A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment
Abstract
1. Introduction
2. Continuing Obscurity of the Molecular Mechanisms of Adverse Effects in Alligators in Lake Apopka
3. Dichlorodiphenyltrichloroethane (DDT) Metabolites and Their Structurally Analogous Chemical Compounds Bisphenol C (BPC)
4. Halogen Bonds in Biological Molecules
5. The Possibility of the Conversion from DDT to BPC
6. Conclusions and Future Perspectives
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BPA | Bisphenol A |
BPC | Bisphenol C |
EDC | Endocrine-disrupting chemical |
DDT | Dichlorodiphenyltrichloroethane |
DDE | Dichlorodiphenyldichloroethylene |
ER | Estrogen receptor |
HTPE | 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane |
References
- Woodward, A.R.; Percival, H.F.; Jennings, M.L.; Moore, C.T. Low clutch viability of american alligators on lake apopka. Fla. Sci. 1993, 56, 52–63. [Google Scholar]
- Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainen, J.A.; Wilson, E.M. Persistent ddt metabolite p,p’-dde is a potent androgen receptor antagonist. Nature 1995, 375, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Methoxychlor (content source: Agency for Toxic Substances and Disease Registry). Available online: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=151 (accessed on 5 May 2018).
- Matsushima, A.; Liu, X.; Okada, H.; Shimohigashi, M.; Shimohigashi, Y. Bisphenol af is a full agonist for the estrogen receptor eralpha but a highly specific antagonist for erbeta. Environ. Health Perspect. 2010, 118, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Gaido, K.W.; Leonard, L.S.; Maness, S.C.; Hall, J.M.; McDonnell, D.P.; Saville, B.; Safe, S. Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors α and β. Endocrinology 1999, 140, 5746–5753. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J., Jr.; Gross, T.S.; Masson, G.R.; Matter, J.M.; Percival, H.F.; Woodward, A.R. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in florida. Environ. Health Perspect. 1994, 102, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J., Jr.; Crain, D.A.; Rooney, A.A.; Pickford, D.B. Organization versus activation: The role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife. Environ. Health Perspect. 1995, 103, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J.; Gross, T.S.; Gross, D.A.; Rooney, A.A.; Percival, H.F. Gonadal steroidogenesis in vitro from juvenile alligators obtained from contaminated or control lakes. Environ. Health Perspect. 1995, 103, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J.; Pickford, D.B.; Crain, D.A.; Rooney, A.A.; Percival, H.F. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen. Comp. Endocrinol. 1996, 101, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Bermudez, D.S.; Katsu, Y.; Iguchi, T.; Guillette, L.J. Gene expression patterns in juvenile American alligators (Alligator Mississippiensis) exposed to environmental contaminants. Aquat. Toxicol. 2008, 88, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Milnes, M.R.; Bryan, T.A.; Katsu, Y.; Kohno, S.; Moore, B.C.; Iguchi, T.; Guillette, L.J. Increased posthatching mortality and loss of sexually dimorphic gene expression in alligators (Alligator Mississippiensis) from a contaminated environment. Biol. Reprod. 2008, 78, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Vonier, P.M.; Crain, D.A.; McLachlan, J.A.; Guillette, L.J.; Arnold, S.F. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ. Health Perspect. 1996, 104, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Heinz, G.H.; Percival, H.F.; Jennings, M.L. Contaminants in american alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida. Environ. Monit. Assess. 1991, 16, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Milnes, M.R.; Woodward, A.R.; Rooney, A.A.; Guillette, L.J. Plasma steroid concentrations in relation to size and age in juvenile alligators from two Florida lakes. Comp. Biochem. Physiol. 2002, 131, 923–930. [Google Scholar] [CrossRef]
- Gunderson, M.P.; Bermudez, D.S.; Bryan, T.A.; Degala, S.; Edwards, T.M.; Kools, S.A.E.; Milnes, M.R.; Woodward, A.R.; Guillette, L.J. Variation in sex steroids and phallus size in juvenile American alligators (Alligator Mississippiensis) collected from 3 sites within the kissimmee-everglades drainage in Florida (USA). Chemosphere 2004, 56, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J.; Woodward, A.R.; Crain, D.A.; Pickford, D.B.; Rooney, A.A.; Percival, H.F. Plasma steroid concentrations and male phallus size in juvenile alligators from seven florida lakes. Gen. Comp. Endocrinol. 1999, 116, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Guillette, L.J., Jr.; Brock, J.W.; Rooney, A.A.; Woodward, A.R. Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Arch. Environ. Contam. Toxicol. 1999, 36, 447–455. [Google Scholar] [CrossRef] [PubMed]
- St John, J.A.; Braun, E.L.; Isberg, S.R.; Miles, L.G.; Chong, A.Y.; Gongora, J.; Dalzell, P.; Moran, C.; Bed’Hom, B.; Abzhanov, A.; et al. Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Gen. Biol. 2012, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Yatsu, R.; Miyagawa, S.; Kohno, S.; Parrott, B.B.; Yamaguchi, K.; Ogino, Y.; Miyakawa, H.; Lowers, R.H.; Shigenobu, S.; Guillette, L.J.; et al. RNA-seq analysis of the gonadal transcriptome during Alligator Mississippiensis temperature-dependent sex determination and differentiation. BMC Genom. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- DDT and Its Derivatives. Available online: http://www.inchem.org/documents/ehc/ehc/ehc009.htm (accessed on 5 May 2018).
- DDT and Its Derivatives-Environmantal Aspects. Available online: http://www.inchem.org/documents/ehc/ehc/ehc83.htm (accessed on 5 May 2018).
- Ricking, M.; Schwarzbauer, J. Ddt isomers and metabolites in the environment: An overview. Environ. Chem. Lett. 2012, 10, 317–323. [Google Scholar] [CrossRef]
- Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks. Environ. Health Perspect. 2002, 110, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.; Shimizu, Y.; Shiraga, Y.; Yoshida, M.; Sugihara, K.; Ohta, S. Reductive metabolism of p,p′-DDT and o,p′-DDT by rat liver cytochrome p450. Drug Metab. Disposit. 2002, 30, 113–118. [Google Scholar] [CrossRef]
- Kirman, C.R.; Aylward, L.L.; Hays, S.M.; Krishnan, K.; Nong, A. Biomonitoring equivalents for DDT/DDE. Regul. Toxicol. Pharmacol. 2011, 60, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Van der Oost, R.; Beyer, J.; Vermeulen, N. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Colborn, T.; vom Saal, F.S.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 1993, 101, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Yin, S.; Tang, M.; Liu, K.; Yang, F.; Liu, W. Environmental exposure to DDT and its metabolites in cord serum: Distribution, enantiomeric patterns, and effects on infant birth outcomes. Sci. Total Environ. 2017, 580, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.B.; Curtis, L.R.; Williams, D.E. Salmonid sexual development is not consistently altered by embryonic exposure to endocrine-active chemicals. Environ. Health Perspect. 2000, 108, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, C.; Peng, H.; Zheng, G.; Zhang, S.; Hu, J. p,p’-DDE induces gonadal intersex in japanese medaka (Oryzias Latipes) at environmentally relevant concentrations: Comparison with o,p-DDT. Environ. Sci. Technol. 2016, 50, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Snedeker, S.M. Pesticides and breast cancer risk: A review of DDT, DDE, and dieldrin. Environ. Health Perspect. 2001, 109, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Howe, S.R.; Borodinsky, L. Potential exposure to Bisphenol A from food-contact use of polycarbonate resins. Food Addit. Contam. 1998, 15, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Staples, C.A.; Dorn, P.B.; Klecka, G.M.; O’Block, S.T.; Harris, L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, 2149–2173. [Google Scholar] [CrossRef]
- Lewis, J.B.; Rueggeberg, F.A.; Lapp, C.A.; Ergle, J.W.; Schuster, G.S. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin. Oral Investig. 1999, 3, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Crain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, L.J. An ecological assessment of Bisphenol-A: Evidence from comparative biology. Reprod. Toxicol. 2007, 24, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Kannan, K. Concentrations and profiles of Bisphenol A and other bisphenol analogues in foodstuffs from the united states and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Ryan, K.; Shimohigashi, Y.; Meinertzhagen, I.A. An endocrine disruptor, Bisphenol A, affects development in the protochordate ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner. Environ. Pollut. 2013, 173, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.; Williams, P.L.; Missmer, S.A.; Flaws, J.A.; Ye, X.; Calafat, A.M.; Petrozza, J.C.; Wright, D.; Hauser, R. Urinary Bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum. Reprod. 2012, 27, 3583–3592. [Google Scholar] [CrossRef] [PubMed]
- Völkel, W.; Kiranoglu, M.; Fromme, H. Determination of free and total Bisphenol A in urine of infants. Environ. Res. 2011, 111, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Vom Saal, F.S.; Welshons, W.V. Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that bpa causes numerous hazards from multiple routes of exposure. Mol. Cell. Endocrinol. 2014, 398, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Shelby, M.D. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A. 2008. Available online: https://ntp.niehs.nih.gov/ntp/ohat/bisphenol/bisphenol.pdf (accessed on 5 May 2018).
- Shelnutt, S.; Kind, J.; Allaben, W. Bisphenol A: Update on newly developed data and how they address NTP’s 2008 finding of “some concern”. Food Chem. Toxicol. 2013, 57, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto, A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009, 30, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Grob, K.; Gürtler, R.; Husøy, T.; Mennes, W.; Milana, M.R. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Executive summary. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- Dodds, E.C.; Lawson, W. Synthetic estrogenic agents without the phenanthrene nucleus. Nature 1936, 137, 996. [Google Scholar] [CrossRef]
- Krishnan, A.V.; Stathis, P.; Permuth, S.F.; Tokes, L.; Feldman, D. Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993, 132, 2279–2286. [Google Scholar] [CrossRef] [PubMed]
- Olea, N.; Pulgar, R.; Pérez, P.; Olea-Serrano, F.; Rivas, A.; Novillo-Fertrell, A.; Pedraza, V.; Soto, A.M.; Sonnenschein, C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect. 1996, 104, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.M.; Gore, A.C. Transgenerational neuroendocrine disruption of reproduction. Nat. Rev. Endocrinol. 2011, 7, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.-H.; Pan, J.-X.; Jin, L.-Y.; Xu, H.-Y.; Yu, T.-T.; Ullah, K.; Rahman, T.U.; Ren, J.; Cheng, Y.; Dong, X.-Y.; et al. Bisphenol A exposure may induce hepatic lipid accumulation via reprogramming the DNA methylation patterns of genes involved in lipid metabolism. Sci. Rep. 2016, 6, 31331. [Google Scholar] [CrossRef] [PubMed]
- León-Olea, M.; Martyniuk, C.J.; Orlando, E.F.; Ottinger, M.A.; Rosenfeld, C.S.; Wolstenholme, J.T.; Trudeau, V.L. Current concepts in neuroendocrine disruption. Gen. Comp. Endcrinol. 2014, 203, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Casati, L.; Sendra, R.; Sibilia, V.; Celotti, F. Endocrine disrupters: The new players able to affect the epigenome. Front. Cell Dev. Biol. 2015, 3, 37. [Google Scholar] [CrossRef] [PubMed]
- Shafei, A.; Ramzy, M.M.; Hegazy, A.I.; Husseny, A.K.; EL-hadary, U.G.; Taha, M.M.; Mosa, A.A. The molecular mechanisms of action of the endocrine disrupting chemical Bisphenol A in the development of cancer. Gene 2018, 647, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Nagel, S.C.; vom Saal, F.S.; Thayer, K.A.; Dhar, M.G.; Boechler, M.; Welshons, W.V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens Bisphenol A and octylphenol. Environ. Health Perspect. 1997, 105, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc. Soc. Exp. Biol. Med. 2000, 224, 61–68. [Google Scholar] [CrossRef] [PubMed]
- vom Saal, F.S.; Hughes, C. An extensive new literature concerning low-dose effects of Bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005, 113, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, J.T.; Edwards, M.; Shetty, S.R.J.; Gatewood, J.D.; Taylor, J.A.; Rissman, E.F.; Connelly, J.J. Gestational exposure to Bisphenol A produces transgenerational changes in behaviors and gene expression. Endocrinology 2012, 153, 3828–3838. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, S.; Tokunaga, T.; Liu, X.; Okada, H.; Matsushima, A.; Shimohigashi, Y. Endocrine disruptor Bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicol. Lett. 2006, 167, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Kakuta, Y.; Teramoto, T.; Koshiba, T.; Liu, X.; Okada, H.; Tokunaga, T.; Kawabata, S.-I.; Kimura, M.; Shimohigashi, Y. Structural evidence for endocrine disruptor Bisphenol A binding to human nuclear receptor ERRγ. J. Biochem. 2007, 142, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Teramoto, T.; Okada, H.; Liu, X.; Tokunaga, T.; Kakuta, Y.; Shimohigashi, Y. Errgamma tethers strongly Bisphenol A and 4-α-cumylphenol in an induced-fit manner. Biochem. Biophys. Res. Commun. 2008, 373, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Matsushima, A.; Okada, H.; Shimohigashi, Y. Distinction of the binding modes for human nuclear receptor ERRγ between bisphenol A and 4-hydroxytamoxifen. J. Biochem. 2010, 148, 247–254. [Google Scholar] [CrossRef] [PubMed][Green Version]
- DeKeyser, J.G.; Laurenzana, E.M.; Peterson, E.C.; Chen, T.; Omiecinski, C.J. Selective phthalate activation of naturally occurring human constitutive androstane receptor splice variants and the pregnane X receptor. Toxicol. Sci. 2011, 120, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, L.S.; Bucher, J.R.; Collman, G.W.; Zeldin, D.C.; Johnson, A.F.; Schug, T.T.; Heindel, J.J. Consortium-based science: The NIEHS’s multipronged, collaborative approach to assessing the health effects of bisphenol A. Environ. Health Perspect. 2012, 120, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Newbold, R.R.; Bucher, J.R.; Camacho, L.; Delclos, K.B.; Lewis, S.M.; Vanlandingham, M.; Churchwell, M.I.; Twaddle, N.C.; McLellen, M.; et al. NIEHS/FDA CLARITY-BPA research program update. Reprod. Toxicol. 2015, 58, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Neuroendocrine disruption in animal models due to exposure to Bisphenol A analogues. Front. Neuroendocrinol. 2017, 47, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Porejko, S.; Brzozowski, Z.K.; Maczynski, C.; Wielgosz, Z. Process for synthesizing self-extinguishing thermoplastics. Polish Patent 48,893, 12 December 1964. [Google Scholar]
- Porejko, S.; Wielgosz, Z. Synthesis and properties of polycarbonates with chlorobisphenols. Polimery 1968, 13, 55. [Google Scholar]
- Dobkowski, Z.; Grzelak, D. Specific volume of bisphenol C-2 polycarbonate. Eur. Polym. J. 1984, 20, 1045–1047. [Google Scholar] [CrossRef]
- Factor, A.; Orlando, C.M. Polycarbonates from 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene and Bisphenol A: A highly flame-resistant family of engineering thermoplastics. J. Polym. Sci. 1980, 18, 579–592. [Google Scholar]
- Jurs, J.L.; Tour, J.M. Novel flame retardant polyarylethers: Synthesis and testing. Polymer 2003, 44, 3709–3714. [Google Scholar] [CrossRef]
- Ellzey, K.A.; Farris, R.J.; Emrick, T. Synthetic and thermal studies of bisphenol-C containing poly(aryletherketone). Polym. Bull. 2003, 50, 235–242. [Google Scholar]
- Stoliarov, S.I.; Westmoreland, P.R. Mechanism of the thermal decomposition of bisphenol C polycarbonate: Nature of its fire resistance. Polymer 2003, 44, 5469–5475. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Marchand, P. Determination of Bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2485–2497. [Google Scholar] [CrossRef] [PubMed]
- Česen, M.; Levstek, M.; Cimrmančič, B.; Heath, D.; Dolenc, M.S. The occurrence and source identification of bisphenol compounds in wastewaters. Sci. Total Environ. 2018, 616–617, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shan, G.; Zhu, L. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from taihu lake, China. Sci. Total Environ. 2017, 598, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Delfosse, V.; Grimaldi, M.; Pons, J.L.; Boulahtouf, A.; Le Maire, A.; Cavaillès, V.; Labesse, G.; Bourguet, W.; Balaguer, P. Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of Bisphenol A substitutes. Proc. Natl. Acad. Sci. USA 2012, 109, 14930–14935. [Google Scholar] [CrossRef] [PubMed]
- Cavaillès, V. Structural and functional profiling of environmental ligands for estrogen receptors. Environ. Health Perspect. 2015, 122, 1306–1313. [Google Scholar]
- Cui, S.; Liu, S.; Yang, J.; Wang, X.; Wang, L. Quantitative structure-activity relationship of estrogen activities of Bisphenol A analogs. Chin. Sci. Bull. 2006, 51, 287–292. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Yang, Q. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships. Chemosphere 2016, 163, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, H.; Takeda, S.; Kakizoe, K.; Taniguchi, A.; Tokuyasu, M.; Himeno, T.; Ishii, H.; Kohro-Ikeda, E.; Haraguchi, K.; Watanabe, K.; et al. Bisphenol af as an inducer of estrogen receptor β (ERβ): Evidence for anti-estrogenic effects at higher concentrations in human breast cancer cells. Biol. Pharm. Bull. 2017, 40, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Akingbemi, B.T.; Ge, R.S.; Klinefelter, G.R.; Gunsalus, G.L.; Hardy, M.P. A metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1, 1-trichloroethane, reduces testosterone biosynthesis in rat leydig cells through suppression of steady-state messenger ribonucleic acid levels of the cholesterol side-chain cleavage enzyme. Biol. Reprod. 2000, 62, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Waters, K.M.; Safe, S.; Gaido, K.W. Differential gene expression in response to methoxychlor and estradiol through er alpha, er beta, and ar in reproductive tissues of female mice. Toxicol. Sci. 2001, 63, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.C.; Korach, K.S. Estrogenic activity of Bisphenol A and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HTPE) demonstrated in mouse uterine gene profiles. Environ. Health Perspect. 2011, 119, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.N.; Esmail, M.; Wang, Q.; Brooks, A.I.; Zachow, R.; Uzumcu, M. Effect of the methoxychlor metabolite hpte on the rat ovarian granulosa cell transcriptome in vitro. Toxicol. Sci. 2009, 110, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.N.; Chen, J.C.; Bagnell, C.A.; Uzumcu, M. Methoxychlor and its metabolite hpte inhibit camp production and expression of estrogen receptors α and β in the rat granulosa cell in vitro. Reprod. Toxicol. 2015, 51, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Akgul, Y.; Derk, R.C.; Meighan, T.; Rao, K.M.K.; Murono, E.P. The methoxychlor metabolite, hpte, directly inhibits the catalytic activity of cholesterol side-chain cleavage (p450scc) in cultured rat ovarian cells. Reprod. Toxicol. 2008, 25, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Chen, X.; Li, X.; Zhu, Q.; Yu, L.; Guo, J.; Chen, B.; Akingbemi, B.T.; Ge, R.-S.; Li, H. Effects of methoxychlor and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on human and rat 17α-hydroxylase/17,20-lyase activity. Toxicol. Lett. 2014, 225, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.X.; Zhao, B.; Chu, Y.; Li, X.H.; Akingbemi, B.T.; Zheng, Z.Q.; Ge, R.S. Effects of methoxychlor and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase-3 activities in human and rat testes. Int. J. Androl. 2011, 34, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, S.; Safe, S. Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J. Steroid Biochem. Mol. Biol. 2006, 98, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Manna, D.; Mugesh, G. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: An unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J. Am. Chem. Soc. 2012, 134, 4269–4279. [Google Scholar] [CrossRef] [PubMed]
- Rigét, F.; Vorkamp, K.; Bossi, R.; Sonne, C.; Letcher, R.J.; Dietz, R. Twenty years of monitoring of persistent organic pollutants in greenland biota. A review. Environ. Pollut. 2016, 217, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Jepson, P.D.; Science, R.L. Persistent pollutants, persistent threats. Science 2016, 352, 1388–1389. [Google Scholar] [CrossRef] [PubMed]
- Srogi, K. Levels and congener distributions of pcdds, pcdfs and dioxin-like pcbs in environmental and human samples: A review. Environ. Chem. Lett. 2008, 6, 1–28. [Google Scholar] [CrossRef]
- Safe, S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalancy Factors (TEFs). Crit. Rev. Toxicol. 2008, 21, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Kolář, M.H.; Hobza, P. Computer modeling of halogen bonds and other σ-hole interactions. Chem. Rev. 2016, 116, 5155–5187. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. The bright future of unconventional σ/π-hole interactions. ChemPhysChem 2015, 16, 2496–2517. [Google Scholar] [CrossRef] [PubMed]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P.S. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C. Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Persch, E.; Dumele, O.; Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem. Int. Ed. 2015, 54, 3290–3327. [Google Scholar] [CrossRef] [PubMed]
- Hardegger, L.A.; Kuhn, B.; Spinnler, B.; Anselm, L.; Ecabert, R.; Stihle, M.; Gsell, B.; Thoma, R.; Diez, J.; Benz, J.; et al. Systematic investigation of halogen bonding in protein-ligand interactions. Angew. Chem. Int. Ed. 2010, 50, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013, 56, 1363–1388. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen bond: Its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 2014, 54, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. Plip: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.C.; Ho, P.S. Computational tools to model halogen bonds in medicinal chemistry. J. Med. Chem. 2016, 59, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Danelius, E.; Andersson, H.; Jarvoll, P.; Lood, K.; Gräfenstein, J.; Erdélyi, M. Halogen bonding: A powerful tool for modulation of peptide conformation. Biochemistry 2017, 56, 3265–3272. [Google Scholar] [CrossRef] [PubMed]
- Scholfield, M.R.; Ford, M.C.; Carlsson, A.-C.C.; Butta, H.; Mehl, R.A.; Ho, P.S. Structure-energy relationships of halogen bonds in proteins. Biochemistry 2017, 56, 2794–2802. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, A.M.; Pike, A.C.; Dauter, Z.; Hubbard, R.E.; Bonn, T.; Engstöm, O.; Ohman, L.; Greene, G.L.; Gustafsson, J.A.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997, 389, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.C.T.; Textor, L.C.; Melo, D.C.; Nascimento, A.S.; Skaf, M.S.; Polikarpov, I. An alternative conformation of ERβ bound to estradiol reveals h12 in a stable antagonist position. Sci. Rep. 2017, 7, 3509. [Google Scholar] [CrossRef] [PubMed]
- Pike, A.; Brzozowski, A.M.; Hubbard, R.E.; Bonn, T.; Thorsell, A.G.; Engström, O.; Ljunggren, J.; Gustafsson, J.K.; Carlquist, M. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999, 18, 4608–4618. [Google Scholar] [CrossRef] [PubMed]
- Estébanez-Perpiñá, E.; Moore, J.M.R.; Mar, E.; Delgado-Rodrigues, E.; Nguyen, P.; Baxter, J.D.; Buehrer, B.M.; Webb, P.; Fletterick, R.J.; Guy, R.K. The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J. Biol. Chem. 2005, 280, 8060–8068. [Google Scholar] [CrossRef] [PubMed]
- Arisoy, M. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol. 1998, 60, 872–876. [Google Scholar]
- Shah, M.M.; Barr, D.P.; Chung, N.; Aust, S.D. Use of white rot fungi in the degradation of environmental chemicals. Toxicol. Lett. 1992, 64–65, 493–501. [Google Scholar] [CrossRef]
- Takada, S.; Nakamura, M.; Matsueda, T.; Kondo, R.; Sakai, K. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus phanerochaete sordida yk-624. Appl. Environ. Microbiol. 1996, 62, 4323–4328. [Google Scholar] [PubMed]
- Purnomo, A.S.; Mori, T.; Kamei, I.; Kondo, R. Basic studies and applications on bioremediation of DDT: A review. Int. Biodeterior. Biodegrad. 2011, 65, 921–930. [Google Scholar] [CrossRef]
- Sudharshan, S.; Naidu, R.; Mallavarapu, M.; Bolan, N. Ddt remediation in contaminated soils: A review of recent studies. Biodegradation 2012, 23, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, X.; Luan, S. Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Sci. Total Environ. 2007, 385, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, A.S.; Ashari, K.; Hermansyah, F.T. Evaluation of the synergistic effect of mixed cultures of white-rot fungus pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J. Microbiol. Biotechnol. 2017, 27, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Doddapaneni, H.; Yadav, J.S. Differential regulation and xenobiotic induction of tandem p450 monooxygenase genes PC-1 (CYP63A1) and PC-2 (CYP63A2) in the white-rot fungus phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2004, 65, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Mori, T.; Kamei, I.; Kondo, R. A novel metabolic pathway for biodegradation of ddt by the white rot fungi, Phlebia Lindtneri and Phlebia Brevispora. Biodegradation 2011, 22, 859–867. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Malaria Programme. The Use of DDT in Malaria Vector Control: Who Position Statement. 2011. Available online: http://www.who.int/iris/handle/10665/69945 (accessed on 5 May 2018).
- Glustrom, L.W.; Mitton-Fry, R.M.; Wuttke, D.S. Re: 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene and polychlorinated biphenyls and breast cancer: Combined analysis of five U.S. Studies. J. Nat. Cancer Inst. 2002, 94, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Gaido, K.W.; Maness, S.C.; McDonnell, D.P.; Dehal, S.S.; Kupfer, D.; Safe, S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: Structure-activity studies. Mol. Pharmacol. 2000, 58, 852–858. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsushima, A. A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment. Int. J. Mol. Sci. 2018, 19, 1377. https://doi.org/10.3390/ijms19051377
Matsushima A. A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment. International Journal of Molecular Sciences. 2018; 19(5):1377. https://doi.org/10.3390/ijms19051377
Chicago/Turabian StyleMatsushima, Ayami. 2018. "A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment" International Journal of Molecular Sciences 19, no. 5: 1377. https://doi.org/10.3390/ijms19051377
APA StyleMatsushima, A. (2018). A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment. International Journal of Molecular Sciences, 19(5), 1377. https://doi.org/10.3390/ijms19051377