Reanalyzing and Reinterpreting a Unique Set of Antarctic Acoustic Frazil Data Using River Frazil Results and Self-Validating 2-Frequency Analyses
Abstract
1. Introduction
2. Methods and Data
2.1. Basic Elements of the Antarctic Frazil Study
2.2. Potential Data Anomalies
2.3. Acoustic Backscattering Measurements in Rivers Relevant to Antarctic Frazil Results
3. Analyses
3.1. Evaluations of Frazil Content Estimation Algorithms
3.2. Evaluating the Characterization Algorihm Used in the Antarctic Frazil Study
4. Results
4.1. Recalculated Postnoon Frazil Fractional Volumes
4.2. Implications for Daily Frazil Production
5. Summary and Discussion
5.1. Summary
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frazer, E.K.; Langhorne, P.J.; Leonard, G.H.; Robinson, N.J.; Schumayer, D. Observations of the size of frazil ice in an ice shelf waterplume. Geophys. Res. Lett. 2020, 47, e2020GL090498. [Google Scholar] [CrossRef]
- Marko, J.R.; Jasek, M. Sonar detection and measurements of ice in a freezing river I: Methods and data characteristics. Cold Reg. Sci. Technol. 2010, 63, 121–134. [Google Scholar] [CrossRef]
- Marko, J.R.; Jasek, M. Sonar detection and measurements of ice in a freezing river II: Observations and results on frazil ice. Cold Reg. Sci. Technol. 2010, 63, 135–153. [Google Scholar] [CrossRef]
- Ghobrial, T.R.; Loewen, M.R.; Hicks, F.E. Characterizing suspended frazil ice in rivers using upward looking sonars. Cold Reg. Sci Technol. 2012, 86, 113–126. [Google Scholar] [CrossRef]
- Marko, J.R.; Jasek, M.; Topham, D.R. (Multifrequency analyses of 2011–2012 Peace River SWIPS frazil backscattering data. Cold Reg. Sci. Technol. 2015, 110, 102–119. [Google Scholar] [CrossRef]
- Kungl, A.F.; Schumayer, D.; Frazer, E.K.; Langhorne, P.J.; Leonard, G.H. (An oblate spheroid model for multi-frequency acoustic back-scattering of frazil ice. Cold Reg. Sci. Technol. 2020, 177, 103122. [Google Scholar] [CrossRef]
- Marko, J.R.; Topham, D.R. Laboratory measurements of acoustic backscattering from polystyrene pseudo- ice particles as a basis for quantitative frazil characterization. Cold Reg. Sci. Technol. 2015, 112, 66–86. [Google Scholar] [CrossRef]
- Faran, J.J., Jr. Sound scattering by solid cylinders and spheres. J. Acoust. Soc. 1951, 23, 405–418. [Google Scholar] [CrossRef]
- Robinson, N.J.; Leonard, G.; Frazer, E.; Langhorne, P.; Grant, B.; Stewart, C.; De Joux, P. Temperature, salinity and acoustic backscatter observations and tidal model output in McMurdo Sound, Antarctica in 2016 and 2017—Links to original files [Dataset]. PANGAEA 2020. Available online: https://doi.pangaea.de/10.1594/PANGAEA.923761 (accessed on 27 September 2025).
- Marko, J.R.; Topham, D.R. Analyses of Peace River shallow water ice profiling sonar data and their implications for the roles played by frazil ice and in situ ice growth in freezing rivers. Cryosphere 2021, 15, 2473–2489. [Google Scholar] [CrossRef]
- Hay, A.E.; Sheng, J. Vertical profiles of suspended sand concentrations and size from multifrequency acoustic backscatter. J. Geophys. Res. 1992, 97, 1566–1567. [Google Scholar] [CrossRef]
- Stanton, T.K.; Wiebe, P.H.; Chu, D. Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton. J. Acoust. Soc. Am. 1998, 103, 254–264. [Google Scholar] [CrossRef]
- Piotrovich, V.V. Formation of Depth-Ice; Translated from Priroda; Hope, E.R., Translator; Department of National Defense: Ottawa, ON, Canada, 1956; Volume 9, pp. 1–4. Available online: https://scholar.google.com/scholar_lookup?hl=en&volume=9&publication_year=1956&journal=Priroda&issue=94%E2%80%9395&author=V.+V.+Piotrovich&author=E.+R.+Hope&title=Formation+of+depth+ice (accessed on 27 September 2025).
- Lewis, E.L.; Perkin, R.G. The Winter Oceanography of McMurdo Sound in Antarctica. In Oceanography of the Antarctic Continental Shelf; Jacobs, S.S., Translator; American Geophysical Union: Washington, DC, USA, 1985; pp. 145–165. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/AR043p0145 (accessed on 27 September 2025).
- Lewis, E.L.; Perkin, R.G. Ice pumps and their rates. J. Geophys. Res. 1986, 91, 11756–11762. [Google Scholar] [CrossRef]
- Smedsrud, L.H.; Jenkins, A. Frazil ice formation in an ice shelf water plume. J. Geophys. Res. 2004, 109, C03025. [Google Scholar] [CrossRef]
- Hughes, K.G.; Langhorne, P.J.; Leonard, G.H.; Stevens, C.L. Extension of an Ice Shelf Water plume model beneath sea ice with application in McMurdo Sound, Antarctica. J. Geophys. Res. Oceans 2014, 119, 8662–8687. [Google Scholar] [CrossRef]
- Ghobrial, T.R.; Loewen, M.R. Continuous in situ measurements of anchor ice formation, growth, and release. Cryosphere 2021, 15, 49–67. [Google Scholar] [CrossRef]
- Ashton, G.D. Frazil ice. In Theory of Multiphase Flow; Academic Press: Cambridge, MA, USA, 1986; pp. 271–289. [Google Scholar]
- McFarlane, V.; Loewen, M.; Hicks, F. Measurements of the size distributions of frazil ice particles in three Alberta rivers. Cold Reg. Sci. Technol. 2017, 142, 100–117. [Google Scholar] [CrossRef]
- Burke, J.E. Scattering by penetrable spheroids. J. Acoust. Soc. 1968, 43, 871–875. [Google Scholar] [CrossRef]
- Anderson, V.C. Sound scattering from a fluid sphere. J. Acoust. Soc. 1950, 22, 426–431. [Google Scholar] [CrossRef]
- McFarlane, V.; Loewen, M.; Hicks, F. Laboratory measurements of the rise velocity of frazil ice particles. Cold Reg. Sci. Technol 2014, 106–107, 120–130. [Google Scholar] [CrossRef]
- Langhorne, P.J.; Hughes, K.G.; Gough, A.J.; Smith, I.J.; Williams, M.J.M.; Robinson, N.J.; Haskell, T.G. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux. Geophys. Res. Lett. 2015, 42, 5442–5451. [Google Scholar] [CrossRef]
- Richard, M.; Morse, B.; Daly, S.F.; Emond, J. Quantifying suspended frazil ice using multi-frequency underwater acoustic devices. River Res. Appl. 2011, 27, 1106–1117. [Google Scholar] [CrossRef]
- Ghobrial, T.R.; Loewen, M.R.; Hicks, F.E. Continuous monitoring of river surface ice during freeze-up using upward looking sonar. Cold Reg. Sci. Technol. 2013, 86, 69–85. [Google Scholar] [CrossRef]
- Drucker, R.S.; Martin, S.; Moritz, R.E. Ice thickness and frazil ice behavior in the St. Lawrence Island Polynya as observed with satellite, Upward Looking Sonar and salinity/temperature moorings. J. Geophys. Res. 2003, 108, 18–1–18–11. [Google Scholar] [CrossRef]
- Ito, M.; Ohshima, K.I.; Fukamachi, Y.; Simizu, D.; Iwamoto, K.; Matsumura, Y.; Eicken, H. Observations of supercooled water and frazil ice formation in an Arctic coastal polynya from moorings and satellite imagery. Ann. Glaciol. 2015, 56, 307–314. [Google Scholar] [CrossRef]
- Ito, M.; Fukamachi, Y.; Ohshima, K.I.; Shirasawa, K. Observational evidence of supercooling and frazil ice formation throughout the water column in a coastal polynya in the Sea of Okhotsk. Cont. Shelf Res. 2020, 196, 104072. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S. Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. Geophys. Res. Lett. 2021, 48, e2020GL091353. [Google Scholar] [CrossRef]
- Roach, L.A.; Smith, M.M.; Herman, A.; Ringeisen, D. Physics of the Seasonal Sea Ice Zone. Annu. Rev. Mar. Sci. 2025, 17, 355–379. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev-marine-121422-015323 (accessed on 11 August 2025).
- Garuba, O.A.; Singh, H.A.; Hunke, E.; Rasch, P.J. Disentangling the coupled atmosphere-ocean-ice interactions driving Arctic sea ice response to CO2 increases. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001902. [Google Scholar] [CrossRef]
- Bailey, D.A.; Holland, M.M.; DuVivier, A.K.; Hunke, E.C.; Turner, A.K. Impact of a new sea ice thermodynamic formulation in the CESM2 sea ice component. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002154. [Google Scholar] [CrossRef]
- Mackie, S.; Langhorne, P.J.; Heorton, H.D.B.S.; Smith, I.J.; Feltham, D.L.; Schroeder, D. Sea ice formation in a coupled climate model including grease ice. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002103. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marko, J.R.; Topham, D.R.; Fissel, D.B. Reanalyzing and Reinterpreting a Unique Set of Antarctic Acoustic Frazil Data Using River Frazil Results and Self-Validating 2-Frequency Analyses. Glacies 2025, 2, 11. https://doi.org/10.3390/glacies2040011
Marko JR, Topham DR, Fissel DB. Reanalyzing and Reinterpreting a Unique Set of Antarctic Acoustic Frazil Data Using River Frazil Results and Self-Validating 2-Frequency Analyses. Glacies. 2025; 2(4):11. https://doi.org/10.3390/glacies2040011
Chicago/Turabian StyleMarko, John R., David R. Topham, and David B. Fissel. 2025. "Reanalyzing and Reinterpreting a Unique Set of Antarctic Acoustic Frazil Data Using River Frazil Results and Self-Validating 2-Frequency Analyses" Glacies 2, no. 4: 11. https://doi.org/10.3390/glacies2040011
APA StyleMarko, J. R., Topham, D. R., & Fissel, D. B. (2025). Reanalyzing and Reinterpreting a Unique Set of Antarctic Acoustic Frazil Data Using River Frazil Results and Self-Validating 2-Frequency Analyses. Glacies, 2(4), 11. https://doi.org/10.3390/glacies2040011

