Preliminary Evaluation of Cell Population Data Parameters in Different Blood Collection Tubes on Sysmex XN-Series Analysers
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Haemocytometric Analysis
2.3. Statistical Analysis
3. Results
3.1. Cell Population Data Parameters Generated Across Different Blood Collection Tubes
3.2. Cell Population Data Parameter Stability Across Different Blood Collection Tubes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urrechaga, E. Reviewing the Value of Leukocytes Cell Population Data (CPD) in the Management of Sepsis. Ann. Transl. Med. 2020, 8, 953. [Google Scholar] [CrossRef]
- Kim, H.; Han, E.; Lee, H.K.; Kim, Y.; Han, K. Screening of Myelodysplastic Syndrome Using Cell Population Data Obtained from an Automatic Hematology Analyzer. Int. J. Lab. Hematol. 2021, 43, e54–e57. [Google Scholar] [CrossRef] [PubMed]
- Kwiecień, I.; Rutkowska, E.; Kulik, K.; Kłos, K.; Plewka, K.; Raniszewska, A.; Rzepecki, P.; Chciałowski, A. Neutrophil Maturation, Reactivity and Granularity Research Parameters to Characterize and Differentiate Convalescent Patients from Active SARS-CoV-2 Infection. Cells 2021, 10, 2332. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Chhabra, G.; Padhi, S.; Mohapatra, S.; Panigrahi, A.; Sable, M.N.; Das, P.K. Usefulness of Leucocyte Cell Population Data by Sysmex XN1000 Hematology Analyzer in Rapid Identification of Acute Leukemia. Indian J. Hematol. Blood Transfus. Off. J. Indian Soc. Hematol. Blood Transfus. 2022, 38, 499–507. [Google Scholar] [CrossRef]
- Nguyen, M.; Stiel, L.; Guilloteau, A.; Bahr, P.-A.; Masson, D.; Thomas, C.; Blot, M.; Guy, J.; Fontaine, C.; Durand, B.; et al. Leukocyte Cell Population Data in Patients with Cardiac Surgery and Cardiopulmonary Bypass: A Potential Readily Available Tool to Monitor Immunity. Front. Immunol. 2022, 13, 1101937. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Park, C.-J.; Lee, B.-R.; Nam, K.-S.; Kim, M.-J.; Han, M.-Y.; Kim, Y.J.; Cho, Y.-U.; Jang, S. Sepsis Affects Most Routine and Cell Population Data (CPD) Obtained Using the Sysmex XN-2000 Blood Cell Analyzer: Neutrophil-Related CPD NE-SFL and NE-WY Provide Useful Information for Detecting Sepsis. Int. J. Lab. Hematol. 2015, 37, 190–198. [Google Scholar] [CrossRef]
- Buoro, S.; Seghezzi, M.; Vavassori, M.; Dominoni, P.; Apassiti Esposito, S.; Manenti, B.; Mecca, T.; Marchesi, G.; Castellucci, E.; Azzarà, G.; et al. Clinical Significance of Cell Population Data (CPD) on Sysmex XN-9000 in Septic Patients with Our without Liver Impairment. Ann. Transl. Med. 2016, 4, 418. [Google Scholar] [CrossRef]
- Çevlik, T.; Kaya, Ö.; Gül, F.; Turkal, R.; İnanç, N.; Direskeneli, H.; İlki, A.; Şirikçi, Ö.; Haklar, G.; Cinel, İ. Evaluation of the Diagnostic Value of Cell Population Data in Sepsis in Comparison to Localized Infection, Chronic Inflammation, and Noninfectious Inflammation Cases. J. Intensive Care Med. 2023, 38, 382–390. [Google Scholar] [CrossRef]
- Roccaforte, V.; Sabbatini, G.; Panella, R.; Daves, M.; Formenti, P.; Gotti, M.; Galimberti, A.; Spreafico, M.; Piccin, A.; Lippi, G.; et al. The Potential Role of Leukocytes Cell Population Data (CPD) for Diagnosing Sepsis in Adult Patients Admitted to the Intensive Care Unit. Clin. Chem. Lab. Med. 2025, 63, 1031–1042. [Google Scholar] [CrossRef]
- Martens, R.J.H.; van Adrichem, A.J.; Mattheij, N.J.A.; Brouwer, C.G.; van Twist, D.J.L.; Broerse, J.J.C.R.; Magro-Checa, C.; van Dongen, C.M.P.; Mostard, R.L.M.; Ramiro, S.; et al. Hemocytometric Characteristics of COVID-19 Patients with and without Cytokine Storm Syndrome on the Sysmex XN-10 Hematology Analyzer. Clin. Chem. Lab. Med. (CCLM) 2021, 59, 783–793. [Google Scholar] [CrossRef]
- Harte, J.V.; Mykytiv, V. A Panhaemocytometric Approach to COVID-19: A Retrospective Study on the Importance of Monocyte and Neutrophil Population Data on Sysmex XN-Series Analysers. Clin. Chem. Lab. Med. 2021, 59, e169–e172. [Google Scholar] [CrossRef] [PubMed]
- Urrechaga, E.; Aguirre, U.; España, P.P.; de Guadiana, L.G. Complete Blood Counts and Cell Population Data from Sysmex XN Analyser in the Detection of SARS-CoV-2 Infection. Clin. Chem. Lab. Med. (CCLM) 2021, 59, e57–e60. [Google Scholar] [CrossRef]
- Harte, J.V.; Ní Choileáin, C.; Grieve, C.; Hooton, C.; Mykytiv, V. A Panhaemocytometric Approach to COVID-19: The Importance of Cell Population Data on Sysmex XN-Series Analysers in Severe Disease. Clin. Chem. Lab. Med. 2023, 61, e43–e47. [Google Scholar] [CrossRef]
- Hoffmann, J.J.M.L. Cell Population Data: Much More to Explore. Clin. Chem. Lab. Med. (CCLM) 2023, 61, 377–379. [Google Scholar] [CrossRef] [PubMed]
- England, J.M.; Rowan, R.M.; van Assendelft, O.W.; Bull, B.S.; Coulter, W.; Fujimoto, K.; Groner, W.; Richardson-Jones, A.; Klee, G.; Koepke, J.A.; et al. International Council for Standardization in Haematology Recommendations of the International Council for Standardization in Haematology for Ethylenediaminetetraacetic Acid Anticoagulation of Blood for Blood Cell Counting and Sizing. Am. J. Clin. Pathol. 1993, 100, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Salvagno, G.L.; Lippi, G. The Role of Ethylenediamine Tetraacetic Acid (EDTA) as in Vitro Anticoagulant for Diagnostic Purposes. Clin. Chem. Lab. Med. 2007, 45, 565–576. [Google Scholar] [CrossRef]
- Mehmood, R.; Muhammed, R.K.; Hussain, S.; Sana, A. Evaluation of Di-Potassium and Tri-Potassium EDTA Evacuated Tubes for Routine Haematological Testing. J. Clin. Lab. Anal. 2018, 32, e22188. [Google Scholar] [CrossRef]
- Vives-Corrons, J.-L.; Briggs, C.; Simon-Lopez, R.; Albarede, S.; de la Salle, B.; Flegar-Meatrii, Z.; Nazor, A.; Guyard, A.; Lipsic, T.; Nagai, Y.; et al. Effect of EDTA-Anticoagulated Whole Blood Storage on Cell Morphology Examination. A Need for Standardization. Int. J. Lab. Hematol. 2014, 36, 222–226. [Google Scholar] [CrossRef]
- Agnello, L.; Bivona, G.; Vidali, M.; Scazzone, C.; Giglio, R.V.; Iacolino, G.; Iacona, A.; Mancuso, S.; Ciaccio, A.M.; Lo Sasso, B.; et al. Monocyte Distribution Width (MDW) as a Screening Tool for Sepsis in the Emergency Department. Clin. Chem. Lab. Med. 2020, 58, 1951–1957. [Google Scholar] [CrossRef]
- Polilli, E.; Sozio, F.; Frattari, A.; Persichitti, L.; Sensi, M.; Posata, R.; Di Gregorio, M.; Sciacca, A.; Flacco, M.E.; Manzoli, L.; et al. Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for Early Recognition of Sepsis. PLoS ONE 2020, 15, e0227300. [Google Scholar] [CrossRef]
- Agnello, L.; Vidali, M.; Lo Sasso, B.; Giglio, R.V.; Gambino, C.M.; Scazzone, C.; Ciaccio, A.M.; Bivona, G.; Ciaccio, M. Monocyte Distribution Width (MDW) as a Screening Tool for Early Detecting Sepsis: A Systematic Review and Meta-Analysis. Clin. Chem. Lab. Med. 2022, 60, 786–792. [Google Scholar] [CrossRef]
- Oddoze, C.; Lombard, E.; Portugal, H. Stability Study of 81 Analytes in Human Whole Blood, in Serum and in Plasma. Clin. Biochem. 2012, 45, 464–469. [Google Scholar] [CrossRef]
- Buoro, S.; Carobene, A.; Seghezzi, M.; Manenti, B.; Pacioni, A.; Ceriotti, F.; Ottomano, C.; Lippi, G. Short- and Medium-Term Biological Variation Estimates of Leukocytes Extended to Differential Count and Morphology-Structural Parameters (Cell Population Data) in Blood Samples Obtained from Healthy People. Clin. Chim. Acta 2017, 473, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Van Pelt, L.J.; Klatte, S.; Hwandih, T.; Barcaru, A.; Riphagen, I.J.; Linssen, J.; Bakker, S.J.L. Reference Intervals for Sysmex XN Hematological Parameters as Assessed in the Dutch Lifelines Cohort. Clin. Chem. Lab. Med. (CCLM) 2022, 60, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Eisinger, G.J.; Osman, W.; Prather, E.R.; Julian, M.W.; Gavrilin, M.A.; Crouser, E.D.; Wewers, M.D. Blood Collection in Heparin vs. EDTA Results in an Inflammasome-Independent Increase in Monocyte Distribution Width at 4 h. Clin. Chem. Lab. Med. 2024, 62, e26–e28. [Google Scholar] [CrossRef] [PubMed]
- Pérez, I.; Redín, M.E. Stability of Leukocyte Research Parameters over Time on the Sysmex XN: How to Quantify the Changes in Cell Morphology. Int. J. Lab. Hematol. 2018, 40, 569–576. [Google Scholar] [CrossRef]
- Vrtaric, A.; Filipi, P.; Hemar, M.; Nikolac, N.; Simundic, A.-M. K2-EDTA and K3-EDTA Greiner Tubes for HbA1c Measurement. Lab. Med. 2016, 47, 39–42. [Google Scholar] [CrossRef]
- Goossens, W.; Van Duppen, V.; Verwilghen, R.L. K2- or K3-EDTA: The Anticoagulant of Choice in Routine Haematology? Clin. Lab. Haematol. 1991, 13, 291–295. [Google Scholar] [CrossRef]
- Urrechaga, E.; Bóveda, O.; Aguirre, U. Role of Leucocytes Cell Population Data in the Early Detection of Sepsis. J. Clin. Pathol. 2018, 71, 259–266. [Google Scholar] [CrossRef]
- Vrbacký, F.; Blažek, M.; Fátorová, I.; Šímová, K.; Žák, P. Intensive Care Infection Score (ICIS) Is an Early Marker for Infection in Time of Admission to Intensive Care Units. Int. J. Lab. Hematol. 2025, 47, 707–712. [Google Scholar] [CrossRef]
- Cusinato, M.; Hadcocks, L.; Yona, S.; Planche, T.; Macallan, D. Increased Monocyte Distribution Width in COVID-19 and Sepsis Arises from a Complex Interplay of Altered Monocyte Cellular Size and Subset Frequency. Int. J. Lab. Hematol. 2022, 44, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Description |
---|---|---|
NEUT-GI † | SI | Neutrophil granularity intensity |
NEUT-RI ‡ | FI | Neutrophil reactivity intensity |
NE-Z | ch | Mean neutrophil forward scattered light intensity |
LY-X | ch | Mean lymphocyte side scattered light intensity |
LY-Y | ch | Mean lymphocyte fluorescent light intensity |
LY-Z | ch | Mean lymphocyte forward scattered light intensity |
MO-X | ch | Mean monocyte side scattered light intensity |
MO-Y | ch | Mean monocyte fluorescent light intensity |
MO-Z | ch | Mean monocyte forward scattered light intensity |
NE-WX | ch | Width distribution of the NEUT-GI parameter |
NE-WY | ch | Width distribution of the NEUT-RI parameter |
NE-WZ | ch | Width distribution of the NE-WZ parameter |
LY-WX | ch | Width distribution of the LY-X parameter |
LY-WY | ch | Width distribution of the LY-Y parameter |
LY-WZ | ch | Width distribution of the LY-Z parameter |
MO-WX | ch | Width distribution of the MO-X parameter |
MO-WY | ch | Width distribution of the MO-Y parameter |
MO-WZ | ch | Width distribution of the MO-Z parameter |
Parameter | K2EDTA T1 | K3EDTA T1 | Bias (%) | p Value | MPD (%) |
---|---|---|---|---|---|
NEUT-GI | 152.4 ± 3.4 | 151.8 ± 3.4 | −0.42 | <0.001 | 0.87 |
NEUT-RI | 47.3 ± 2.2 | 49.9 ± 2.3 | 5.61 | <0.001 | 2.26 |
NE-Z | 88.6 ± 2.7 | 88.4 ± 2.7 | −0.19 | <0.001 | 1.99 |
LY-X | 76.1 ± 1.1 | 77.3 ± 1.2 | 1.62 | <0.001 | 0.59 |
LY-Y | 70.7 ± 1.9 | 72.8 ± 2 | 2.94 | <0.001 | 3.36 |
LY-Z | 56.3 ± 0.9 | 57.6 ± 0.9 | 2.33 | <0.001 | 2.50 |
MO-X | 118.8 ± 0.7 | 119.9 ± 1.3 | 0.91 | <0.001 | 1.67 |
MO-Y | 113.1 ± 6.2 | 118 ± 6.5 | 4.33 | <0.001 | 8.86 |
MO-Z | 64.3 ± 1.5 | 64.8 ± 1.6 | 0.82 | <0.001 | 5.84 |
NE-WX | 320 ± 21.6 | 315 ± 21.2 | −1.62 | <0.001 | 7.81 |
NE-WY | 612 ± 34.3 | 601 ± 32.5 | −1.65 | 0.003 | 8.86 |
NE-WZ | 631 ± 34.1 | 610 ± 23.0 | −3.12 | <0.001 | 8.60 |
LY-WX | 547 ± 37.3 | 525 ± 35.9 | −3.97 | <0.001 | 14.72 |
LY-WY | 859 ± 68.4 | 850 ± 71.8 | −1.01 | 0.002 | 9.50 |
LY-WZ | 542 ± 13.9 | 527 ± 22.0 | −2.58 | 0.053 | 8.61 |
MO-WX | 262 ± 17.3 | 277 ± 18.3 | 5.60 | <0.001 | 18.31 |
MO-WY | 689 ± 93.3 | 638 ± 86.5 | −7.32 | <0.001 | 29.08 |
MO-WZ | 573 ± 42.6 | 598.6 ± 53.4 | 4.46 | <0.001 | 19.11 |
Parameter | K2EDTA T1 | Citrate T1 | Bias (%) | p Value | MPD (%) |
---|---|---|---|---|---|
NEUT-GI | 152.4 ± 3.4 | 158.5 ± 4 | 3.98 | <0.001 | 0.87 |
NEUT-RI | 47.3 ± 2.2 | 53.8 ± 3.6 | 13.86 | <0.001 | 2.26 |
NE-Z | 88.6 ± 2.7 | 89 ± 2.6 | 0.49 | 0.002 | 1.99 |
LY-X | 76.1 ± 1.1 | 78.3 ± 1.3 | 2.93 | <0.001 | 0.59 |
LY-Y | 70.7 ± 1.9 | 73.9 ± 2.6 | 4.50 | <0.001 | 3.36 |
LY-Z | 56.3 ± 0.9 | 60.7 ± 1.4 | 7.83 | <0.001 | 2.50 |
MO-X | 118.8 ± 0.7 | 120.6 ± 1.8 | 1.50 | <0.001 | 1.67 |
MO-Y | 113.1 ± 6.2 | 131.4 ± 11.1 | 16.18 | <0.001 | 8.86 |
MO-Z | 64.3 ± 1.5 | 73.8 ± 4.2 | 14.83 | <0.001 | 5.84 |
NE-WX | 320 ± 21.6 | 275 ± 29.1 | −14.17 | <0.001 | 7.81 |
NE-WY | 612 ± 34.3 | 610 ± 34.1 | −0.29 | <0.001 | 8.86 |
NE-WZ | 631 ± 34.1 | 713 ± 70.1 | 13.08 | 0.001 | 8.60 |
LY-WX | 547 ± 37.3 | 577 ± 45.7 | 5.50 | 0.002 | 14.72 |
LY-WY | 859 ± 68.4 | 906 ± 75.3 | 5.42 | <0.001 | 9.50 |
LY-WZ | 542 ± 13.9 | 604 ± 48.0 | 11.50 | 0.001 | 8.61 |
MO-WX | 262 ± 17.3 | 277 ± 20.9 | 5.56 | 0.004 | 18.31 |
MO-WY | 689 ± 93.3 | 738 ± 115.8 | 7.16 | 0.002 | 29.08 |
MO-WZ | 573 ± 42.6 | 588 ± 33.7 | 2.71 | <0.001 | 19.11 |
Parameter | K2EDTA T1 | Heparin T1 | Bias (%) | p Value | MPD (%) |
---|---|---|---|---|---|
NEUT-GI | 152.4 ± 3.4 | 158.3 ± 2.6 | 3.84 | <0.001 | 0.87 |
NEUT-RI | 47.3 ± 2.2 | 54 ± 3.9 | 14.29 | <0.001 | 2.26 |
NE-Z | 88.6 ± 2.7 | 88.1 ± 2.7 | −0.53 | <0.001 | 1.99 |
LY-X | 76.1 ± 1.1 | 74.1 ± 1.5 | −2.59 | 0.001 | 0.59 |
LY-Y | 70.7 ± 1.9 | 67.6 ± 1.5 | −4.41 | <0.001 | 3.36 |
LY-Z | 56.3 ± 0.9 | 60.8 ± 1.7 | 8.01 | <0.001 | 2.50 |
MO-X | 118.8 ± 0.7 | 117.9 ± 2.3 | −0.77 | 0.003 | 1.67 |
MO-Y | 113.1 ± 6.2 | 133 ± 10.2 | 17.60 | <0.001 | 8.86 |
MO-Z | 64.3 ± 1.5 | 73.2 ± 3.7 | 13.89 | <0.001 | 5.84 |
NE-WX | 320 ± 21.6 | 363 ± 34.3 | 13.30 | <0.001 | 7.81 |
NE-WY | 612 ± 34.3 | 610 ± 33.7 | −0.29 | 0.001 | 8.86 |
NE-WZ | 631 ± 34.1 | 700 ± 66.6 | 11.02 | 0.002 | 8.60 |
LY-WX | 547 ± 37.3 | 578 ± 44.8 | 5.69 | 0.001 | 14.72 |
LY-WY | 859 ± 68.4 | 904 ± 74.5 | 5.19 | <0.001 | 9.50 |
LY-WZ | 542 ± 13.9 | 473 ± 12.0 | −12.68 | <0.001 | 8.61 |
MO-WX | 262 ± 17.3 | 277 ± 20.9 | 5.56 | 0.004 | 18.31 |
MO-WY | 689 ± 93.3 | 628 ± 85.1 | −8.81 | <0.001 | 29.08 |
MO-WZ | 573 ± 42.6 | 588 ± 43.7 | 2.71 | <0.001 | 19.11 |
Parameter | K2EDTA T1 | K2EDTA T2 | %∆ | p Value | MPD |
---|---|---|---|---|---|
NEUT-GI | 152.4 ± 3.4 | 153.1 ± 2.9 | 0.43 | 0.679 | 0.87 |
NEUT-RI | 47.3 ± 2.2 | 47.7 ± 1.7 | 0.95 | 0.556 | 2.26 |
NE-Z | 88.6 ± 2.7 | 86.0 ± 3.2 | −1.77 | 0.065 | 1.99 |
LY-X | 76.1 ± 1.1 | 76.4 ± 1.3 | 0.43 | 0.478 | 0.59 |
LY-Y | 70.7 ± 1.9 | 69.0 ± 1.4 | −2.43 | 0.376 | 3.36 |
LY-Z | 56.3 ± 0.9 | 56.4 ± 0.9 | 0.20 | 0.758 | 2.50 |
MO-X | 118.8 ± 0.7 | 118.8 ± 0.9 | −0.86 | 0.041 | 1.67 |
MO-Y | 113.1 ± 6.2 | 110.5 ± 3.6 | −2.30 | 0.189 | 8.86 |
MO-Z | 64.3 ± 1.5 | 62.7 ± 1.2 | −2.44 | 0.043 | 5.84 |
NE-WX | 320 ± 21.6 | 313 ± 13.2 | −2.31 | 0.288 | 7.81 |
NE-WY | 612 ± 34.3 | 585 ± 28.1 | −4.38 | 0.086 | 8.86 |
NE-WZ | 631 ± 34.1 | 610 ± 31.8 | −3.25 | 0.217 | 8.60 |
LY-WX | 547 ± 37.3 | 532 ± 47.3 | −2.72 | 0.436 | 14.72 |
LY-WY | 859 ± 68.4 | 851 ± 77.1 | −0.98 | 0.777 | 9.50 |
LY-WZ | 542 ± 13.9 | 525 ± 24.8 | −3.08 | 0.119 | 8.61 |
MO-WX | 262 ± 17.3 | 258 ± 21.7 | −1.68 | 0.688 | 18.31 |
MO-WY | 689 ± 93.3 | 680 ± 108.4 | −1.26 | 0.855 | 29.08 |
MO-WZ | 573 ± 42.6 | 605 ± 49.4 | 5.68 | 0.083 | 19.11 |
Parameter | K2EDTA T2 | K3EDTA T2 | %∆ | p Value | MPD |
---|---|---|---|---|---|
NEUT-GI | 153.1 ± 2.9 | 150.2 ± 4.5 | −1.89 | <0.001 | 0.87 |
NEUT-RI | 47.7 ± 1.7 | 51.5 ± 1.8 | 7.97 | <0.001 | 2.26 |
NE-Z | 86 ± 3.2 | 86.4 ± 3.3 | −0.69 | <0.001 | 1.99 |
LY-X | 76.4 ± 1.3 | 77.5 ± 1.6 | 1.44 | <0.001 | 0.14 |
LY-Y | 69 ± 1.4 | 70.7 ± 1.9 | 2.46 | <0.001 | 3.36 |
LY-Z | 56.4 ± 0.9 | 58.8 ± 0.9 | 4.26 | <0.001 | 2.50 |
MO-X | 117.8 ± 1.1 | 118.6 ± 0.9 | 0.68 | <0.001 | 1.67 |
MO-Y | 110.5 ± 3.6 | 122.3 ± 3.6 | 10.68 | <0.001 | 8.86 |
MO-Z | 62.7 ± 1.2 | 68.8 ± 2.4 | 9.73 | <0.001 | 5.84 |
NE-WX | 313 ± 13.2 | 345 ± 18.2 | 10.22 | <0.001 | 7.81 |
NE-WY | 585 ± 28.1 | 593 ± 35.9 | 1.37 | 0.015 | 8.86 |
NE-WZ | 610 ± 31.8 | 681 ± 49.6 | 11.64 | <0.001 | 8.60 |
LY-WX | 532 ± 47.3 | 551 ± 48.2 | 3.57 | 0.010 | 14.72 |
LY-WY | 851 ± 77.1 | 904 ± 82.2 | 6.23 | <0.001 | 9.50 |
LY-WZ | 525 ± 24.8 | 472 ± 21.5 | −10.10 | <0.001 | 8.61 |
MO-WX | 258 ± 21.7 | 243 ± 22.2 | −5.81 | 0.195 | 18.31 |
MO-WY | 680 ± 108.4 | 757 ± 103.6 | 11.32 | <0.001 | 29.08 |
MO-WZ | 605 ± 49.4 | 626 ± 46.5 | 3.47 | <0.001 | 19.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harte, J.V.; Hoy, C.; Mykytiv, V. Preliminary Evaluation of Cell Population Data Parameters in Different Blood Collection Tubes on Sysmex XN-Series Analysers. LabMed 2025, 2, 15. https://doi.org/10.3390/labmed2030015
Harte JV, Hoy C, Mykytiv V. Preliminary Evaluation of Cell Population Data Parameters in Different Blood Collection Tubes on Sysmex XN-Series Analysers. LabMed. 2025; 2(3):15. https://doi.org/10.3390/labmed2030015
Chicago/Turabian StyleHarte, James V., Ciara Hoy, and Vitaliy Mykytiv. 2025. "Preliminary Evaluation of Cell Population Data Parameters in Different Blood Collection Tubes on Sysmex XN-Series Analysers" LabMed 2, no. 3: 15. https://doi.org/10.3390/labmed2030015
APA StyleHarte, J. V., Hoy, C., & Mykytiv, V. (2025). Preliminary Evaluation of Cell Population Data Parameters in Different Blood Collection Tubes on Sysmex XN-Series Analysers. LabMed, 2(3), 15. https://doi.org/10.3390/labmed2030015