In Vitro Synergy Evaluation of Trimethoprim/Sulfamethoxazole Combined with Levofloxacin and Ceftazidime Against Stenotrophomonas maltophilia: A Comparative Study Using Checkerboard and Gradient Diffusion Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Checkerboard Method
- MICLEV (+SXT) is the MIC of levofloxacin in the presence of sulfamethoxazole-trimethoprim (SXT);
- MICLEV (alone) is the MIC of levofloxacin alone;
- MICSXT (+LEV) is the MIC of SXT in the presence of levofloxacin, and so forth.
2.2. Gradient Diffusion Method
2.3. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLSI | Clinical and Laboratory Standards Institute |
MIC | Minimum Inhibitory Concentration |
SXT | Sulfamethoxazole–Trimethoprim |
LEV | Levofloxacin |
CAZ | Ceftazidime |
FIC | Fractional Inhibitory Concentration |
FICI | Fractional Inhibitory Concentration Index |
References
- Teo, W.Y.; Chan, M.Y.; Lam, C.M.; Chong, C.Y. Skin manifestation of Stenotrophomonas maltophilia infection—A case report and review article. Ann. Acad. Med. Singap. 2006, 35, 897–900. [Google Scholar] [CrossRef]
- Carmody, L.A.; Spilker, T.; LiPuma, J.J. Reassessment of Stenotrophomonas maltophilia phenotype. J. Clin. Microbiol. 2011, 49, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S.; Di Bonaventura, G.; Berg, G.; Martinez, J.L. Editorial: A multidisciplinary look at Stenotrophomonas maltophilia: An emerging multi-drug-resistant global opportunistic pathogen. Front. Microbiol. 2017, 8, 1511. [Google Scholar] [CrossRef]
- Looney, W.J.; Narita, M.; Mühlemann, K. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. Lancet Infect. Dis. 2009, 9, 312–323. [Google Scholar] [CrossRef]
- Gibb, J.; Wong, D.; Smith, S. Antimicrobial resistance trends in S. maltophilia over a decade. J. Glob. Antimicrob. Resist. 2021, 24, 345–350. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Surveillance of Antimicrobial Resistance in Europe, Annual Report 2023. 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2023 (accessed on 11 September 2025).
- Toleman, M.A.; Bennett, P.M.; Walsh, T.R. ISCR elements: Novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 2006, 70, 296–316. [Google Scholar] [CrossRef]
- Hu, L.F.; Chang, X.; Ye, Y.; Wang, Z.X.; Shao, Y.B.; Shi, W.; Li, X.; Li, J.B.; Zhang, L.; Liu, Y.; et al. Identification of sul and dfrA genes in SXT-resistant Stenotrophomonas maltophilia clinical isolates. J. Med. Microbiol. 2011, 60 Pt 4, 524–530. [Google Scholar]
- Sánchez, M.B. Antibiotic resistance in Stenotrophomonas maltophilia: Mechanisms and therapeutic strategies. J. Antimicrob. Chemother. 2015, 70, 2297–2307. [Google Scholar] [CrossRef]
- Chang, Y.T.; Lin, C.Y.; Chen, Y.H.; Hsueh, P.R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front. Microbiol. 2015, 6, 893. [Google Scholar] [CrossRef]
- Aaron, S.D. Antibiotic synergy testing should not be routine for patients with cystic fibrosis who are infected with multiresistant bacterial organisms. Paediatr. Respir. Rev. 2007, 8, 256–261. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; CLSI: Malvern, PA, USA, 2023. [Google Scholar]
- Cooper, E.C.; Curtis, N.; Cranswick, N.; Gwee, A. Treatment of Stenotrophomonas maltophilia bacteremia: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2014, 69, 2290–2298. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 26th Informational Supplement; CLSI Document M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; Available online: https://clsi.org/media/1931/m100s26_sample.pdf (accessed on 11 September 2025).
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 34th Informational Supplement; CLSI Document M100-S34; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 11 September 2025).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0-S26. 2022. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 11 September 2025).
- Vartivarian, S.; Anaissie, E.; Bodey, G.; Sprigg, H.; Rolston, K. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: Implications for therapy. Antimicrob. Agents Chemother. 1994, 38, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Sader, H.S.; Jones, R.N. Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob. Agents Chemother. 2010, 54, 2735–2737. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Tripodi, M.-F.; Albisinni, R.; Utili, R. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int. J. Antimicrob. Agents 2011, 37, 230–234. [Google Scholar] [CrossRef]
- Krishnappa, L.G.; Marie, M.A.M.; Al Sheikh, Y.A. Susceptibility of Stenotrophomonas maltophilia clinical strains in China to antimicrobial combinations. J. Chemother. 2014, 26, 282–286. [Google Scholar] [CrossRef]
- Strateva, T.; Trifonova, A.; Savov, E.; Dimov, S.; Mitov, I. An update on the antimicrobial susceptibility and molecular epidemiology of Stenotrophomonas maltophilia in Bulgaria: A 5-year study (2011–2016). Infect. Dis. 2019, 51, 387–391. [Google Scholar] [CrossRef]
- Evangelista, F.F.; Mantelo, F.M.; de Lima, K.K.; Marchioro, A.A.; Beletini, L.F.; de Souza, A.H.; Santana, P.L.; Riedo, C.d.O.; Higa, L.T.; Guilherme, A.L.F. Clinical and microbiological characteristics of patients colonized or infected by Stenotrophomonas maltophilia: Is resistance to sulfamethoxazole/trimethoprim a problem? Rev. Do Inst. De Med. Trop. De São Paulo 2020, 62, e96. [Google Scholar] [CrossRef]
- Juhász, E.; Pongrácz, J.; Iván, M.; Kristóf, K. Antibiotic susceptibility of sulfamethoxazole-trimethoprim resistant Stenotrophomonas maltophilia strains isolated at a tertiary care centre in Hungary. Acta Microbiol. Et Immunol. Hung. 2015, 62, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Karamanlıoğlu, D.; Dizbay, M. In vitro combination of tigecycline with other antibiotics in Stenotrophomonas maltophilia isolates. Turk. J. Med. Sci. 2019, 49, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Copur, B.; Başaran, S.; Şimşek-Yavuz, S.; Çağatay, A.; Özsüt, H.; Eraksoy, H. Stenotrophomonas maltophilia: Results of antimicrobial susceptibility testing and in vitro activity of the combination of ceftazidime and moxifloxacin. Klimik J. 2019, 32, 29–34. [Google Scholar]
- Dülger, D.; Berktaş, M.; Bozkurt, H.; Güdücüoğlu, H.; Mısırlıgil, A. Nozokomiyal Stenotrophomonas maltophilia suşlarının izolasyonu ve antibiyotiklere duyarlılığı [Isolation and antibiotic susceptibility of nosocomial Stenotrophomonas maltophilia strains]. Van Tıp Dergisi 2006, 13, 49–52. [Google Scholar]
- Zer, Y.; Karaoğlan, İ.; Çevik, S.; Erdem, M. Stenotrophomonas maltophilia suşlarının antibiyotik duyarlılıklarının irdelenmesi [Examination of antibiotic susceptibility of Stenotrophomonas maltophilia strains]. Klimik Derg. 2009, 22, 21–24. [Google Scholar]
- Mutlu, M.; Yılmaz, G.; Aslan, Y.; Bayramoğlu, G. Risk factors and clinical characteristics of Stenotrophomonas maltophilia infections in neonates. J. Microbiol. Immunol. Infect. 2011, 44, 467–472. [Google Scholar] [CrossRef]
- Çaycı, Y.T.; Karadağ, A.; Yılmaz, H.; Yanık, K.; Günaydın, M. Stenotrophomonas maltophilia klinik suşlarında antimikrobiyal direnç [Antimicrobial resistance in clinical strains of Stenotrophomonas maltophilia]. Türk Mikrobiyoloji Cemiy. Derg. 2013, 43, 22–25. [Google Scholar]
- Çıkman, A.; Parlak, M.; Bayram, Y.; Güdücüoğlu, H.; Berktaş, M. Antibiotics resistance of Stenotrophomonas maltophilia strains isolated from various clinical specimens. Afr. Health Sci. 2016, 16, 149–152. [Google Scholar] [CrossRef]
- Şen, P.; Yula, E.; Er, H.; Güngör, S.; Özdemir, R.; Baran, N.; Demirci, M. Çeşitli klinik örneklerden izole edilen Stenotrophomonas maltophilia suşlarında antibiyotiklere direnç oranı [Antibiotic resistance rates in Stenotrophomonas maltophilia strains isolated from various clinical specimens]. Ortadoğu Tıp Dergisi 2017, 9, 113–117. [Google Scholar] [CrossRef]
- Bahçeci, İ.; Kostakoğlu, U.; Duran, Ö.F.; Yıldız, İ.E.; Dilek, A.R. Çeşitli klinik örneklerden izole edilen Stenotrophomonas maltophilia suşlarının dağılımı ve antimikrobiyal duyarlılıkları: 8 yıllık çalışma [Distribution and antimicrobial susceptibilities of Stenotrophomonas maltophilia strains isolated from various clinical samples: An 8-year study]. Dicle Med. J. 2021, 48, 147–152. [Google Scholar] [CrossRef]
- Kandemir, Ö. Çoğul dirençli gram-negatiflerde tedavi yaklaşımı: Stenotrophomonas maltophilia [Treatment approaches for multidrug-resistant gram-negative infections: Stenotrophomonas maltophilia]. Yoğun Bakım Derg. 2007, 7, 151–157. [Google Scholar]
- Le Roy, C.; Touati, A.; Balcon, C.; Garraud, J.; Molina, J.-M.; Berçot, B.; de Barbeyrac, B.; Pereyre, S.; Peuchant, O.; Bébéar, C. In vivo validation and nutrient-limited media susceptibility testing reveal limitations of conventional susceptibility testing for Stenotrophomonas maltophilia and ceftazidime. J. Antimicrob. Chemother. 2021, 76, 1785–1794. [Google Scholar] [CrossRef]
- Phillips, M.C.; Lee, B.; Miller, S.L.; Yan, H.; Maeusli, M.; She, R.; Luna, B.M.; Spellberg, C.; Spellberg, M.O.R.; Spellberg, B.; et al. Ceftazidime retains in vivo efficacy against strains of Stenotrophomonas maltophilia for which traditional testing predicts resistance. Open Forum Infect. Dis. 2023, 10 (Suppl. S2), ofad500.086. [Google Scholar] [CrossRef]
- Gülmez, D.; Cakar, A.; Sener, B.; Karakaya, J.; Hasçelik, G. Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing. J. Infect. Chemother. 2010, 16, 322–328. [Google Scholar] [CrossRef]
- Araoka, H.; Baba, M.; Okada, C.; Abe, M.; Kimura, M.; Yaneyama, A. Evaluation of trimethoprim-sulfamethoxazole based combination therapy against Stenotrophomonas maltophilia: In vitro effects and clinical efficacy in cancer patients. Int. J. Infect. Dis. 2017, 58, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- White, R.L.; Burgess, D.S.; Mandur, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef]
- Yao, J.D.; Louie, M.; Louie, L.; Goodfellow, J.; Simor, A.E. Comparison of E test and agar dilution for antimicrobial susceptibility testing of Stenotrophomonas (Xanthomonas) maltophilia. J. Clin. Microbiol. 1995, 33, 1428–1430. [Google Scholar] [CrossRef]
- Balke, B.; Hogardt, M.; Schmoldt, S.; Hoy, L.; Weissbrodt, H.; Häussler, S. Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 25–30. [Google Scholar] [CrossRef]
- Wei, C.; Ni, W.; Cai, X.; Zhao, J.; Cui, J. Evaluation of Trimethoprim/Sulfamethoxazole (SXT), Minocycline, Tigecycline, Moxifloxacin, and Ceftazidime Alone and in Combinations for SXT-Susceptible and SXT-Resistant Stenotrophomonas maltophilia by In Vitro Time-Kill Experiments. PLoS ONE 2016, 11, e0152132. [Google Scholar] [CrossRef]
- Wang, C.H.; Lin, J.C.; Chang, F.Y.; Yu, C.M.; Lin, W.S.; Yeh, K.M. Risk factors for hospital acquisition of trimethoprim-sulfamethoxazole resistant Stenotrophomonas maltophilia in adults: A matched case-control study. J. Microbiol. Immunol. Infect. 2017, 50, 646–652. [Google Scholar] [CrossRef]
- Thamer, A.; Almagro, Z.; Alkhateeb, Z.; Alruwaili, S.; Alshehri, R.; Alshehri, K.; Tawfik, E.A. Trimethoprim-sulfamethoxazole versus levofloxacin for the treatment of Stenotrophomonas maltophilia infections: A multicentre cohort study. J. Glob. Antimicrob. Resist. 2022, 30, 78–84. [Google Scholar] [CrossRef]
- Tuncel, T.; Akalın, H.; Payaslıoğlu, M.; Yılmaz, E.; Kazak, E.; Heper, Y.; Özakın, C. Healthcare-associated Stenotrophomonas maltophilia bacteraemia: Retrospective evaluation of treatment and outcome. Cureus 2021, 13, e18916. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Method | CLSI Clinical Breakpoint | S | I | R | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
SXT | checkerboard method | S ≤ 2/38 | 15 | 75 | - | - | 5 | 25 |
I - | ||||||||
R ≥ 4/76 | ||||||||
LEV | S ≤ 2 | 11 | 55 | 2 | 10 | 7 | 35 | |
I 4 | ||||||||
R ≥ 8 | ||||||||
CAZ | S ≤ 8 | 3 | 15 | 1 | 5 | 16 | 80 | |
I 16 | ||||||||
R ≥ 32 | ||||||||
SXT | gradient diffusion method | S ≤ 2/38 | 13 | 65 | 2 | 10 | 5 | 25 |
I - | ||||||||
R ≥ 4/76 | ||||||||
LEV | S ≤ 2 | 13 | 65 | 2 | 10 | 5 | 25 | |
I 4 | ||||||||
R ≥ 8 | ||||||||
CAZ | S ≤ 8 | 4 | 20 | 3 | 15 | 13 | 65 | |
I 16 | ||||||||
R ≥ 32 |
Strain No | SXT | LEV | CAZ | LEV + SXT | SXT + LEV | FICI SXT + LEV | CAZ + SXT | SXT + CAZ | FICI SXT + CAZ | Interaction SXT + LEV | Interaction SXT + CAZ |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ≥16/304 | 0.5 | 64 | 0.5 | 0.5/9.5 | 1.03125 | 8 | 0.5/9.5 | 0.15625 | Additive | Synergy |
2 | 0.5/9.5 | 4 | 32 | 0.25 | 0.5/9.5 | 1.0625 | 1 | 0.25/4.75 | 0.5312 | Additive | Additive |
3 | 0.5/9.5 | 2 | 32 | 0.25 | 0.25/4.75 | 0.625 | 1 | 0.5/9.5 | 1.03125 | Additive | Additive |
4 | 0.5/9.5 | 1 | ≥64 | 0.5 | 0.125/2.375 | 0.75 | 1 | 0.25/4.75 | 0.515625 | Additive | Additive |
5 | ≥16/304 | 2 | 32 | 1.0 | 0.125/2.375 | 0.5078125 | 4 | 1/19 | 0.1875 | Additive | Synergy |
6 | 2/38 | 16 | ≥64 | 4.0 | 1/19 | 0.75 | 4 | 1/19 | 0.5625 | Additive | Additive |
7 | 0.5/9.5 | 0.5 | ≥64 | 0.5 | 0.25/4.75 | 1.5 | 4 | 0.125/2.375 | 0.3125 | Additive | Synergy |
8 | 16/304 | 2 | 32 | 1.0 | 0.125/2.375 | 0.5078125 | 2 | 0.25/4.75 | 0.078125 | Additive | Synergy |
9 | 2/38 | 8 | ≥64 | 0.5 | 1/19 | 0.5625 | 2 | 2/38 | 1.03125 | Additive | Additive |
10 | 0.5/9.5 | 2 | ≥64 | 0.25 | 0.25/4.75 | 0.625 | 8 | 0.125/2.375 | 0.375 | Additive | Synergy |
11 | 0.5/9.5 | 0.5 | 16 | 0.25 | 0.125/2.375 | 0.75 | 1 | 0.125/2.375 | 0.3125 | Additive | Synergy |
12 | 0.5/9.5 | 2 | ≥64 | 1.0 | 0.25/4.75 | 1.0 | 2 | 0.125/2.375 | 0.28125 | Additive | Synergy |
13 | 0.25/4.75 | 2 | 8 | 0.25 | 0.25/4.75 | 1.125 | 1 | 0.25/4.75 | 1.125 | Additive | Additive |
14 | 2/38 | ≥16 | 64 | 0.25 | 4/76 | 2.015625 | 16 | 1/19 | 0.75 | Additive | Additive |
15 | 0.5/9.5 | 16 | 32 | 0.5 | 0.5/9.5 | 1.03125 | 1 | 0.25/4.75 | 0.53125 | Additive | Additive |
16 | 0.5/9.5 | 8 | 8 | 0.5 | 0.125/2.375 | 0.3125 | 1 | 0.25/4.75 | 0.625 | Synergy | Additive |
17 | 0.5/9.5 | 4 | 64 | 2.0 | 0.5/9.5 | 1.5 | 2 | 0.25/4.75 | 0.53125 | Additive | Additive |
18 | ≥16/304 | ≥16 | ≥64 | 16.0 | 16/304 | 2.0 | 64 | 0.125/2.375 | 1.0078125 | Additive | Additive |
19 | ≥16/304 | ≥16 | ≥64 | 16.0 | 16/304 | 2.0 | 16 | 2/38 | 0.375 | Additive | Synergy |
20 | 0.5/9.5 | 0.5 | 1 | 0.5 | 0.125/2.375 | 1.25 | 1 | 0.125/2.375 | 1.25 | Additive | Additive |
Strain No | SXT | LEV | CAZ | LEV + SXT | SXT + LEV | FICI SXT + LEV | CAZ + SXT | SXT + CAZ | FICI SXT + CAZ | Interaction SXT + LEV | Interaction SXT + CAZ |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ≥32 | 0.19 | 24 | 0.19 | 0.19 | 1.0059 | ≥256 | ≥256 | 18.66 | Additive | Antogonist |
2 | 0.5 | 4 | 8 | 0.5 | 0.5 | 1.125 | 0.5 | 0.5 | 1.06 | Additive | Additive |
3 | 0.5 | 0.75 | 32 | 0.25 | 0.38 | 1.09 | 0.5 | 0.38 | 0.77 | Additive | Additive |
4 | 0.38 | 0.38 | ≥256 | 0.19 | 0.19 | 1 | 0.38 | 0.25 | 0.658 | Additive | Additive |
5 | ≥32 | 0.75 | 96 | 0.25 | 0.25 | 0.34 | 4 | 0.75 | 0.06 | Synergy | Synergy |
6 | 3 | 24 | ≥256 | 3 | 6 | 2.125 | 3 | 2 | 0.67 | Additive | Additive |
7 | 0.38 | 0.5 | ≥256 | 0.25 | 0.25 | 1.15 | 0.38 | 0.38 | 1.0014 | Additive | Additive |
8 | ≥32 | 0.5 | 12 | 0.25 | 0.5 | 0.515 | 1 | 0.5 | 0.09 | Additive | Synergy |
9 | 2 | 6 | ≥256 | 2 | 2 | 1.33 | 1.5 | 0.75 | 0.380 | Additive | Synergy |
10 | 0.38 | 0.5 | 96 | 0.19 | 0.25 | 1.03 | 0.38 | 0.125 | 0.323 | Additive | Synergy |
11 | 0.38 | 0.25 | 24 | 0.25 | 0.25 | 1.65 | 0.5 | 0.5 | 1.33 | Additive | Additive |
12 | 0.75 | 1 | ≥256 | 1 | 0.75 | 2 | 1.5 | 0.75 | 1.005 | Additive | Additive |
13 | 0.125 | 0.38 | 6 | 0.19 | 0.19 | 2.02 | 0.19 | 0.19 | 1.55 | Additive | Additive |
14 | 4 | ≥32 | 48 | 6 | 6 | 1.68 | 2 | 2 | 0.54 | Additive | Additive |
15 | 0.75 | 8 | ≥256 | 1 | 0.5 | 0.785 | 0.5 | 0.5 | 0.661 | Additive | Additive |
16 | 0.25 | 0.38 | 6 | 0.19 | 0.19 | 1.26 | 0.125 | 0.125 | 0.52 | Additive | Additive |
17 | 0.5 | 1.5 | 48 | 0.38 | 0.5 | 1.25 | 0.75 | 0.38 | 0.77 | Additive | Additive |
18 | ≥32 | ≥32 | 128 | ≥32 | ≥32 | 2 | 6 | 8 | 0.29 | Additive | Synergy |
19 | ≥32 | ≥32 | 128 | ≥32 | ≥32 | 2 | 96 | 24 | 1.5 | Additive | Additive |
20 | 0.38 | 1 | 1 | 0.5 | 0.38 | 1.5 | 0.5 | 0.5 | 1.81 | Additive | Additive |
SXT + LEV Checkerboard Method | ||||
---|---|---|---|---|
Synergy | Additive | Antagonist | ||
SXT + LEV gradientdiffusion method | Synergy | - | 1 | - |
Additive | 1 | 18 | - | |
Antagonist | - | - | - | |
SXT + CAZ Checkerboard method | ||||
Synergy | Additive | Antagonist | ||
SXT + CAZ gradientdiffusion method | Synergy | 3 | 4 | 1 |
Additive | 2 | 10 | - | |
Antagonist | - | - | - |
Strain No | SXT | LEV | CAZ | SXT + LEV (Checkerboard Method) | SXT + LEV (Gradient Diffusion Method | SXT + CAZ (Checkerboard Method) | SXT + CAZ (Gradient Diffusion Method |
---|---|---|---|---|---|---|---|
1 | R | S | R | Additive | Additive | Synergy | Antagonist |
2 | S | I | R | Additive | Additive | Additive | Additive |
3 | S | S | R | Additive | Additive | Additive | Additive |
4 | S | S | R | Additive | Additive | Additive | Additive |
5 | R | S | R | Additive | Synergy | Synergy | Synergy |
6 | S | R | R | Additive | Additive | Additive | Additive |
7 | S | R | R | Additive | Additive | Synergy | Additive |
8 | R | R | R | Additive | Additive | Synergy | Synergy |
9 | S | R | R | Additive | Additive | Additive | Synergy |
10 | S | S | R | Additive | Additive | Synergy | Synergy |
11 | S | S | R | Additive | Additive | Synergy | Additive |
12 | S | S | R | Additive | Additive | Synergy | Additive |
13 | S | S | R | Additive | Additive | Additive | Additive |
14 | S | R | R | Additive | Additive | Additive | Additive |
15 | S | R | R | Additive | Additive | Additive | Additive |
16 | S | S | R | Synergy | Additive | Additive | Additive |
17 | S | S | R | Additive | Additive | Additive | Additive |
18 | R | R | R | Additive | Additive | Additive | Synergy |
19 | R | R | R | Additive | Additive | Synergy | Additive |
20 | S | S | R | Additive | Additive | Additive | Additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payaslioğlu, M.; Başkiliç, R.; Kazak, E.; Akalin, H. In Vitro Synergy Evaluation of Trimethoprim/Sulfamethoxazole Combined with Levofloxacin and Ceftazidime Against Stenotrophomonas maltophilia: A Comparative Study Using Checkerboard and Gradient Diffusion Methods. Acta Microbiol. Hell. 2025, 70, 37. https://doi.org/10.3390/amh70030037
Payaslioğlu M, Başkiliç R, Kazak E, Akalin H. In Vitro Synergy Evaluation of Trimethoprim/Sulfamethoxazole Combined with Levofloxacin and Ceftazidime Against Stenotrophomonas maltophilia: A Comparative Study Using Checkerboard and Gradient Diffusion Methods. Acta Microbiologica Hellenica. 2025; 70(3):37. https://doi.org/10.3390/amh70030037
Chicago/Turabian StylePayaslioğlu, Melda, Reyhan Başkiliç, Esra Kazak, and Halis Akalin. 2025. "In Vitro Synergy Evaluation of Trimethoprim/Sulfamethoxazole Combined with Levofloxacin and Ceftazidime Against Stenotrophomonas maltophilia: A Comparative Study Using Checkerboard and Gradient Diffusion Methods" Acta Microbiologica Hellenica 70, no. 3: 37. https://doi.org/10.3390/amh70030037
APA StylePayaslioğlu, M., Başkiliç, R., Kazak, E., & Akalin, H. (2025). In Vitro Synergy Evaluation of Trimethoprim/Sulfamethoxazole Combined with Levofloxacin and Ceftazidime Against Stenotrophomonas maltophilia: A Comparative Study Using Checkerboard and Gradient Diffusion Methods. Acta Microbiologica Hellenica, 70(3), 37. https://doi.org/10.3390/amh70030037