.0768 | 4.6450 0.0474 |
Location (n) | General Average Speed * | Maximum Speed ** | Category | Elevation (m.a.s.l.) | Basin/Sub-Basin *** |
---|---|---|---|---|---|
Visviri (2) | 4.47 | 17.47 | LOW (<20) | 4084 | Putani River |
Casiri Macho Lake (12) | 6.60 | 30.47 | HIGH (>25) | 4844 | Caquena River |
Sorapata Lake (22) | 7.10 | 28.54 | HIGH (>25) | 5200 | Caquena River |
Caquena (5) | 4.00 | 17.56 | LOW (<20) | 4401 | Caquena River |
Chungará (2) | 5.80 | 24.23 | MEDIUM (20–25) | 4568 | Chungará Lake |
Surire Salt Flat (33) | 4.90 | 20.61 | MEDIUM (20–25) | 4268 | Surire Salt Flat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña-Valenzuela, T.; Hernández-Martelo, J.; Suazo, M.J.; Lobos, I.A.; Piñeiro-González, A.; Villalobos-Leiva, A.; Cruz-Jofré, F.; Hernández-P, R.; Correa, M.; Benítez, H.A. Unveiling the Wing Shape Variation in Northern Altiplano Ecosystems: The Example of the Butterfly Phulia nymphula Using Geometric Morphometrics. Animals 2024, 14, 2758. https://doi.org/10.3390/ani14192758
Acuña-Valenzuela T, Hernández-Martelo J, Suazo MJ, Lobos IA, Piñeiro-González A, Villalobos-Leiva A, Cruz-Jofré F, Hernández-P R, Correa M, Benítez HA. Unveiling the Wing Shape Variation in Northern Altiplano Ecosystems: The Example of the Butterfly Phulia nymphula Using Geometric Morphometrics. Animals. 2024; 14(19):2758. https://doi.org/10.3390/ani14192758
Chicago/Turabian StyleAcuña-Valenzuela, Thania, Jordan Hernández-Martelo, Manuel J. Suazo, Isabel A. Lobos, Alejandro Piñeiro-González, Amado Villalobos-Leiva, Franco Cruz-Jofré, Raquel Hernández-P, Margarita Correa, and Hugo A. Benítez. 2024. "Unveiling the Wing Shape Variation in Northern Altiplano Ecosystems: The Example of the Butterfly Phulia nymphula Using Geometric Morphometrics" Animals 14, no. 19: 2758. https://doi.org/10.3390/ani14192758
APA StyleAcuña-Valenzuela, T., Hernández-Martelo, J., Suazo, M. J., Lobos, I. A., Piñeiro-González, A., Villalobos-Leiva, A., Cruz-Jofré, F., Hernández-P, R., Correa, M., & Benítez, H. A. (2024). Unveiling the Wing Shape Variation in Northern Altiplano Ecosystems: The Example of the Butterfly Phulia nymphula Using Geometric Morphometrics. Animals, 14(19), 2758. https://doi.org/10.3390/ani14192758