Prevalence of a Linezolid Minimum Inhibitory Concentration of 2 mg/L in Methicillin-Susceptible/Resistant Staphylococcus aureus, Staphylococcus argenteus, Coagulase-Negative Staphylococcus, and Mammaliicoccus
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug Des. Dev. Ther. 2018, 12, 1759–1767. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 56. [Google Scholar] [CrossRef]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The emerging problem of linezolid-resistant enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.G.; Yuan, X.L.; He, D.D.; Hu, G.Z.; Miao, M.S.; Xu, E.P. Research progress on the oxazolidinone drug linezolid resistance. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9274–9281. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; M100-Ed32; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2022. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints—Breakpoints and Guidance. Breakpoint Tables for Interpretation of MICs and Zone Diameters, 2023, Version 13.1. Available online: https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents (accessed on 4 January 2025).
- Miyazaki, M.; Nagata, N.; Miyazaki, H.; Matsuo, K.; Takata, T.; Tanihara, S.; Kamimura, H. Linezolid minimum inhibitory concentration (MIC) creep in methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates at a single Japanese center. Biol. Pharm. Bull. 2014, 37, 679–682. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, B.; Zhao, H.; Wang, X.; Rao, L.; Ai, W.; Yu, J.; Guo, Y.; Wu, X.; Yu, F.; et al. In Vitro Activity of Vancomycin, Teicoplanin, Linezolid and Daptomycin Against Methicillin-Resistant Staphylococcus aureus Isolates Collected from Chinese Hospitals in 2018-2020. Infect. Drug Resist. 2021, 14, 5449–5456. [Google Scholar] [CrossRef]
- Jian, Y.; Lv, H.; Liu, J.; Huang, Q.; Liu, Y.; Liu, Q.; Li, M. Dynamic Changes of Staphylococcus aureus Susceptibility to Vancomycin, Teicoplanin, and Linezolid in a Central Teaching Hospital in Shanghai, China, 2008–2018. Front. Microbiol. 2020, 11, 908. [Google Scholar] [CrossRef]
- Darboe, K.S.; Oh, T.H.; Choi, S.M.; Kim, H.K.; Kim, S.E.; Kim, U.J.; Kang, S.J.; Jang, H.C.; Jung, S.I.; Park, K.H. Antimicrobial susceptibility of Staphylococcus species isolated from prosthetic joints with a focus on fluoroquinolone-resistance mechanisms. Diagn. Microbiol. Infect. Dis. 2021, 99, 115173. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Lin, Y.C.; Huang, Y.C. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine 2016, 95, e5060. [Google Scholar] [CrossRef]
- Bawankar, N.S.; Agrawal, G.N.; Zodpey Shrikhande, S.S. Unmasking a looming crisis: Escalating MIC of last resort drugs against MRSA isolates from a tertiary care hospital in Central India. Indian J. Med. Microbiol. 2024, 51, 100707. [Google Scholar] [CrossRef]
- Ruiz, J.; Villarreal, E.; Gordon, M.; Frasquet, J.; Castellanos, A.; Ramirez, P. From MIC creep to MIC decline: Staphylococcus aureus antibiotic susceptibility evolution over the last 4 years. Clin. Microbiol. Infect. 2016, 22, 741–742. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kimura, Y.; Kudo, K.; Ito, M.; Kobayashi, N. Molecular Epidemiological Characterization of Methicillin-Resistant Staphylococcus aureus from Bloodstream Infections in Northern Japan: Increasing Trend of CC1 and Identification of ST8-SCCmec IVa USA300-Like Isolate Lacking Arginine Catabolic Mobile Element. Microb. Drug Resist. 2024, 30, 63–72. [Google Scholar] [CrossRef]
- Aung, M.S.; Osada, M.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Ito, M.; Yamada, K.; Tada, K.; Kobayashi, N. Molecular characterization of methicillin-susceptible/resistant Staphylococcus aureus from bloodstream infections in northern Japan: The dominance of CC1-MRSA-IV, the emergence of human-associated ST398 and livestock-associated CC20 and CC97 MSSA. J. Glob. Antimicrob. Resist. 2024, 41, 77–87. [Google Scholar] [CrossRef]
- Aung, M.S.; San, T.; Urushibara, N.; San, N.; Hlaing, M.S.; Soe, P.E.; Htut, W.H.W.; Moe, I.; Mon, W.L.Y.; Chan, Z.C.N.; et al. Clonal Diversity and Molecular Characteristics of Methicillin-Susceptible and -Resistant Staphylococcus aureus from Pediatric Patients in Myanmar. Microb. Drug Resist. 2022, 28, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, W.K.; Aung, M.S.; San, T.; Maw, W.W.; Mu, K.K.; Mon, W.L.Y.; Than, M.M.; San, N.; Than, C.C.; Urushibara, N.; et al. Molecular Epidemiological Characterization of Staphylococcus aureus and Staphylococcus argenteus Clinical Isolates from a National Tertiary Care Hospital in Myanmar: Co-Isolation of Multiple Clones and Identification of Novel Staphylocoagulase Genotype. Microb. Drug Resist. 2023, 29, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kudo, K.; Ito, M.; Kobayashi, N. Prevalence and antimicrobial resistance of three clones (ST1223, ST2198, ST2250) of Staphylococcus argenteus clinical isolates in northern Japan. J. Glob. Antimicrob. Resist. 2025, 40, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Aung, M.S.; Fukuda, A.; Yahata, S.; Fujita, Y.; Saitoh, M.; Hirose, Y.; Urushibara, N.; Kobayashi, N. Antimicrobial Resistance and Molecular Epidemiological Characteristics of Methicillin-Resistant and Susceptible Staphylococcal Isolates from Oral Cavity of Dental Patients and Staff in Northern Japan. Antibiotics 2021, 10, 1316. [Google Scholar] [CrossRef]
- Hirose, M.; Aung, M.S.; Fujita, Y.; Sakakibara, S.; Minowa-Suzuki, E.; Otomo, M.; Kurashige, Y.; Saitoh, M.; Hirose, Y.; Kobayashi, N. Prevalence, genetic characteristics, and antimicrobial resistance of staphylococcal isolates from oral cavity and skin surface of healthy individuals in northern Japan. J. Infect. Public Health 2024, 17, 102488. [Google Scholar] [CrossRef]
- Osada, M.; Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kobayashi, N. Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Coagulase-Negative Staphylococcus/Mammaliicoccus from Retail Ground Meat: Identification of Broad Genetic Diversity in Fosfomycin Resistance Gene fosB. Pathogens 2022, 11, 469. [Google Scholar] [CrossRef]
- Roy, S.; Aung, M.S.; Paul, S.K.; Ahmed, S.; Haque, N.; Khan, E.R.; Barman, T.K.; Islam, A.; Abedin, S.; Sultana, C.; et al. Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages. Microorganisms 2020, 8, 1240. [Google Scholar] [CrossRef]
- Aung, M.S.; Kawaguchiya, M.; Urushibara, N.; Sumi, A.; Ito, M.; Kudo, K.; Morimoto, S.; Hosoya, S.; Kobayashi, N. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Outpatients in Northern Japan: Increasing Tendency of ST5/ST764 MRSA-IIa with Arginine Catabolic Mobile Element. Microb. Drug Resist. 2017, 23, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Clonal Diversity and Genetic Characteristics of Methicillin-Resistant Staphylococcus aureus Isolates from a Tertiary Care Hospital in Japan. Microb. Drug Resist. 2019, 25, 1164–1175. [Google Scholar] [CrossRef]
- Hill, R.L.; Kearns, A.M.; Nash, J.; North, S.E.; Pike, R.; Newson, T.; Woodford, N.; Calver, R.; Livermore, D.M. Linezolid-resistant ST36 methicillin-resistant Staphylococcus aureus associated with prolonged linezolid treatment in two paediatric cystic fibrosis patients. J. Antimicrob. Chemother. 2010, 65, 442–445. [Google Scholar] [CrossRef]
- Shore, A.C.; Lazaris, A.; Kinnevey, P.M.; Brennan, O.M.; Brennan, G.I.; O’Connell, B.; Feßler, A.T.; Schwarz, S.; Coleman, D.C. First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob. Agents Chemother. 2016, 60, 3007–3015. [Google Scholar] [CrossRef]
- Li, S.M.; Zhou, Y.F.; Li, L.; Fang, L.X.; Duan, J.H.; Liu, F.R.; Liang, H.Q.; Wu, Y.T.; Gu, W.Q.; Liao, X.P.; et al. Characterization of the Multi-Drug Resistance Gene cfr in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated From Animals and Humans in China. Front. Microbiol. 2018, 9, 2925. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Zarazaga, M.; Saidenberg, A.B.S.; Stegger, M.; Torres, C. Clonal relatedness of coagulase-positive staphylococci among healthy dogs and dog-owners in Spain. Detection of multidrug-resistant-MSSA-CC398 and novel linezolid-resistant-MRSA-CC5. Front. Microbiol. 2023, 14, 1121564. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, L.; Zheng, B.; Shen, P.; Ji, J.; Lv, J.; Li, L.; Xiao, Y. Identification and characterization of cfr-positive Staphylococcus aureus isolates from community-onset infectious patients in a county hospital in China. J. Med. Microbiol. 2015, 64, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Leng, B.; Haaber, J.; Bojer, M.S.; Vegge, C.S.; Ingmer, H. Genome-Wide Identification of Antimicrobial Intrinsic Resistance Determinants in Staphylococcus aureus. Front. Microbiol. 2016, 7, 2018. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Schaumburg, F.; Ellington, M.J.; Corander, J.; Pichon, B.; Leendertz, F.; Bentley, S.D.; Parkhill, J.; Holt, D.C.; Peters, G.; et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 15–22. [Google Scholar] [CrossRef]
- Holt, D.C.; Holden, M.T.; Tong, S.Y.; Castillo-Ramirez, S.; Clarke, L.; Quail, M.A.; Currie, B.J.; Parkhill, J.; Bentley, S.D.; Feil, E.J.; et al. A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol Evol. 2011, 3, 881–895. [Google Scholar] [CrossRef]
- Takaya, A.; Kimura, A.; Sato, Y.; Ishiwada, N.; Watanabe, M.; Matsui, M.; Shibayama, K.; Yamamoto, T. Molecular characterization of linezolid-resistant CoNS isolates in Japan. J. Antimicrob. Chemother. 2015, 70, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Chen, J.; Zhang, R.; Cai, J. An 11-year linezolid-resistant Staphylococcus capitis clone dissemination with a similar cfr-carrying plasmid in China. iScience 2022, 25, 105644. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zou, G.; Liu, J.; Yang, C.; Du, X.; Chen, G.; Sun, Z.; Zhang, X.; Sun, Y.; Zhang, W.; et al. Mechanisms of linezolid resistance in Staphylococcus capitis with the novel mutation C2128T in the 23S rRNA gene in China. BMC Microbiol. 2022, 22, 203. [Google Scholar] [CrossRef]
- Butin, M.; Martins-Simões, P.; Pichon, B.; Leyssene, D.; Bordes-Couecou, S.; Meugnier, H.; Rouard, C.; Lemaitre, N.; Schramm, F.; Kearns, A.; et al. Emergence and dissemination of a linezolid-resistant Staphylococcus capitis clone in Europe. J. Antimicrob. Chemother. 2017, 72, 1014–1020. [Google Scholar] [CrossRef]
- Coustillères, F.; Renault, V.; Corvec, S.; Dupieux, C.; Simões, P.M.; Lartigue, M.F.; Plouzeau-Jayle, C.; Tande, D.; Lamoureux, C.; Lemarié, C.; et al. Clinical, Bacteriological, and Genetic Characterization of Bone and Joint Infections Involving Linezolid-Resistant Staphylococcus epidermidis: A Retrospective Multicenter Study in French Reference Centers. Microbiol. Spectr. 2023, 11, e0419022. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, M.; Sawant, A.R.; Prashanth, K.; Sistla, S. Multiple mechanisms of linezolid resistance in Staphylococcus haemolyticus detected by whole-genome sequencing. J. Med. Microbiol. 2023, 72, 001737. [Google Scholar] [CrossRef]
- Chen, H.; Wu, W.; Ni, M.; Liu, Y.; Zhang, J.; Xia, F.; He, W.; Wang, Q.; Wang, Z.; Cao, B.; et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: Molecular epidemiology and resistance mechanisms. Int. J. Antimicrob. Agents 2013, 42, 317–321. [Google Scholar] [CrossRef]
- Sierra, J.M.; Ortega, M.; Tarragó, C.; Albet, C.; Vila, J.; Terencio, J.; Guglietta, A. Decreased linezolid uptake in an in vitro-selected linezolid-resistant Staphylococcus epidermidis mutant. J. Antimicrob. Chemother. 2009, 64, 990–992. [Google Scholar] [CrossRef]
| Origin of Isolates | Specimen (Place; Period) [Reference] | Type of Staphylococcus | Total Number of Isolates | LZD MIC, 2 mg/L | |
|---|---|---|---|---|---|
| N | % | ||||
| Patients | Blood (Hokkaido, Japan; 2019–2021) [16] | MRSA | 279 | 14 | 5.02 |
| Blood (Hokkaido, Japan; 2023) [17] | MRSA | 163 | 18 | 11.04 | |
| MSSA | 138 | 43 | 31.2 * | ||
| Clinical specimens (Yangon Childrens’ Hospital, Myanmar; 2019) [18] | MRSA | 48 | 2 | 4.2 | |
| MSSA | 196 | 18 | 9.2 | ||
| Clinical specimens (Yangon General Hospital, Myanmar; 2020–2022) [19] | MRSA | 41 | 5 | 12.2 | |
| MSSA | 170 | 40 | 23.5 | ||
| S. argenteus (MS) | 15 | 2 | 13.3 | ||
| Clinical specimens (Hokkaido, Japan; 2020–2023) [20] | S. argenteus (MS, 212; MR, 1) | 213 | 47 | 22.1 | |
| Overall clinical isolates (Japan, Myanmar; 2019–2023) [16,17,18,19,20] | MRSA (total) | 531 | 39 | 7.3 | |
| MSSA (total) | 504 | 101 | 20.04 * | ||
| S. argenteus (total) | 228 | 49 | 21.5 * | ||
| Systematically healthy individuals | Oral and hand isolates in dental clinics (Japan; 2019–2021) [21,22] | MRSA | 5 | 2 | 40 |
| MSSA | 153 | 49 | 32 | ||
| S. argenteus (MS) | 5 | 3 | 60 | ||
| CoNS (MS) | 348 | 46 | 13.2 | ||
| Foodstuff | Ground meat (Hokkaido, Japan; 2021) [23] | MSSA | 10 | 0 | 0 |
| CoNS (MS) | 112 | 38 | 33.9 | ||
| Study Category | Staphylococcus Category | ST | CC | Total Isolates (N) | LZD MIC, 2 mg/L | |
|---|---|---|---|---|---|---|
| n | % | |||||
| BSI, Japan (2019–2021) | MRSA (n = 279) | ST1/ST2725/ST2764 | CC1 | 116 | 8 *1 | 6.9 |
| ST5/ST764 | CC5 | 132 | 5 *2 | 3.8 | ||
| ST8/ST5990 | CC8 | 24 | 1 *3 | 4.2 | ||
| Other STs | 7 | 0 | 0 | |||
| BSI, Japan (2023) | MRSA (n = 163) | ST1 | CC1 | 85 | 14 | 16.5 |
| ST764 | CC5 | 58 | 1 | 1.7 | ||
| ST8 | CC8 | 20 | 3 | 15.0 | ||
| MSSA (n = 138) | ST1 | CC1 | 9 | 1 | 11.1 | |
| ST188 | CC1 | 26 | 9 | 34.6 | ||
| ST5 | CC5 | 2 | 1 | 50.0 | ||
| ST6 | CC5 | 5 | 2 | 40.0 | ||
| ST8 | CC8 | 13 | 5 | 38.5 | ||
| ST12 | CC12 | 6 | 3 | 50.0 | ||
| ST15 | CC15 | 14 | 5 | 35.7 | ||
| ST20 | CC20 | 5 | 1 | 20.0 | ||
| ST30 | CC30 | 11 | 4 | 36.4 | ||
| ST45/ST508 | CC45 | 15 | 3 | 20.0 | ||
| ST59 | CC59 | 2 | 1 | 50.0 | ||
| ST97 | CC97 | 14 | 4 | 28.6 | ||
| ST398 | CC398 | 7 | 3 | 42.9 | ||
| ST8618 | 1 | 1 | 100 | |||
| Other STs | 8 | 0 | 0 | |||
| YCH, Myanmar (2019) | MRSA (n = 48) | ST2885 | CC1 | 1 | 1 | 100 |
| ST361 | CC361 | 1 | 1 | 100 | ||
| Other STs | 46 | 0 | 0 | |||
| MSSA (n = 196) | ST2990 | CC1 | 33 | 2 | 6.1 | |
| ST88/ST5988 | CC88 | 22 | 5 | 22.7 | ||
| ST121 | CC121 | 70 | 8 | 11.4 | ||
| ST361/ST672 | CC361 | 3 | 1 | 33.3 | ||
| ST1156 | 13 | 1 | 7.7 | |||
| ST1930 | 17 | 1 | 5.9 | |||
| Other STs | 38 | 0 | 0 | |||
| YGH, Myanmar (2020–2022) | MRSA (n = 41) | ST1156 | 1 | 1 | 100 | |
| ST2885 | CC1 | 2 | 1 | 50 | ||
| ST772 | CC1 | 7 | 2 | 28.6 | ||
| ST6 | CC5 | 5 | 1 | 20 | ||
| Other STs | 26 | 0 | 0 | |||
| MSSA (n = 170) | ST1 | CC1 | 1 | 1 | 100 | |
| ST188 | CC1 | 9 | 2 | 22.2 | ||
| ST1290 | CC1 | 3 | 2 | 66.7 | ||
| ST2990 | CC1 | 41 | 11 | 26.8 | ||
| ST5/ST764 | CC5 | 2 | 2 | 100 | ||
| ST6 | CC5 | 2 | 2 | 100 | ||
| ST2176/ST7384 | CC8 | 3 | 2 | 66.7 | ||
| ST15/ST7387/ST7548 | CC15 | 5 | 2 | 40.0 | ||
| ST3771 | CC22 | 2 | 1 | 50.0 | ||
| ST508 | CC45 | 2 | 1 | 50.0 | ||
| ST59 | 3 | 1 | 33.3 | |||
| ST88 | CC88 | 7 | 1 | 14.3 | ||
| ST121 | CC121 | 25 | 7 | 28.0 | ||
| ST1930 | 7 | 1 | 14.3 | |||
| ST97 | 4 | 1 | 25.0 | |||
| ST1156 | 11 | 3 | 27.3 | |||
| Other STs | 43 | 0 | 0 | |||
| S. argenteus (n = 15) | ST2250 | 15 | 2 | 13.3 | ||
| Clinical isolates Japan (2020–2023) | S. argenteus (n = 213) | ST1223 | 46 | 10 | 21.7 | |
| ST2198 | 60 | 11 | 18.3 | |||
| ST2250 | 107 | 26 | 24.3 | |||
| Dental clinic, Japan healthy individuals (2019–2021) | MRSA (n = 5) | ST8/ST6562 | CC8 | 4 | 2 | 50 |
| Other STs | 1 | 0 | 0 | |||
| MSSA (n = 153) | ST1442 | 2 | 2 | 100 | ||
| ST26 | 1 | 1 | 100 | |||
| ST188/ST7182 | CC1 | 21 | 9 | 42.9 | ||
| ST5 | CC5 | 4 | 4 | 100.0 | ||
| ST8/ST3462 | CC8 | 21 | 4 | 19.0 | ||
| ST15/ST718/ST2404 | CC15 | 23 | 9 | 39.1 | ||
| ST20 | CC20 | 8 | 2 | 25.0 | ||
| ST30 | CC30 | 12 | 5 | 41.6 | ||
| ST45/ST508/ST7003 | CC45 | 14 | 3 | 21.4 | ||
| ST96 | CC96 | 2 | 1 | 50.0 | ||
| ST97 | CC97 | 15 | 4 | 26.7 | ||
| ST121 | CC121 | 8 | 2 | 25.0 | ||
| ST7004 | 1 | 1 | 100.0 | |||
| ST398/ST291 | CC398 | 4 | 2 | 50.0 | ||
| Other STs | 17 | 0 | 0.0 | |||
| S. argenteus (n = 5) | ST1223 | 2 | 2 | 100.0 | ||
| ST2250 | 3 | 1 | 33.3 | |||
| Bacterial Species | Healthy Individuals | Foodstuff | Overall Rate (%), LZD MIC, 2 mg/L | ||||
|---|---|---|---|---|---|---|---|
| Total | LZD MIC, 2 mg/L | % | Total | LZD MIC, 2 mg/L | % | ||
| M. sciuri | 2 | 1 | 50 | 19 | 11 | 57.9 | 57.1 * |
| M. lentus | 0 | 0 | 0 | 1 | 1 | 100 | 100 |
| M. stepanovicii | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| M. vitulinus | 0 | 0 | 0 | 4 | 2 | 50 | 50 |
| S. agentis | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| S. capitis | 94 | 3 | 3.2 | 7 | 0 | 0 | 3.0 * |
| S. caprae | 15 | 1 | 6.7 | 1 | 0 | 0 | 6.3 |
| S. carnosus | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| S. chromogenes | 0 | 0 | 0 | 7 | 1 | 14.3 | 14.3 |
| S. cohnii | 8 | 1 | 12.5 | 5 | 0 | 0 | 7.7 |
| S. condimenti | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| S. haemolyticus | 26 | 2 | 7.7 | 3 | 0 | 0 | 6.9 |
| S. hyicus | 0 | 0 | 0 | 1 | 1 | 100 | 100 |
| S. kloosii | 0 | 0 | 0 | 1 | 1 | 100 | 100 |
| S. lugdunensis | 16 | 0 | 0 | 1 | 0 | 0 | 0 |
| S. pasteuri | 16 | 5 | 31.3 | 11 | 3 | 27.3 | 29.6 |
| S. rostri | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| S. saprophyticus | 32 | 14 | 43.8 | 23 | 10 | 43.5 | 43.6 * |
| S. simulans | 0 | 0 | 0 | 1 | 1 | 100 | 100 |
| S. warneri | 110 | 19 | 17.3 | 14 | 7 | 50 | 21 |
| S. xylosus | 3 | 0 | 0 | 1 | 0 | 0 | 0 |
| S. hominis | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| S. epidermidis | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
| S. condimenti | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| S.petrasii | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| S. auricularis | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 348 | 46 | 13.2 | 112 | 38 | 33.9 | 18.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; San, T.; Kyaw, W.K.; Hirose, M.; Osada, M.; Ito, M.; Kobayashi, N. Prevalence of a Linezolid Minimum Inhibitory Concentration of 2 mg/L in Methicillin-Susceptible/Resistant Staphylococcus aureus, Staphylococcus argenteus, Coagulase-Negative Staphylococcus, and Mammaliicoccus. Acta Microbiol. Hell. 2025, 70, 45. https://doi.org/10.3390/amh70040045
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, San T, Kyaw WK, Hirose M, Osada M, Ito M, Kobayashi N. Prevalence of a Linezolid Minimum Inhibitory Concentration of 2 mg/L in Methicillin-Susceptible/Resistant Staphylococcus aureus, Staphylococcus argenteus, Coagulase-Negative Staphylococcus, and Mammaliicoccus. Acta Microbiologica Hellenica. 2025; 70(4):45. https://doi.org/10.3390/amh70040045
Chicago/Turabian StyleAung, Meiji Soe, Noriko Urushibara, Mitsuyo Kawaguchiya, Nobuhide Ohashi, Thida San, Win Kalayar Kyaw, Mina Hirose, Masako Osada, Masahiko Ito, and Nobumichi Kobayashi. 2025. "Prevalence of a Linezolid Minimum Inhibitory Concentration of 2 mg/L in Methicillin-Susceptible/Resistant Staphylococcus aureus, Staphylococcus argenteus, Coagulase-Negative Staphylococcus, and Mammaliicoccus" Acta Microbiologica Hellenica 70, no. 4: 45. https://doi.org/10.3390/amh70040045
APA StyleAung, M. S., Urushibara, N., Kawaguchiya, M., Ohashi, N., San, T., Kyaw, W. K., Hirose, M., Osada, M., Ito, M., & Kobayashi, N. (2025). Prevalence of a Linezolid Minimum Inhibitory Concentration of 2 mg/L in Methicillin-Susceptible/Resistant Staphylococcus aureus, Staphylococcus argenteus, Coagulase-Negative Staphylococcus, and Mammaliicoccus. Acta Microbiologica Hellenica, 70(4), 45. https://doi.org/10.3390/amh70040045

