From the Emergency Department to Follow-Up: Clinical Utility of Biomarkers in Mild Traumatic Brain Injury
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. GFAP
3.1.1. Gene and Protein Overview
3.1.2. Protein Localization, Expression, and Functional Significance
3.1.3. Clinical Relevance and Disease Association
3.1.4. Detection in Blood and Biomarker Potential
3.1.5. GFAP Diagnostic Performance in Mild Traumatic Brain Injury
3.2. UCHL1
3.2.1. Functional and Clinical Overview
3.2.2. Expression and Localization
3.2.3. Biological Function
3.2.4. Genetic and Clinical Insights
3.2.5. Detection in Blood and Biomarker Potential
3.2.6. UCH-L1 Diagnostic Performance in Mild Traumatic Brain Injury
3.3. S100B
3.3.1. Gene and Protein Structure
3.3.2. Localization and Expression
3.3.3. Functional Roles
3.3.4. Clinical Relevance and Detection in Blood
3.3.5. S100B Diagnostic Performance in Mild Traumatic Brain Injury
3.4. Neuron-Specific Enolase
3.4.1. Functional and Clinical Overview
3.4.2. Pathophysiological Correlations and Limitations
3.4.3. NSE Diagnostic Performance in Mild Traumatic Brain Injury
3.5. Tau
3.5.1. Functional and Clinical Overview
3.5.2. Tau Diagnostic Performance in Mild Traumatic Brain Injury
3.6. Neurofilament Light Chain
3.6.1. Functional and Clinical Overview
3.6.2. NFL Diagnostic Performance in Mild Traumatic Brain Injury
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [PubMed]
- Foks, K.A.; Cnossen, M.C.; Dippel, D.W.; Maas, A.I.; Menon, D.; van der Naalt, J.; Steyerberg, E.W.; Lingsma, H.F.; Polinder, S. Management of Mild Traumatic Brain Injury at the Emergency Department and Hospital Admission in Europe: A Survey of 71 Neurotrauma Centers Participating in the CENTER-TBI Study. J. Neurotrauma 2017, 34, 2529–2535. [Google Scholar] [CrossRef]
- Manley, G.T.; Dams-O’cOnnor, K.; Alosco, M.L.; Awwad, H.O.; Bazarian, J.J.; Bragge, P.; Corrigan, J.D.; Doperalski, A.; Ferguson, A.R.; Mac Donald, C.L.; et al. A new characterisation of acute traumatic brain injury: The NIH-NINDS TBI Classification and Nomenclature Initiative. Lancet Neurol. 2025, 24, 512–523. [Google Scholar] [CrossRef]
- Levin, H.S.; Diaz-Arrastia, R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 2015, 14, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Isokuortti, H.; Iverson, G.L.; Silverberg, N.D.; Kataja, A.; Brander, A.; Öhman, J.; Luoto, T.M. Characterizing the type and location of intracranial abnormalities in mild traumatic brain injury. J. Neurosurg. 2018, 129, 1588–1597. [Google Scholar] [CrossRef]
- Bos, D.; Guberina, N.; Zensen, S.; Opitz, M.; Forsting, M.; Wetter, A. Radiation Exposure in Computed Tomography. Dtsch. Aerzteblatt Online 2023, 120, 135. [Google Scholar] [CrossRef]
- Arbabi, M.; Sheldon, R.; Bahadoran, P.; Smith, J.; Poole, N.; Agrawal, N. Treatment outcomes in mild traumatic brain injury: A systematic review of randomized controlled trials. Brain Inj. 2020, 34, 1139–1149. [Google Scholar] [CrossRef]
- Papa, L.; Brophy, G.M.; Welch, R.D.; Lewis, L.M.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.A.; Haeussler, C.A.; Giordano, D.I.M.; et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016, 73, 551–560. [Google Scholar] [CrossRef]
- Papa, L.; McKinley, W.I.; Valadka, A.B.; Newman, Z.C.; Nordgren, R.K.; Pramuka, P.E.; Barbosa, C.E.; Brito, A.M.P.; Loss, L.J.; Tinoco-Garcia, L.; et al. Diagnostic Performance of GFAP, UCH-L1, and MAP-2 Within 30 and 60 Minutes of Traumatic Brain Injury. JAMA Netw. Open 2024, 7, e2431115. [Google Scholar] [CrossRef] [PubMed]
- Papa, L.; Ladde, J.G.; O’bRien, J.F.; Thundiyil, J.G.; Tesar, J.; Leech, S.; Cassidy, D.D.; Roa, J.; Hunter, C.; Miller, S.; et al. Evaluation of Glial and Neuronal Blood Biomarkers Compared with Clinical Decision Rules in Assessing the Need for Computed Tomography in Patients with Mild Traumatic Brain Injury. JAMA Netw. Open 2022, 5, e221302. [Google Scholar] [CrossRef]
- Lewis, L.M.; Papa, L.; Bazarian, J.J.; Weber, A.; Howard, R.; Welch, R.D. Biomarkers May Predict Unfavorable Neurological Outcome after Mild Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2624–2631. [Google Scholar] [CrossRef]
- Mondello, S.; Papa, L.; Buki, A.; Bullock, M.R.; Czeiter, E.; Tortella, F.C.; Wang, K.K.; Hayes, R.L. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: A case control study. Crit. Care 2011, 15, R156. [Google Scholar] [CrossRef] [PubMed]
- Amoo, M.; Henry, J.; O’hAlloran, P.J.; Brennan, P.; Ben Husien, M.; Campbell, M.; Caird, J.; Javadpour, M.; Curley, G.F. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: A systematic review and meta-analysis of diagnostic test accuracy. Neurosurg. Rev. 2022, 45, 1171–1193. [Google Scholar] [CrossRef]
- Mercier, E.; Tardif, P.-A.; Cameron, P.A.; Émond, M.; Moore, L.; Mitra, B.; Ouellet, M.-C.; Frenette, J.; de Guise, E.; Le Sage, N. Prognostic value of neuron-specific enolase (NSE) for prediction of post-concussion symptoms following a mild traumatic brain injury: A systematic review. Brain Inj. 2018, 32, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Chou, Y.-Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; Gill, J.M.; Brody, D.L.; et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology 2020, 95, e610–e622. [Google Scholar] [CrossRef] [PubMed]
- Karantali, E.; Kazis, D.; McKenna, J.; Chatzikonstantinou, S.; Petridis, F.; Mavroudis, I. Neurofilament light chain in patients with a concussion or head impacts: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 1555–1567. [Google Scholar] [CrossRef]
- Shahim, P.; Tegner, Y.; Wilson, D.H.; Randall, J.; Skillbäck, T.; Pazooki, D.; Kallberg, B.; Blennow, K.; Zetterberg, H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014, 71, 684–692. [Google Scholar] [CrossRef]
- Human Protein Atlas proteinatlas.org. Available online: https://www.proteinatlas.org/ (accessed on 1 July 2025).
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef]
- Uhlén, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, 2507. [Google Scholar] [CrossRef]
- Albrechtsen, M.; Massaro, A.; Bock, E. Enzyme-Linked Immunosorbent Assay for the Human Glial Fibrillary Acidic Protein Using a Mouse Monoclonal Antibody. J. Neurochem. 1985, 44, 560–566. [Google Scholar] [CrossRef]
- Bogoslovsky, T.; Wilson, D.; Chen, Y.; Hanlon, D.; Gill, J.; Jeromin, A.; Song, L.; Moore, C.; Gong, Y.; Kenney, K.; et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. J. Neurotrauma 2017, 34, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, B.; José, N.G.d.S.; Jesse, S.; Senel, M.; Oeckl, P.; Erhart, D.K.; Ludolph, A.C.; Otto, M.; Halbgebauer, S.; Tumani, H. Quantification of blood glial fibrillary acidic protein using a second-generation microfluidic assay. Validation and comparative analysis with two established assays. Clin. Chem. Lab. Med. 2024, 62, 1591–1601. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Welch, R.D.; Caudle, K.; Jeffrey, C.A.; Chen, J.Y.; Chandran, R.; McCaw, T.; Datwyler, S.A.; Zhang, H.; McQuiston, B. Accuracy of a rapid glial fibrillary acidic protein/ubiquitin carboxyl-terminal hydrolase L1 test for the prediction of intracranial injuries on head computed tomography after mild traumatic brain injury. Acad. Emerg. Med. 2021, 28, 1308–1317. [Google Scholar] [CrossRef]
- Oris, C.; Khatib-Chahidi, C.; Pereira, B.; Defrance, V.B.; Bouvier, D.; Sapin, V. Comparison of GFAP and UCH-L1 Measurements Using Two Automated Immunoassays (i-STAT® and Alinity®) for the Management of Patients with Mild Traumatic Brain Injury: Preliminary Results from a French Single-Center Approach. Int. J. Mol. Sci. 2024, 25, 4539. [Google Scholar] [CrossRef]
- Papa, L.; Brophy, G.M.; Alvarez, W.; Hirschl, R.; Cress, M.; Weber, K.; Giordano, P. Sex differences in time course and diagnostic accuracy of GFAP and UCH-L1 in trauma patients with mild traumatic brain injury. Sci. Rep. 2023, 13, 11833. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Brolinson, P.G.; Büki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef]
- Ahmadi, S.; Dizaji, S.R.; Babahajian, A.; Alizadeh, M.; Sarveazad, A.; Yousefifard, M. Serum Glial Fibrillary Acidic Protein in Detecting Intracranial Injuries Following Minor Head Trauma; a Systematic Review andMeta-Analysis. Arch. Acad. Emerg. Med. 2023, 11, e9. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Latour, L.; Diaz-Arrastia, R.; Motamedi, V.; Turtzo, C.; Shahim, P.; Mondello, S.; DeVoto, C.; Veras, E.; Hanlon, D.; et al. Glial fibrillary acidic protein elevations relate to neuroimaging abnormalities after mild TBI. Neurology 2018, 91, e1385–e1389. [Google Scholar] [CrossRef] [PubMed]
- Karamian, A.; Farzaneh, H.; Khoshnoodi, M.; Maleki, N.; Rohatgi, S.; Ford, J.N.; Romero, J.M. Accuracy of GFAP and UCH-L1 in predicting brain abnormalities on CT scans after mild traumatic brain injury: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2025, 51, 68. [Google Scholar] [CrossRef]
- Papa, L.; Mittal, M.K.; Ramirez, J.; Ramia, M.; Kirby, S.; Silvestri, S.; Giordano, P.; Weber, K.; Braga, C.F.; Tan, C.N.; et al. In children and youth with mild and moderate traumatic brain injury, glial fibrillary acidic protein out-performs s100β in detecting traumatic intracranial lesions on computed tomography. J. Neurotrauma 2016, 33, 58–64. [Google Scholar] [CrossRef]
- Lewis, L.M.; Schloemann, D.T.; Papa, L.; Fucetola, R.P.; Bazarian, J.; Lindburg, M.; Welch, R.D.; Olson, J.E. Utility of Serum Biomarkers in the Diagnosis and Stratification of Mild Traumatic Brain Injury. Acad. Emerg. Med. 2017, 24, 710–720. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef]
- Bilguvar, K.; Tyagi, N.K.; Ozkara, C.; Tuysuz, B.; Bakircioglu, M.; Choi, M.; Delil, S.; Caglayan, A.O.; Baranoski, J.F.; Erturk, O.; et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 3489–3494. [Google Scholar] [CrossRef]
- Goto, Y.; Zeng, L.; Yeom, C.J.; Zhu, Y.; Morinibu, A.; Shinomiya, K.; Kobayashi, M.; Hirota, K.; Itasaka, S.; Yoshimura, M.; et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat. Commun. 2015, 6, 6153. [Google Scholar] [CrossRef]
- Larsen, C.N.; Price, J.S.; Wilkinson, K.D. Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues. Biochemistry 1996, 35, 6735–6744. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Karlsson, M.J.; Zhong, W.; Tebani, A.; Pou, C.; Mikes, J.; Lakshmikanth, T.; Forsström, B.; Edfors, F.; Odeberg, J.; et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 2019, 366, eaax9198. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.-S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The human secretome. Sci. Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
- Diaz-Arrastia, R.; Wang, K.K.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F.; et al. Acute biomarkers of traumatic brain injury: Relationship between plasma levels of ubiquitin C-terminal hydrolase-l1 and glial fibrillary acidic protein. J. Neurotrauma 2014, 31, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, F.; Arja, R.D.; Munoz, J.C.; Shear, D.A.; Gilsdorf, J.; Zhu, J.; Yadikar, H.; Haskins, W.; Tyndall, J.A.; Wang, K.K. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert Rev. Mol. Diagn. 2024, 24, 67–77. [Google Scholar] [CrossRef]
- Welch, R.D.; Bazarian, J.J.; Chen, J.Y.; Chandran, R.; Datwyler, S.A.; McQuiston, B.; Caudle, K. A high-performance core laboratory GFAP/UCH-L1 test for the prediction of intracranial injury after mild traumatic brain injury. Am. J. Emerg. Med. 2025, 89, 129–134. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Abar, B.; Merchant-Borna, K.; Pham, D.L.; Rozen, E.; Mannix, R.; Kawata, K.; Chou, Y.-Y.; Stephen, S.J.; Gill, J.M. Effects of Physical Exertion on Early Changes in Blood-Based Brain Biomarkers: Implications for the Acute Point of Care Diagnosis of Concussion. J. Neurotrauma 2023, 40, 693–705. [Google Scholar] [CrossRef]
- Papa, L.; Mittal, M.K.; Ramirez, J.; Silvestri, S.; Giordano, P.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.A.; Haeussler, C.A.; et al. Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. J. Neurotrauma 2017, 34, 2132–2140. [Google Scholar] [CrossRef]
- Singh, A.K.; Asif, S.; Pandey, D.K.; Chaudhary, A.; Kapoor, V.; Verma, P.K. Biomarkers in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e63020. [Google Scholar] [CrossRef] [PubMed]
- Ladang, A.; Vavoulis, G.; Trifonidi, I.; Calluy, E.; Karagianni, K.; Mitropoulos, A.; Vlachos, K.; Cavalier, E.; Makris, K. Increased specificity of the “GFAP/UCH-L1” mTBI rule-out test by age dependent cut-offs. Clin. Chem. Lab. Med. (CCLM) 2025, 63, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Spitz, G.; Major, B.P.; O’BRien, W.T.; Giesler, L.P.; Bain, J.W.; Xie, B.; Rosenfeld, J.V.; Law, M.; Ponsford, J.L.; et al. Utility of Acute and Subacute Blood Biomarkers to Assist Diagnosis in CT-Negative Isolated Mild Traumatic Brain Injury. Neurology 2023, 101, e1992–e2004. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.-A.; Leite, M.C.; Nardin, P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 2008, 41, 755–763. [Google Scholar] [CrossRef]
- Michetti, F.; D’AMbrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [Google Scholar] [CrossRef]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.-M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017, 159, 209–225. [Google Scholar] [CrossRef]
- Haselmann, V.; Schamberger, C.; Trifonova, F.; Ast, V.; Froelich, M.F.; Strauß, M.; Kittel, M.; Jaruschewski, S.; Eschmann, D.; Neumaier, M.; et al. Plasma-based S100B testing for management of traumatic brain injury in emergency setting. Pract. Lab. Med. 2021, 26, e00236. [Google Scholar] [CrossRef]
- Karamian, A.; Farzaneh, H.; Khoshnoodi, M.; Maleki, N.; Stufflebeam, S.; Lucke-Wold, B. Diagnostic Accuracy of S100B in Predicting Intracranial Abnormalities on CT Imaging Following Mild Traumatic Brain Injury: A Systematic Review and Meta-analysis. Neurocrit. Care 2025, 42, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Zarei, H.; Roshdi Dizaji, S.; Toloui, A.; Yousefifard, M.; Esmaeili, A. Diagnostic and Prognostic Values of S100B versus Neuron Specific Enolase for Traumatic Brain Injury; a Systematic Review and Meta-analysis. Arch. Acad. Emerg. Med. 2024, 18, e29. [Google Scholar]
- Roumpf, S.K.; Welch, J.L. Can S100B Serum Biomarker Testing Reduce Head Computed Tomography Scanning in Children with Mild Traumatic Brain Injury? Ann. Emerg. Med. 2019, 73, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Santing, J.A.; Hopman, J.H.; Verheul, R.J.; van der Naalt, J.; van den Brand, C.L.; Jellema, K. Clinical value of S100B in detecting intra-cranial injury in elderly patients with mild traumatic brain injury. Injury 2024, 55, 111313. [Google Scholar] [CrossRef]
- Lécuyer, J.B.; Mercier, É.; Tardif, P.-A.; Archambault, P.M.; Chauny, J.-M.; Berthelot, S.; Frenette, J.; Perry, J.; Stiell, I.; Émond, M.; et al. S100B protein level for the detection of clinically significant intracranial haemorrhage in patients with mild traumatic brain injury: A subanalysis of a prospective cohort study. Emerg. Med. J. 2021, 38, 285–289. [Google Scholar] [CrossRef]
- Thaler, H.W.; Schmidsfeld, J.; Pusch, M.; Pienaar, S.; Wunderer, J.; Pittermann, P.; Valenta, R.; Gleiss, A.; Fialka, C.; Mousavi, M. Evaluation of S100B in the diagnosis of suspected intracranial hemorrhage after minor head injury in patients who are receiving platelet aggregation inhibitors and in patients 65 years of age and older. J. Neurosurg. 2015, 123, 1202–1208. [Google Scholar] [CrossRef]
- Faisal, M.; Vedin, T.; Edelhamre, M.; Forberg, J.L. Diagnostic performance of biomarker S100B and guideline adherence in routine care of mild head trauma. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 3. [Google Scholar] [CrossRef]
- Hopman, J.H.; Santing, J.A.L.; Foks, K.A.; Verheul, R.J.; van der Linden, C.M.; van den Brand, C.L.; Jellema, K. Biomarker S100B in plasma a screening tool for mild traumatic brain injury in an emergency department. Brain Inj. 2023, 37, 47–53. [Google Scholar] [CrossRef]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, S.; Gan, S.; Niu, X.; Yin, B.; Bai, G.; Yang, X.; Jia, X.; Bai, L.; Zhang, M. Serum Neuron-Specific Enolase Levels Associated with Connectivity Alterations in Anterior Default Mode Network after Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1495–1505. [Google Scholar] [CrossRef]
- Thelin, E.P.; Jeppsson, E.; Frostell, A.; Svensson, M.; Mondello, S.; Bellander, B.-M.; Nelson, D.W. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit. Care 2016, 20, 285. [Google Scholar] [CrossRef]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 22–35. [Google Scholar] [CrossRef]
- Forouzan, A.; Motamed, H.; Delirrooyfard, A.; Zallaghi, S. Serum cleaved tau protein and clinical outcome in patients with minor head trauma. Open Access Emerg. Med. 2020, 12, 7–12. [Google Scholar] [CrossRef]
- Clarke, G.J.B.; Skandsen, T.; Zetterberg, H.; Einarsen, C.E.; Feyling, C.; Follestad, T.; Vik, A.; Blennow, K.; Håberg, A.K. One-Year Prospective Study of Plasma Biomarkers From CNS in Patients with Mild Traumatic Brain Injury. Front. Neurol. 2021, 12, 643743. [Google Scholar] [CrossRef]
- Posti, J.; Takala, R.S.; Lagerstedt, L.; Dickens, A.; Hossain, I.; Mohammadian, M.; Ala-Seppälä, H.; Frantzén, J.; van Gils, M.; Hutchinson, P.; et al. Correlation of blood biomarkers and biomarker panels with traumatic findings on computed tomography after traumatic brain injury. J. Neurotrauma 2019, 36, 2178–2189. [Google Scholar] [CrossRef]
- Yue, J.K.; Upadhyayula, P.S.; Avalos, L.N.; Deng, H.; Wang, K.K.W. The role of blood biomarkers for magnetic resonance imaging diagnosis of traumatic brain injury. Medicina 2020, 56, 87. [Google Scholar] [CrossRef] [PubMed]
- O’BRien, W.T.; Wright, D.K.; van Emmerik, A.L.; Bain, J.; Brkljaca, R.; Christensen, J.; Yamakawa, G.R.; Chen, Z.; Giesler, L.P.; Sun, M.; et al. Serum neurofilament light as a biomarker of vulnerability to a second mild traumatic brain injury. Transl. Res. 2023, 255, 77–84. [Google Scholar] [CrossRef]
- Chiollaz, A.-C.; Pouillard, V.; Seiler, M.; Habre, C.; Romano, F.; Schenck, C.R.; Spigariol, F.; Korff, C.; Maréchal, F.; Wyss, V.; et al. Evaluating NfL and NTproBNP as predictive biomarkers of intracranial injuries after mild traumatic brain injury in children presenting to emergency departments. Front. Neurol. 2025, 16, 1518776. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Iverson, G.L.; Cogan, A.; Dams-O-Connor, K.; Delmonico, R.; Graf, M.J.P.; Iaccarino, M.A.; Kajankova, M.; Kamins, J.; McCulloch, K.L.; et al. The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 1343–1355. [Google Scholar] [CrossRef]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments at a glance. J. Cell Sci. 2012, 125, 3257–3263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Deng, Y.; Luo, Y.; Zhang, S.; Zou, H.; Cai, F.; Wada, K.; Song, W. Control of BACE1 degradaton and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J. Neurochem. 2012, 120, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Yuh, E.L.; Mukherjee, P.; Lingsma, H.F.; Yue, J.K.; Ferguson, A.R.; Gordon, W.A.; Valadka, A.B.; Schnyer, D.M.; Okonkwo, D.O.; Maas, A.I.R.; et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann. Neurol. 2013, 73, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Korley, F.K.; Kelen, G.D.; Jones, C.M.; Diaz-Arrastia, R. Emergency department evaluation of traumatic brain injury in the United States, 2009–2010. J. Head Trauma Rehabil. 2016, 31, 379–387. [Google Scholar] [CrossRef]
- Papa, L. Exploring the Role of Biomarkers for the Diagnosis and Management of Traumatic Brain Injury Patients. In Proteomics—Human Diseases and Protein Functions; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
Study Type | Cut-Off | Sensitivity | Specificity | NPV | AUC |
---|---|---|---|---|---|
Meta-analysis (2023) [29] | <100 pg/mL | 83% | 38% | — | 0.75 (95% CI: 0.71–0.78) |
Meta-analysis (2025) [31] | 68.5 pg/mL | 75% | 73% | — | — |
GFAP vs. Clinical Rules (2022) [11] | 67 pg/mL | 87% | 65% | 99% | 0.83 (95% CI: 0.73–0.93) |
a GFAP within 30 min (2024) [10] | 30 pg/mL | 98.1% | 34.4% | — | 0.88 (95% CI: 0.85–0.92) |
a GFAP within 60 min (2024) [10] | 30 pg/mL | 98.7% | 36.4% | — | 0.89 (95% CI: 0.86–0.92) |
GFAP in Pediatrics (2016) [32] | 0.15 ng/mL | 100% | 36% | 100% | 0.85 (95% CI: 0.72–0.98) |
Study Type | Cut-Off | Sensitivity | Specificity | NPV | AUC (95% CI) | Purpose |
---|---|---|---|---|---|---|
a Meta-analysis (2025) [31] | 237.7 pg/mL | 89% | 36% | — | — | Intracranial injury |
b UCH-L1 in Pediatrics (2017) [45] | 0.18 ng/mL | 100% | 48% | 100% | 0.83 (0.72–0.94) | Intracranial injury |
UCH-L1 vs. Clinical Rules (2022) [11] | 189 pg/mL | 96% | 29% | 99% | 0.72 | Intracranial injury |
UCH-L1 for mTBI Diagnosis and Stratification (2017) [33] | — | — | — | 31% | 0.65 | mTBI vs. no mTBI |
Meta-analysis (2024) [46] | — | 81% | — | — | 0.81 (0.74–0.87) | TBI severity and evolution |
c UCH-L1 in CT-Negative mTBI (2023) [48] | 4.96 pg/mL | 79% | 75% | — | 0.79 (0.70–0.88) | mTBI vs. no mTBI |
d Age-adjusted Cut-off (2024) [47] | 335 ng/L (≥65 yrs) | 100% | 30.6% | 100% | — | mTBI vs. no mTBI |
d Age-adjusted Cut-off (2024) [47] | 335 ng/L (<65 yrs) | 98.4% | 64.8% | 98.8% | — | mTBI vs. no mTBI |
Study Type | Cut-Off | Sensitivity (%) | Specificity (%) | NPV (%) | AUC (95% CI) | Purpose |
---|---|---|---|---|---|---|
a Sytematic Review (2025) [54] | 0.05 μg/L | 98 (92–99) | 32 (26–39) | 99 | — | Intracranial lesion |
S100B vs. NSE Meta-analysis (2024) [55] | — | 99 (4–100) | 76 (51–91) | — | 0.89 (0.86–0.91) | Intracranial lesion |
Pediatric Meta-analysis (2024) [56] | — | 100 (98–100) | 41 (26–57) | 100 (99–100) | — | Intracranial lesion |
Elderly Patients (2024) [57] | 0.105 μg/L | 97.4 (83.3–100) | 17.3 (9.5–29.3) | — | — | Intracranial lesion |
b Subanalysis Cohort (2021) [58] | — | 66.7 (9.4–99.2) | 93.7 (87.4–97.4) | 99.1 (94.8–99.9) | — | Intracranial lesion |
Platelet Inhibitors/>65 yrs (2015) [59] | 0.105 μg/L | 98 (89.5–99.7) | 35.3 (31.9–38.8) | 99.6 (97.9–99.9) | — | Intracranial hemorrhage |
ED Screening (2022) [61] | 0.105 μg/L | 93.2 | 15.7 | 93 | — | Intracranial lesion |
Routine Care/Guidelines (2022) [60] | 0.10 μg/L | 100 (76.8–100) | 47 (37.7–56.5) | 100 | 0.79 (0.71–0.86) | Intracranial lesion |
Study Type | Purpose | Comments |
---|---|---|
Systematic review (diagnostic) (2022) [13] | Intracranial lesions | Limited data prevented meta-analysis; inconclusive diagnostic value |
Observational MRI-connectivity (2021) [62] | Cognitive recovery following mTBI | NSE linked to DMN connectivity and cognitive deficits |
Observational outcome comparison (2016) [64] | Clinical outcomes, severity of the injury, and whether biomarker concentrations were affected by extracranial influences | Influenced by extracranial trauma and predictive power inferior to S100B |
Study Type | Cut-Off | Sensitivity | Specificity | NPV | AUC (95% CI) | Purpose | Comments |
---|---|---|---|---|---|---|---|
Observational, minor trauma (2020) [66] | — | 92% | 100% | 98% | — | Intracranial hemorrhage | High accuracy in minor head trauma |
Prospective, 1-year follow-up (2021) [67] | 3.00 pg/mL | a 78–79% | a 60–85% | — | a 0.70–0.80 | mTBI vs. no mTBI | Improved with GFAP and NFL panels |
b Correlative biomarker-CT study, c isolated mTBI patients (2019) [68] | — | 94.7% | 69.4% | — | — | mTBI vs. no mTBI | Improved with multimarker approach |
Study Type | Cut-Offs | Sensitivity | Specificity | AUC | NPV | Purpose | Comment |
---|---|---|---|---|---|---|---|
Human, adult mTBI (7-day NFL) (2023) [48] | 7.40 pg/ml | 65% | 91% | 0.81 (95% CI) | — | mTBI vs. no mTBI | High subacute diagnostic value |
Pediatric mTBI (<24 h, TBI-to-sample interval) (2025) [71] | 13.12 pg/ml | 100% | 24.7% | 74.5 (95% CI) | — | Intracranial lesions | Strong for ruling out intracranial injury post mTBI |
Pediatric mTBI (<6 h, TBI-to-sample interval) (2025) [71] | 13.12 pg/ml | 100% | 30.56% | 58.7 (95% CI) | — | Intracranial lesions | Strong for ruling out intracranial injury post-mTBI |
a Human, chronic symptoms (2020) [16] | — | — | — | 0.80 (95% CI) | — | Post-concussive symptoms | Tracks long-term symptom duration |
b Animal, repeated mTBI (2023) [70] | 33.3 pg/ml | 64% | 78% | 0.73 (95% CI) | — | Axonal injury | Predicts vulnerability to repeated trauma |
Biomarker | Cellular Origin | AUC | Key Clinical Utility | Limitations | Optimal Sampling Time |
---|---|---|---|---|---|
GFAP | Astrocytes [9,12,30] | 0.83–0.89 [14,29,31] | High sensitivity for intracranial injury; NPV 99.6% with UCH-L [28,47] 1 | Short half-life; altered in other glial states [9,10] | <12 h post-injury [9,10] |
UCH-L1 | Neurons [37,74] | 0.65–0.83 [33,45] | Enhances lesion exclusion with GFAP (NPV > 99%) [9,28,47] | Lower specificity; extracranial increases [14] | <6 h post-injury [28,47] |
S100B | Astrocytes (primarily) [19,49,50] | 0.89 [55] | Used in European guidelines to avoid unnecessary CT scans in low-risk patients [54,56,58] | Low specificity; false positives in extracranial trauma and elderly [49,54,57] | Within 3 h post-injury [49,54,58] |
NSE | Neurons [55,62] | — | Historical marker; limited acute specificity [64] | Confounded by extracranial injury, hemolysis [14,55] | Acute phase [62,64] |
Tau | Neuronal microtubules [66] | 0.70–0.80 [66,67] | Early detection post-impact in sports [18] | High variability; lack of standardization [66] | Early post-injury [18] |
NFL | Axonal protein [67] | 0.81 [48] | Useful in prognosis, subacute/chronic phases [16,17] | Limited acute utility (<6 h) [17] | Weeks after injury [16,17,67] |
Clinical Scenarios Where biomarker Use Should Be Recommended | Clinical Scenarios Where Biomarker Use Should Be Not Recommended |
---|---|
Patients with unclear clinical presentation and altered mental status that may affect clinical assessment, such as drug intoxication or chronic neurological or cognitive deficits prior to the injury. | Patients with severe TBI requiring immediate neurosurgical intervention or patients with moderate TBI. |
Patients unable to undergo neuroimaging promptly, taking into account the associated benefits and risks (e.g., due to contraindications or resource limitations). | Not plausible mechanism of injury (minor trauma). |
* Evidence of a lacero-contusive wound or contusion or any other skin lesion suggestive of underlying intracranial injury. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spaziani, G.; Rozzi, G.; Baroni, S.; Simeoni, B.; Racco, S.; Barone, F.; Fuorlo, M.; Franceschi, F.; Covino, M. From the Emergency Department to Follow-Up: Clinical Utility of Biomarkers in Mild Traumatic Brain Injury. Emerg. Care Med. 2025, 2, 45. https://doi.org/10.3390/ecm2030045
Spaziani G, Rozzi G, Baroni S, Simeoni B, Racco S, Barone F, Fuorlo M, Franceschi F, Covino M. From the Emergency Department to Follow-Up: Clinical Utility of Biomarkers in Mild Traumatic Brain Injury. Emergency Care and Medicine. 2025; 2(3):45. https://doi.org/10.3390/ecm2030045
Chicago/Turabian StyleSpaziani, Giacomo, Gloria Rozzi, Silvia Baroni, Benedetta Simeoni, Simona Racco, Fabiana Barone, Mariella Fuorlo, Francesco Franceschi, and Marcello Covino. 2025. "From the Emergency Department to Follow-Up: Clinical Utility of Biomarkers in Mild Traumatic Brain Injury" Emergency Care and Medicine 2, no. 3: 45. https://doi.org/10.3390/ecm2030045
APA StyleSpaziani, G., Rozzi, G., Baroni, S., Simeoni, B., Racco, S., Barone, F., Fuorlo, M., Franceschi, F., & Covino, M. (2025). From the Emergency Department to Follow-Up: Clinical Utility of Biomarkers in Mild Traumatic Brain Injury. Emergency Care and Medicine, 2(3), 45. https://doi.org/10.3390/ecm2030045