Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel
Abstract
:1. Introduction
2. The Gut Microbiota: A Dynamic Ecosystem Shaping Health and Disease
3. Cobalt, Lithium, and Nickel: Emerging Concerns
4. Cobalt, Lithium, and Nickel: Modulators of Microbial Diversity and Health
4.1. Cobalt’s Influence on Microbiota
4.2. Lithium’s Influence on Microbiota
4.3. Nickel’s Influence on Microbiota
5. Future Directions
5.1. Understand Involved Mechanisms
5.2. Gut–Brain Axis
5.3. Environmental Applications
5.4. Beyond Scientific Investigation
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
SCFA | Short-Chain Fatty Acids |
ROS | Reactive Oxygen Species |
IL6 | Interleukin 6 |
SNAS | Systemic Nickel Allergy Syndrome |
References
- He, H.; Tian, S.; Glaubensklee, C.; Tarroja, B.; Samuelsen, S.; Ogunseitan, O.A.; Schoenung, J.M. Advancing chemical hazard assessment with decision analysis: A case study on lithium-ion and redox flow batteries used for energy storage. J. Hazard. Mater. 2022, 437, 129301. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wang, H.Q.; Chen, J.; Chang, J.D.; Zhao, F.J. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. J. Integr. Plant Biol. 2023, 65, 570–593. [Google Scholar] [CrossRef]
- Jha, A.; Barsola, B.; Pathania, D.; Sonu; Raizada, P.; Thakur, P.; Singh, P.; Rustagi, S.; Khosla, A.; Chaudhary, V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. Environ Res. 2024, 252, 118926. [Google Scholar] [CrossRef] [PubMed]
- Demarquoy, J. Microplastics and microbiota: Unraveling the hidden environmental challenge. World J. Gastroenterol. 2024, 30, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Finlay, B. The intestinal microbiota and allergic asthma. J. Infect. 2014, 69 (Suppl. S1), S53–S55. [Google Scholar] [CrossRef]
- Demarquoy; Othman, H.; Demarquoy, C. Modify gut microbiome in autism: A promising strategy? Explor. Neurosci. 2023, 2, 140–152. [Google Scholar] [CrossRef]
- Sukhera, J. Narrative Reviews: Flexible, Rigorous, and Practical. J. Grad. Med. Educ. 2022, 14, 414–417. [Google Scholar] [CrossRef]
- Handoll, H.H.; Atkinson, G. Snowballing citations. BMJ 2015, 351, h6309. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Smith, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-analysis. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef]
- Grellier, N.; Suzuki, M.T.; Brot, L.; Rodrigues, A.M.S.; Humbert, L.; Escoubeyrou, K.; Rainteau, D.; Grill, J.-P.; Lami, R.; Seksik, P. Impact of IBD-Associated Dysbiosis on Bacterial Quorum Sensing Mediated by Acyl-Homoserine Lactone in Human Gut Microbiota. Int. J. Mol. Sci. 2022, 23, 15404. [Google Scholar] [CrossRef]
- Turpin, T.; Thouvenot, K.; Gonthier, M.P. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012, 70 (Suppl. S1), S10–S13. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Chen, Y.; Ma, Z.; Zhang, X.; Shi, D.; Khan, J.A.; Liu, H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim. Nutr. 2022, 8, 350–360. [Google Scholar] [CrossRef]
- Moțățăianu, A.; Șerban, G.; Andone, S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 15094. [Google Scholar] [CrossRef]
- Beards, E.; Tuohy, K.; Gibson, G. Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe 2010, 16, 420–425. [Google Scholar] [CrossRef]
- Ge, T.; Yao, X.; Zhao, H.; Yang, W.; Zou, X.; Peng, F.; Li, B.; Cui, R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol. Res. 2021, 173, 105909. [Google Scholar] [CrossRef] [PubMed]
- Lachmansingh, D.A.; Valderrama, B.; Bastiaanssen, T.; Cryan, J.; Clarke, G. A Lavelle Impact of dietary fiber on gut microbiota composition, function and gut-brain-modules in healthy adults—A systematic review protocol. HRB Open Res. 2023, 6, 62. [Google Scholar] [CrossRef]
- Kalungi, P.; Yao, Z.; Huang, H. Aspects of Nickel, Cobalt and Lithium, the Three Key Elements for Li-Ion Batteries: An Overview on Resources, Demands, and Production. Materials 2024, 17, 4389. [Google Scholar] [CrossRef]
- Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023, 14, 1076876. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. Biology 2023, 12, 1335. [Google Scholar] [CrossRef]
- Sim, W.; Muambo, K.E.; Choi, J.; Park, S.; Oh, J.E. Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea. Sci. Total Environ. 2025, 967, 178799. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Lee, J.W.; Jeong, J.W.; Kim, T.S.; Lee, Y.; Gang, G.; Lee, S.G. Current technologies for heavy metal removal from food and environmental resources. Food Sci. Biotechnol. 2024, 33, 287–295. [Google Scholar] [CrossRef]
- González-Montaña, J.-R.; Escalera-Valente, F.; Alonso, A.J.; Lomillos, J.M.; Robles, R.; Alonso, M.E. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals 2020, 10, 1855. [Google Scholar] [CrossRef] [PubMed]
- Dezfoulian, A.H.; Aliarabi, H. A comparison between different concentrations and sources of cobalt in goat kid nutrition. Animal 2017, 11, 600–607. [Google Scholar] [CrossRef]
- Kumar, V.; Mishra, R.K.; Kaur, G.; Dutta, D. Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics 2017, 9, 1596–1609. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Ragsdale, S.W. The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 2003, 72, 209–247. [Google Scholar] [CrossRef]
- Yamada, K. Cobalt: Its role in health and disease. Met. Ions Life Sci. 2013, 13, 295–320. [Google Scholar]
- Kräutler, B. Biochemistry of B12-cofactors in human metabolism. Water Soluble Vitam. Clin. Res. Future Appl. 2012, 56, 323–346. [Google Scholar]
- Lan, A.P.; Chen, J.; Chai, Z.F.; Hu, Y. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 2016, 29, 665–678. [Google Scholar] [CrossRef]
- Raja, F.N.S.; Worthington, T.; Martin, R.A. The antimicrobial efficacy of copper, cobalt, zinc and silver nanoparticles: Alone and in combination. Biomed. Mater. 2023, 18, 045003. [Google Scholar] [CrossRef]
- Lee, J.N.; Kim, S.G.; Lim, J.Y.; Dutta, R.K.; Kim, S.J.; Choe, S.K.; So, H.S.; Park, R. 3-Aminotriazole protects from CoCl2-induced ototoxicity by inhibiting the generation of reactive oxygen species and proinflammatory cytokines in mice. Arch. Toxicol. 2016, 90, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Klasson, M.; Lindberg, M.; Särndahl, E.; Westberg, H.; Bryngelsson, I.L.; Tuerxun, K.; Persson, A. Dose- and time-dependent changes in viability and IL-6, CXCL8 and CCL2 production by HaCaT-cells exposed to cobalt. Effects of high and low calcium growth conditions. PLoS ONE 2021, 16, e0252159. [Google Scholar] [CrossRef] [PubMed]
- Gitlin, M.; Bauer, M. Lithium: Current state of the art and future directions. Int. J. Bipolar Disord. 2024, 12, 40. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, L.; Lei, Y.; Yang, Y.; Zhang, X.; Song, Q.; Chen, G.; Liu, W.; Wu, H.; Guo, J. High dose lithium chloride causes colitis through activating F4/80 positive macrophages and inhibiting expression of Pigr and Claudin-15 in the colon of mice. Toxicology 2021, 457, 152799. [Google Scholar] [CrossRef]
- Huang, S.; Hu, S.; Liu, S.; Tang, B.; Liu, Y.; Tang, L.; Lei, Y.; Zhong, L.; Yang, S.; He, S. Lithium carbonate alleviates colon inflammation through modulating gut microbiota and Treg cells in a GPR43-dependent manner. Pharmacol. Res. 2022, 175, 105992. [Google Scholar] [CrossRef]
- Noudeng, V.; Quan, N.V.; Xuan, T.D. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 16169. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, B.; Zhang, F.; Zhang, B.; Guo, Y.; Pang, M.; Huang, L.; Wang, T. Toxic and essential metals: Metabolic interactions with the gut microbiota and health implications. Front. Nutr. 2024, 11, 1448388. [Google Scholar] [CrossRef] [PubMed]
- Camporesi, G.; Minzoni, A.; Morasso, L.; Ciurli, S.; Musiani, F. Nickel import and export in the human pathogen Helicobacter pylori, perspectives from molecular modelling. Metallomics 2021, 13, mfab066. [Google Scholar] [CrossRef]
- Kumar, S.; Vinella, D.; De Reuse, H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv. Microb. Physiol. 2022, 80, 1–33. [Google Scholar]
- Wu, B.; Cui, H.; Peng, X.; Pan, K.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Huang, J. Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol. Environ. Saf. 2014, 109, 70–76. [Google Scholar] [CrossRef]
- Cullen, N.P.; Ashman, T.L. Hyperaccumulation of nickel but not selenium drives floral microbiome differentiation: A study with six species of Brassicaceae. Am. J. Bot. 2024, 111, e16382. [Google Scholar] [CrossRef]
- Yang, J.; Feng, P.; Ling, Z.; Khan, A.; Wang, X.; Chen, Y.; Ali, G.; Fang, Y.; Salama, E.-S.; Wang, X.; et al. Nickel exposure induces gut microbiome disorder and serum uric acid elevation. Environ. Pollut. 2023, 324, 121349. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F.; Fiasca, F.; Minelli, M.; Maio, D.; Mattei, A.; Vergallo, I.; Cifone, M.G.; Cinque, B.; Minelli, M. The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients 2020, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Bist, P.; Choudhary, S. Impact of Heavy Metal Toxicity on the Gut Microbiota and Its Relationship with Metabolites and Future Probiotics Strategy: A Review. Biol. Trace Elem. Res. 2022, 200, 5328–5350. [Google Scholar] [CrossRef]
- Arun, K.B.; Madhavan, A.; Sindhu, R.; Emmanual, S.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Reshmy, R.; Awasthi, M.K.; Gnansounou, E.; et al. Probiotics and gut microbiome—Prospects and challenges in remediating heavy metal toxicity. J. Hazard. Mater. 2021, 420, 126676. [Google Scholar] [CrossRef]
- Phelps, J.R.; Pipitone, O.R.; Squires, K., III; Bale, J.D. Lamotrigine and lithium in primary care psychiatric consultation: Adoption and adverse effects. Fam. Pract. 2021, 38, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Fulke, A.B.; Ratanpal, S.; Sonker, S. Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Mar. Pollut. Bull. 2024, 206, 116707. [Google Scholar] [CrossRef]
- Liu, J.; Yao, J.; Tang, C.; Ma, B.; Liu, X.; Bashir, S.; Sunahara, G.; Duran, R. A critical review on bioremediation technologies of metal(loid) tailings: Practice and policy. J. Environ. Manag. 2024, 359, 121003. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Dikobe, T.B.; Maseme, M.R. Exploring the Potential of Endophytic Microorganisms and Nanoparticles for Enhanced Water Remediation. Molecules 2024, 29, 2858. [Google Scholar] [CrossRef]
- Kumari, A.; Dash, M.; Singh, S.K.; Jagadesh, M.; Mathpal, B.; Mishra, P.K.; Pandey, S.K.; Verma, K.K. Soil microbes: A natural solution for mitigating the impact of climate change. Environ. Monit. Assess. 2023, 195, 1436. [Google Scholar] [CrossRef]
- Hajjo, R.; Sabbah, D.A.; Al Bawab, A.Q. Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics 2022, 12, 1742. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the Hellenic Society for Microbiology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarquoy, J. Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel. Acta Microbiol. Hell. 2025, 70, 18. https://doi.org/10.3390/amh70020018
Demarquoy J. Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel. Acta Microbiologica Hellenica. 2025; 70(2):18. https://doi.org/10.3390/amh70020018
Chicago/Turabian StyleDemarquoy, Jean. 2025. "Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel" Acta Microbiologica Hellenica 70, no. 2: 18. https://doi.org/10.3390/amh70020018
APA StyleDemarquoy, J. (2025). Trace Metals in Modern Technology and Human Health: A Microbiota Perspective on Cobalt, Lithium, and Nickel. Acta Microbiologica Hellenica, 70(2), 18. https://doi.org/10.3390/amh70020018