On the Move: A Review of Mobile and Military Surgery
Abstract
1. Introduction
2. Brief History of Mobile and Ambulatory Surgery
3. Applications of Mobile Surgery in Military Medicine
3.1. Operational Goals of Military Mobile Surgery
3.2. Forward Surgical Teams (FSTs) and Their Role in Combat Casualty Care
3.3. Integration with Evacuation and Continuity of Care
3.4. Development of Single-Surgeon Teams (SSTs)
4. Ambulatory Surgery in Mass Casualty Incidents and Disaster Medicine
4.1. REBOA: In-Depth Analysis and Assessments of Long-Term Effectiveness
4.2. Other Factors Affecting Ambulatory Care in MCIs
5. Innovation for Surgery and Anesthesia in Low-Resource Areas
6. Role of Artificial Intelligence (AI) in Mobile Military and Single-Surgeon Units
7. Critical Evaluation and Associated Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whitlock, J. The Historical Timeline of Surgery. 2024. Available online: https://www.verywellhealth.com/the-history-of-surgery-timeline-3157332 (accessed on 15 April 2025).
- Maloney, T.R.; Dilkes-Hall, I.E.; Vlok, M.; Oktaviana, A.A.; Setiawan, P.; Priyatno, A.A.D.; Ririmasse, M.; Geria, I.M.; Effendy, M.A.R.; Istiawan, B.; et al. Surgical Amputation of a Limb 31,000 Years Ago in Borneo. Nature 2022, 609, 547–551. [Google Scholar] [CrossRef]
- McKellar, S. A History of Surgery: From Superstition to Science. Can. Med. Assoc. J. 2010, 182, 809. [Google Scholar] [CrossRef]
- White, A.J.; Herbeck, J.; Scurlock, J.; Mayberry, J. Ancient Surgeons: A Characterization of Mesopotamian Surgical Practices. Am. J. Surg. 2022, 224, 790–793. [Google Scholar] [CrossRef]
- History of Anesthesia. Available online: https://www.woodlibrarymuseum.org/history-of-anesthesia/ (accessed on 15 April 2025).
- Royal College of Anaesthetists—The History of Anaesthesia. Available online: https://www.rcoa.ac.uk/about-us/heritage/history-anaesthesia (accessed on 15 April 2025).
- McDermott, K.W.; Liang, L. Overview of Major Ambulatory Surgeries Performed in Hospital-Owned Facilities, 2019. In Healthcare Cost and Utilization Project (Hcup) Statistical Briefs; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2006. [Google Scholar]
- Healthcare Cost and Utilization Project (Hcup) Statistical Briefs; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK52651/ (accessed on 16 May 2025).
- Hall, M.J.; Schwartzman, A.; Zhang, J.; Liu, X. Ambulatory Surgery Data from Hospitals and Ambulatory Surgery Centers: United States, 2010. Natl. Health Stat. Rep. 2017, 1–15. [Google Scholar]
- Ozgediz, D.; Jamison, D.; Cherian, M.; McQueen, K. The Burden of Surgical Conditions and Access to Surgical Care in Low- and Middle-Income Countries. Bull. World Health Organ. 2008, 86, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Urman, R.D.; Desai, S.P. History of Anesthesia for Ambulatory Surgery. Curr. Opin. Anaesthesiol. 2012, 25, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.K. Ambulatory Anesthesiaand Surgery in America: A Historical Background and Recent Innovations. J. Perianesth. Nurs. 1999, 14, 270–274. [Google Scholar] [CrossRef]
- Rose, J.; Chang, D.C.; Weiser, T.G.; Kassebaum, N.J.; Bickler, S.W. The Role of Surgery in Global Health: Analysis of United States Inpatient Procedure Frequency by Condition Using the Global Burden of Disease 2010 Framework. PLoS ONE 2014, 9, e89693. [Google Scholar] [CrossRef]
- Pregler, J.L.; Kapur, P.A. The Development of Ambulatory Anesthesia and Future Challenges. Anesthesiol. Clin. N. Am. 2003, 21, 207–228. [Google Scholar] [CrossRef]
- Pan, S.; Rong, L.Q. Mobile Applications in Clinical and Perioperative Care for Anesthesia: Narrative Review. J. Med. Internet Res. 2021, 23, e25115. [Google Scholar] [CrossRef]
- Guareschi, A.S.; Hoch, C.P.; Deacon, J.M.; Eichinger, J.K.; Friedman, R.J.; Gross, C.E.; Scott, D.J. Lower Total Shoulder Arthroplasty Cost of Care at an Ambulatory Surgical Center Versus a Main Hospital. J. Am. Acad. Orthop. Surg. 2025, 33, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Lambat Emery, S.; Jeannot, E.; Dällenbach, P.; Petignat, P.; Dubuisson, J. Minimally Invasive Outpatient Hysterectomy for a Benign Indication: A Systematic Review. J. Gynecol. Obstet. Hum. Reprod. 2024, 53, 102804. [Google Scholar] [CrossRef]
- Olson, J.K.; Deming, L.A.; King, D.R.; Rager, T.M.; Gartner, S.; Huibregtse, N.; Moss, R.L.; Besner, G.E. Single Visit Surgery for Pediatric Ambulatory Surgical Procedures: A Satisfaction and Cost Analysis. J. Pediatr. Surg. 2018, 53, 81–85. [Google Scholar] [CrossRef]
- Henning, G.M.; Deol, E.S.; Vasdev, R.M.; Basourakos, S.P.; Yang, D.Y.; Tollefson, M.K.; Frank, I.; Shah, P.; Khanna, A.; Karnes, R.J.; et al. Trends in Outpatient Radical Prostatectomy and Same-Day Discharge for Prostate Cancer: Analysis of the National Inpatient Sample and Nationwide Ambulatory Surgery Sample. Urol. Pract. 2025, 12, 305–315. [Google Scholar] [CrossRef]
- Walia, A.S.; Xiao, R.; Hao, D.T.; Rathi, V.K.; Sethi, R.K.V.; Gray, S.T. Differences in Negotiated Facility Fees for Otolaryngology Procedures at Ambulatory Surgery Centers and Hospitals. OTO Open 2025, 9, e70086. [Google Scholar] [CrossRef]
- Meara, J.G.; Greenberg, S.L. The Lancet Commission on Global Surgery Global Surgery 2030: Evidence and Solutions for Achieving Health, Welfare and Economic Development. Surgery 2015, 157, 834–835. [Google Scholar] [CrossRef]
- O’Neill, K.M.; Greenberg, S.L.M.; Cherian, M.; Gillies, R.D.; Daniels, K.M.; Roy, N.; Raykar, N.P.; Riesel, J.N.; Spiegel, D.; Watters, D.A.; et al. Bellwether Procedures for Monitoring and Planning Essential Surgical Care in Low- and Middle-Income Countries: Caesarean Delivery, Laparotomy, and Treatment of Open Fractures. World J. Surg. 2016, 40, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Borgstrom, D.C.; Deveney, K.; Hughes, D.; Rossi, I.R.; Rossi, M.B.; Lehman, R.; LeMaster, S.; Puls, M. Rural Surgery. Curr. Probl. Surg. 2022, 59, 101173. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Shu, J.; Zhang, M.; Zhu, Z. Elective Surgery Planning in Mobile Operating Theaters under Uncertain Demand of Emergency Patients. Nav. Res. Logist. 2025, 72, 481–501. [Google Scholar] [CrossRef]
- Farmer, D.L.; Bickler, S.W. Preface. In Seminars in Pediatric Surgery; Elsevier: Amsterdam, The Netherlands, 2016; Volume 25, pp. 1–2. [Google Scholar] [CrossRef]
- Fitzgerald, T.N.; Rice, H.E. Investing in All of Our Children: Global Pediatric Surgery for the Twenty-First Century. World J. Surg. 2019, 43, 1401–1403. [Google Scholar] [CrossRef]
- Jamison, D.T.; Gelband, H.; Horton, S.; Jha, P.; Laxminarayan, R.; Mock, C.N.; Nugent, R. Disease Control Priorities: Improving Health and Reducing Poverty; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Nordin, A.B.; Shah, S.R.; Kenney, B.D. Ambulatory Pediatric Surgery. Semin. Pediatr. Surg. 2018, 27, 75–78. [Google Scholar] [CrossRef]
- Smith, E.R.; Concepcion, T.L.; Niemeier, K.J.; Ademuyiwa, A.O. Is Global Pediatric Surgery a Good Investment? World J. Surg. 2019, 43, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Poenaru, D.; Seyi-Olajide, J.O. Developing Metrics to Define Progress in Children’s Surgery. World J. Surg. 2019, 43, 1456–1465. [Google Scholar] [CrossRef]
- Metzger, G.; Jatana, K.; Apfeld, J.; Deans, K.J.; Minneci, P.C.; Halaweish, I. State of Telemedicine Use in Pediatric Surgery in the USA-Where We Stand and What We Can Gain from the Covid-19 Pandemic: A Scoping Review. World J. Pediatr. Surg. 2021, 4, e000257. [Google Scholar] [CrossRef]
- Nguyen, N.; Leveille, E.; Guadagno, E.; Kalisya, L.M.; Poenaru, D. Use of Mobile Health Technologies for Postoperative Care in Paediatric Surgery: A Systematic Review. J. Telemed. Telecare 2022, 28, 331–341. [Google Scholar] [CrossRef]
- Ameh, E.A.; Butler, M.W. Infrastructure Expansion for Children’s Surgery: Models That Are Working. World J. Surg. 2019, 43, 1426–1434. [Google Scholar] [CrossRef]
- Kisa, P.; Grabski, D.F.; Ozgediz, D.; Ajiko, M.; Aspide, R.; Baird, R.; Barker, G.; Birabwa-Male, D.; Blair, G.; Cameron, B.; et al. Unifying Children’s Surgery and Anesthesia Stakeholders across Institutions and Clinical Disciplines: Challenges and Solutions from Uganda. World J. Surg. 2019, 43, 1435–1449. [Google Scholar] [CrossRef]
- Garber, K.; Cabrera, C.C.R.; Dinh, Q.-L.; Gerstle, J.T.; Holterman, A.; Millano, L.; Muma, N.J.K.; Nguyen, L.T.; Tran, H.; Tran, S.N.; et al. The Heterogeneity of Global Pediatric Surgery: Defining Needs and Opportunities around the World. World J. Surg. 2019, 43, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Webber, A.M.; Brennan, M.P.; Bradley, J. Pediatric Ambulatory Surgery: What’s New, What’s Controversial. Curr. Anesthesiol. Rep. 2024, 14, 255–262. [Google Scholar] [CrossRef]
- Shalabi, H.T.; Price, M.D.; Shalabi, S.T.; Rodas, E.B.; Vicuña, A.L.; Guzhñay, B.; Price, R.R.; Rodas, E. Mobile Gastrointestinal and Endoscopic Surgery in Rural Ecuador: 20 years’ Experience of Cinterandes. Surg. Endosc. 2017, 31, 4964–4972. [Google Scholar] [CrossRef]
- Inside the “Must”: The Mobile Unit Surgical Trailer. Available online: https://msf.org.uk/article/inside-must-mobile-unit-surgical-trailer (accessed on 14 May 2025).
- See Our Mobile Surgical Trailer | Doctors without Borders—USA. Available online: https://www.doctorswithoutborders.org/latest/see-our-mobile-surgical-trailer (accessed on 14 May 2025).
- Mobile Surgical. Day Surgery for Rural Nz. Mobile Health. Available online: https://mobilehealth.co.nz/ (accessed on 14 May 2025).
- Kotwal, R.S.; Howard, J.T.; Orman, J.A.; Tarpey, B.W.; Bailey, J.A.; Champion, H.R.; Mabry, R.L.; Holcomb, J.B.; Gross, K.R. The Effect of a Golden Hour Policy on the Morbidity and Mortality of Combat Casualties. JAMA Surg. 2016, 151, 15–24. [Google Scholar] [CrossRef]
- Field Manual 4-02.25: Employment of Forward Surgical Teams—Tactics, Techniques and Procedures. Headquarters, Department of Army (USA), 2003, 1–80. Available online: https://www.globalsecurity.org/military/library/policy/army/fm/4-02-25/fm4-02-25.pdf (accessed on 5 May 2025).
- Wray, J.P.; Bridwell, R.E.; Schauer, S.G.; Shackelford, S.A.; Bebarta, V.S.; Wright, F.L.; Bynum, J.; Long, B. The Diamond of Death: Hypocalcemia in Trauma and Resuscitation. Am. J. Emerg. Med. 2021, 41, 104–109. [Google Scholar] [CrossRef]
- Beekley, A.C. Damage Control Resuscitation: A Sensible Approach to the Exsanguinating Surgical Patient. Crit. Care Med. 2008, 36, S267–S274. [Google Scholar] [CrossRef] [PubMed]
- Goudard, Y.; Butin, C.; Carfantan, C.; Pauleau, G.; Soucanye de Landevoisin, E.; Goin, G.; Clement, D.; Bordes, J.; Balandraud, P. The 7th French Airborne Forward Surgical Team Experience of Surgical Support to the Population of a Low-Income Country: A Prospective Study on 341 Patients with Short-Term Follow-Up. J. R. Army Med. Corps 2018, 164, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Garry, C.B.; Middlebrooks, R.; Moore, J.D.; Souza, J.M.; Sayles, T.E.; Ricca, R.L. Experience in Providing Ambulatory Surgery from an Expeditionary Fast Transport Mobile and Rapidly Deployable Expeditionary Medical Unit During Continuing Promise 2018. Mil. Med. 2023, 188, e1835–e1841. [Google Scholar] [CrossRef]
- Fluke, L.M.; Restrepo, R.D.; Pryor, H.I.; Duncan, J.E.; Mann, K.E. The Surgical Experience Aboard Usns Comfort (T-Ah-20) During Operation Continuing Promise 2015. Am. Surg. 2018, 84, 1307–1311. [Google Scholar] [CrossRef]
- Schoenfeld, A.J. The Combat Experience of Military Surgical Assets in Iraq and Afghanistan: A Historical Review. Am. J. Surg. 2012, 204, 377–383. [Google Scholar] [CrossRef]
- Bricker, E.M. Colonel Robert M. Zollinger in World War Ii. Am. J. Surg. 1986, 151, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.L.; Ju, J.T.; Liu, W.B.; Zhang, J. Military Trauma and Surgical Procedures in Conflict Area: A Review for the Utilization of Forward Surgical Team. Mil. Med. 2018, 183, e97–e106. [Google Scholar] [CrossRef]
- Atp 4-02.25: The Medical Detachment, Forward Resuscitative and Surgical. Published Online 7 December 2020. Available online: https://armypubs.army.mil/ (accessed on 16 May 2025).
- Benham, L.; Brocuglio, T.; Maxwell, D.; Becerra, D. Concurrent Surgical Care in an Austere Military Setting: A Preparation for Mass Casualty Events. Mil. Med. 2025, usaf012. [Google Scholar] [CrossRef]
- Staudt, A.M.; Suresh, M.R.; Gurney, J.M.; Trevino, J.D.; Valdez-Delgado, K.K.; VanFosson, C.A.; Butler, F.K.; Mann-Salinas, E.A.; Kotwal, R.S. Forward Surgical Team Procedural Burden and Non-Operative Interventions by the U.S. Military Trauma System in Afghanistan, 2008–2014. Mil. Med. 2020, 185, e759–e767. [Google Scholar] [CrossRef]
- Suresh, M.R.; Valdez-Delgado, K.K.; VanFosson, C.A.; Trevino, J.D.; Mann-Salinas, E.A.; Shackelford, S.A.; Staudt, A.M. Anatomic Injury Patterns in Combat Casualties Treated by Forward Surgical Teams. J. Trauma Acute Care Surg. 2020, 89, S231–S236. [Google Scholar] [CrossRef]
- Eastridge, B.J.; Stansbury, L.G.; Stinger, H.; Blackbourne, L.; Holcomb, J.B. Forward Surgical Teams Provide Comparable Outcomes to Combat Support Hospitals During Support and Stabilization Operations on the Battlefield. J. Trauma 2009, 66, S48–S50. [Google Scholar] [CrossRef]
- Howard, J.T.; Kotwal, R.S.; Santos-Lazada, A.R.; Martin, M.J.; Stockinger, Z.T. Reexamination of a Battlefield Trauma Golden Hour Policy. J. Trauma Acute Care Surg. 2018, 84, 11–18. [Google Scholar] [CrossRef]
- Lesperance, R.N.; Adamson, S.; Gurney, J.M. Lessons Learned During Prolonged Care of Combat Casualties by a Minimally Manned Surgical Team. Mil. Med. 2021, 188, e1389–e1394. [Google Scholar] [CrossRef] [PubMed]
- Reno, J. Military Aeromedical Evacuation, with Special Emphasis on Craniospinal Trauma. Neurosurg. Focus 2010, 28, E12. [Google Scholar] [CrossRef]
- Zingg, S.W.; Elterman, J.; Proctor, M.; Salvator, A.; Cheney, M.; Hare, J.; Davis, W.T.; Rosenberry, N.; Brown, D.J.; Earnest, R.; et al. Descriptive Analysis of Intratheater Critical Care Air Transport Team Patient Movements During Troop Drawdown: Afghanistan (2017–2019). Mil. Med. 2023, 188, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Kazmirchuk, A.; Yarmoliuk, Y.; Lurin, I.; Gybalo, R.; Burianov, O.; Derkach, S.; Karpenko, K. Ukraine’s Experience with Management of Combat Casualties Using Nato’s Four-Tier “Changing as Needed” Healthcare System. World J. Surg. 2022, 46, 2858–2862. [Google Scholar] [CrossRef] [PubMed]
- Nessen, S.C.; Cronk, D.R.; Edens, J.; Eastridge, B.J.; Little, T.R.; Windsor, J.; Blackbourne, L.H.; Holcomb, J.B. Us Army Two-Surgeon Teams Operating in Remote Afghanistan—An Evaluation of Split-Based Forward Surgical Team Operations. J. Trauma 2009, 66, S37–S47. [Google Scholar] [CrossRef] [PubMed]
- Usamrdc: Army Upgrades Frontline Surgical Teams. Available online: https://mrdc.health.mil/index.cfm/media/articles/2018/army_upgrades_frontline_surgical_team (accessed on 3 May 2025).
- Bozzay, J.D.; Murphy, T.P.; Baird, M.D.; Dingle, M.E.; Rokayak, O.A.; Renninger, C.; Boomsma, S.E.; Milam, B.P.; Horrell, T.J.; Rittenhouse, B.A.; et al. The Last Days: The Medical Response of United States and Allied Military Teams During the Afghanistan Exodus. J. Trauma Acute Care Surg. 2023, 95, S13–S18. [Google Scholar] [CrossRef]
- Baker, J.B.; Northern, D.M.; Frament, C.; Baker, D.A.; Remick, K.; Seery, J.; Stephens, L.; Shackelford, S.; Gurney, J. Austere Resuscitative and Surgical Care in Support of Forward Military Operations-Joint Trauma System Position Paper. Mil. Med. 2021, 186, 12–17. [Google Scholar] [CrossRef]
- D’Angelo, M.; Losch, J.; Smith, B.; Geslak, M.; Compton, S.; Wofford, K.; Seery, J.M.; Morrison, M.D., Jr.; Wedmore, I.; Paimore, J.; et al. Expeditionary Resuscitation Surgical Team: The Us Army’s Initiative to Provide Damage Control Resuscitation and Surgery to Forces in Austere Settings. J. Spec. Oper. Med. 2017, 17, 76–79. [Google Scholar] [CrossRef]
- Battlefield Surgery. Air Force Special Tactics. Available online: https://www.airforcespecialtactics.af.mil/About/Mission/Battlefield-Surgery/ (accessed on 14 May 2025).
- Lt. Col. Brian, C.; Beldowicz, Md, U.S. Army, Maj. Michael Bellamy, Do, U.S. Army, Maj. Robert Modlin, U.S. Army. Death Ignores the Golden Hour the Argument for Mobile, Farther-Forward Surgery. Mil Rev. Available online: https://www.armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/March-April-2020/Beldowicz-Golden-Hour/ (accessed on 1 May 2025).
- Hornez, E.; Cotte, J.; Thomas, G.; Prat, N.; Vauchaussade de Chaumont, A.; Daban, J.L.; Boddaert, G.; Pasquier, P.; Castel, F.; Mahe, P.; et al. Ultra-Forward Surgical Support for Special Operations Forces. Conception, Development and Certification of the French Special Operations Surgical Team (Sost) Airborne Capability. Injury 2024, 55, 111002. [Google Scholar] [CrossRef] [PubMed]
- Nato Special Operations Surgical Team Development Course. Available online: https://www.nshq.nato.int/Training/EventDetails/8bfee223-95e7-1b4a-6f4c-46eaaa9dc65a (accessed on 1 May 2025).
- Cloak and Scalpel: Special Operations Surgical Teams. Grey Dynamics. Available online: https://greydynamics.com/cloak-and-scalpel-special-operations-surgical-teams/ (accessed on 14 May 2025).
- Gurney, J.M.; Jensen, S.D.; Gavitt, B.J.; Edson, T.D.; Brown, S.R.; Cunningham, C.W.; Drew, B.G.; Eckert, M.J.; Hall, A.B.; Holcomb, J.B.; et al. Committee on Surgical Combat Casualty Care Position Statement on the Use of Single Surgeon Teams and Invited Commentaries. J. Trauma Acute Care Surg. 2022, 93, S6–S11. [Google Scholar] [CrossRef]
- DuBose, J.J.; Martens, D.; Frament, C.; Haque, I.; Telian, S.; Benson, P.J. Experience with Prehospital Damage Control Capability in Modern Conflict: Results from Surgical Resuscitation Team Use. J. Spec. Oper. Med. 2017, 17, 68–71. [Google Scholar] [CrossRef]
- Rokayak, O.; Manley, N.; Northern, D.M.; Lammers, D.; Lundy, J.B.; Remick, K.N.; Shackelford, S.A.; Gurney, J.M. Austere Surgical Support of Land-Based Combat Operations: The Air Force Special Operations Surgical Team Experience in the Middle East. Am. Coll. Surg. Clin. Congr. 2023, 237, S319. [Google Scholar]
- From Uab to Afghanistan: How an Air Force Special Operations Surgical Team Saved Lives During the Last Days of the War in Afghanistan. Available online: https://aircommando.org/from-uab-to-afghanistan-how-an-air-force-special-operations-surgical-team-saved-lives-during-the-last-days-of-the-war-in-afghanistan/ (accessed on 14 May 2025).
- Gun Violence Archives. Available online: https://www.gunviolencearchive.org/ (accessed on 15 April 2025).
- Natural Disasters and Extreme Weather Topics. 2023. Available online: https://archive.cdc.gov/www_cdc_gov/niosh/topics/emres/natural.html (accessed on 10 April 2025).
- Suda, A.J.; Franke, A.; Hertwig, M.; Gooßen, K. Management of Mass Casualty Incidents: A Systematic Review and Clinical Practice Guideline Update. Eur. J. Trauma Emerg. Surg. 2025, 51, 5. [Google Scholar] [CrossRef]
- Way, D.P.; Panchal, A.R.; Price, A.; Berezina-Blackburn, V.; Patterson, J.; McGrath, J.; Danforth, D.; Kman, N.E. Learner Evaluation of an Immersive Virtual Reality Mass Casualty Incident Simulator for Triage Training. BMC Digit. Health 2024, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Baetzner, A.S.; Hill, Y.; Roszipal, B.; Gerwann, S.; Beutel, M.; Birrenbach, T.; Karlseder, M.; Mohr, S.; Salg, G.A.; Schrom-Feiertag, H.; et al. Mass Casualty Incident Training in Immersive Virtual Reality: Quasi-Experimental Evaluation of Multimethod Performance Indicators. J. Med. Internet Res. 2025, 27, e63241. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Brenner, M. Resuscitative Endovascular Balloon Occlusion of the Aorta: What You Need to Know. J. Trauma Acute Care Surg. 2025, 98, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.O.; Hudson, J.; Cochran, C.; MacLennan, G.; Lendrum, R.; Sadek, S.; Gillies, K.; Cotton, S.; Kennedy, C.; Boyers, D.; et al. Emergency Department Resuscitative Endovascular Balloon Occlusion of the Aorta in Trauma Patients with Exsanguinating Hemorrhage: The Uk-Reboa Randomized Clinical Trial. JAMA 2023, 330, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Stokes, S.C.; Theodorou, C.M.; Zakaluzny, S.A.; DuBose, J.J.; Russo, R.M. Resuscitative Endovascular Balloon Occlusion of the Aorta in Combat Casualties: The Past, Present, and Future. J. Trauma Acute Care Surg. 2021, 91, S56–S64. [Google Scholar] [CrossRef]
- Northern, D.M.; Manley, J.D.; Lyon, R.; Farber, D.; Mitchell, B.J.; Filak, K.J.; Lundy, J.; DuBose, J.J.; Rasmussen, T.E.; Holcomb, J.B. Recent Advances in Austere Combat Surgery: Use of Aortic Balloon Occlusion as Well as Blood Challenges by Special Operations Medical Forces in Recent Combat Operations. J. Trauma Acute Care Surg. 2018, 85, S98–S103. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.M.; Neff, L.P.; Johnson, M.A.; Williams, T.K. Emerging Endovascular Therapies for Non-Compressible Torso Hemorrhage. Shock 2016, 46, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Manley, J.D.; Mitchell, B.J.; DuBose, J.J.; Rasmussen, T.E. A Modern Case Series of Resuscitative Endovascular Balloon Occlusion of the Aorta (Reboa) in an out-of-Hospital, Combat Casualty Care Setting. J. Spec. Oper. Med. 2017, 17, 1–8. [Google Scholar] [CrossRef]
- de Schoutheete, J.C.; Fourneau, I.; Waroquier, F.; De Cupere, L.; O’Connor, M.; Van Cleynenbreugel, K.; Ceccaldi, J.C.; Nijs, S. Three Cases of Resuscitative Endovascular Balloon Occlusion of the Aorta (Reboa) in Austere Pre-Hospital Environment-Technical and Methodological Aspects. World J. Emerg. Surg. 2018, 13, 54. [Google Scholar] [CrossRef]
- Reva, V.A.; Horer, T.M.; Makhnovskiy, A.I.; Sokhranov, M.V.; Samokhvalov, I.M.; DuBose, J.J. Field and En Route Resuscitative Endovascular Occlusion of the Aorta: A Feasible Military Reality? J. Trauma Acute Care Surg. 2017, 83, S170–S176. [Google Scholar] [CrossRef]
- Abid, M.; Neff, L.P.; Russo, R.M.; Hoareau, G.; Williams, T.K.; Grayson, J.K.; DuBose, J.J.; Lendrum, R.; Johnson, M.A. Reperfusion Repercussions: A Review of the Metabolic Derangements Following Resuscitative Endovascular Balloon Occlusion of the Aorta. J. Trauma Acute Care Surg. 2020, 89, S39–S44. [Google Scholar] [CrossRef]
- Williams, T.K.; Johnson, A.; Neff, L.; Hörer, T.M.; Moore, L.; Brenner, M.; DuBose, J.; Rasmussen, T. “What’s in a Name?” a Consensus Proposal for a Common Nomenclature in the Endovascular Resuscitative Management and Reboa Literature. J. Endovasc. Resusc. Trauma Manag. 2017, 1, 9–12. [Google Scholar] [CrossRef]
- Schmid, K.M.; Lauria, M.J.; Braude, D.A.; Crandall, C.S.; Marinaro, J.L. Accuracy and Reliability of a Disposable Vascular Pressure Device for Arterial Pressure Monitoring in Critical Care Transport. Air Med. J. 2020, 39, 389–392. [Google Scholar] [CrossRef]
- Lussier, G.; Evans, A.J.; Houston, I.; Wilsnack, A.; Russo, C.M.; Vietor, R.; Bedocs, P. Compact Arterial Monitoring Device Use in Resuscitative Endovascular Balloon Occlusion of the Aorta (Reboa): A Simple Validation Study in Swine. Cureus 2024, 16, e70789. [Google Scholar] [CrossRef]
- Holtestaul, T.; Jones, I.; Conner, J.; Lammers, D.; Weiss, J.; Bingham, J.; Martin, M.J.; Eckert, M. Resuscitative Endovascular Balloon Occlusion of the Aorta Management Guided by a Novel Handheld Pressure Transducer. J. Trauma Acute Care Surg. 2022, 92, 729–734. [Google Scholar] [CrossRef]
- Benham, D.A.; Carr, M.J.; Wessels, L.; Lee, J.J.; Calvo, R.Y.; Schrader, A.; Holtestaul, T.; Lammers, D.; Jones, I.; Connor, J.; et al. Validation of a Miniaturized Handheld Arterial Pressure Monitor for Guiding Full and Partial Reboa Use During Resuscitation. Eur. J. Trauma Emerg. Surg. 2023, 49, 795–801. [Google Scholar] [CrossRef]
- Rall, J.M.; Baker, K.J.; Sandoval, M.L.; Flinn, A.N.; Causey, M.W. Transition of Resuscitative Endovascular Balloon Occlusion of the Aorta from Zone 3 to Zone 1 to Treat Hemodynamic Collapse During Continued Hemorrhage. Mil. Med. 2024, 189, e285–e290. [Google Scholar] [CrossRef]
- Lendrum, R.A.; Perkins, Z.; Marsden, M.; Cochran, C.; Davenport, R.; Chege, F.; Fitzpatrick-Swallow, V.; Greenhalgh, R.; Wohlgemut, J.M.; Henry, C.L.; et al. Prehospital Partial Resuscitative Endovascular Balloon Occlusion of the Aorta for Exsanguinating Subdiaphragmatic Hemorrhage. JAMA Surg. 2024, 159, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Daley, J.; Buckley, R.; Kisken, K.C.; Barber, D.; Ayyagari, R.; Wira, C.; Aydin, A.; Latich, I.; Lozada, J.C.P.; Joseph, D.; et al. Emergency Department Initiated Resuscitative Endovascular Balloon Occlusion of the Aorta (Reboa) for out-of-Hospital Cardiac Arrest Is Feasible and Associated with Improvements in End-Tidal Carbon Dioxide. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12791. [Google Scholar] [CrossRef]
- Levis, A.; Egli, N.; Jenni, H.; Hautz, W.E.; Daley, J.I.; Haenggi, M. Use of a Disposable Vascular Pressure Device to Guide Balloon Inflation of Resuscitative Endovascular Balloon Occlusion of the Aorta: A Bench Study. Sci. Rep. 2021, 11, 24055. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.F.; Northern, D.M. Reboa by a Non-Surgeon as an Adjunct During Mascal. Am. J. Emerg. Med. 2018, 36, 1121.e5–1121.e6. [Google Scholar] [CrossRef]
- Leasiolagi, J.; Holton, T.; Doyle, K.; Parkinson, L.; Kao, R.; McAlister, V.C. Proposed Specifications of a Mobile Operating Room for Far-Forward Surgery. Can. J. Surg. 2018, 61, S180–S183. [Google Scholar] [CrossRef]
- Kampen, K.E.; Krohmer, J.R.; Jones, J.S.; Dougherty, J.M.; Bonness, R.K. In-Field Extremity Amputation: Prevalence and Protocols in Emergency Medical Services. Prehosp. Disaster Med. 1996, 11, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.M.; Uribe-Leitz, T.; Makasa, E.; Lishimpi, K.; Mwaba, P.; Bowman, K.; Weiser, T.G. Mapping Disparities in Access to Safe, Timely, and Essential Surgical Care in Zambia. JAMA Surg. 2016, 151, 1064–1069. [Google Scholar] [CrossRef]
- Brown, J.B.; Kheng, M.; Carney, N.A.; Rubiano, A.M.; Puyana, J.C. Geographical Disparity and Traumatic Brain Injury in America: Rural Areas Suffer Poorer Outcomes. J. Neurosci. Rural. Pract. 2019, 10, 10–15. [Google Scholar] [CrossRef]
- Tjokroprawiro, B.A.; Sulistya, H.A.; Muharram, F.R.; Ulhaq, R.A.; Izza, A.; Prasetyo, B.; Novitasari, K.; Wiweko, B.; Habibie, P.H.; Lukmana, A.A.I.; et al. Geospatial Access to Emergency Obstetric Surgery in Indonesia: Is Travel Time for Access Too Long? Ann. Glob. Health 2024, 90, 82. [Google Scholar] [CrossRef]
- Mesic, A.; Damsere-Derry, J.; Feldacker, C.; Larley, J.; Opoku, I.; Wuaku, D.H.; Afram, M.O.; Ekuban, E.; Mooney, S.J.; Gyedu, A.; et al. Geospatial Analysis of Injury Severity on Major Roads in Ghana (2017–2020): Implications for Targeted Injury Prevention and Control Initiatives. Inj. Prev. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Ranganathan, K.; Mouch, C.A.; Chung, M.; Mathews, I.B.; Cederna, P.S.; Raja Sabapathy, S.; Raghavendran, K.; Singhal, M. Geospatial Mapping as a Guide for Resource Allocation among Burn Centers in India. J. Burn Care Res. 2020, 41, 853–858. [Google Scholar] [CrossRef]
- Lim, X.; Ayyappan, M.; Zaw, M.W.W.; Mandyam, N.K.; Chia, H.X.; Lucero-Prisno, D.E., 3rd. Geospatial Mapping of 2-Hour Access to Timely Essential Surgery in the Philippines. BMJ Open 2023, 13, e074521. [Google Scholar] [CrossRef] [PubMed]
- Juran, S.; Broer, P.N.; Klug, S.J.; Snow, R.C.; Okiro, E.A.; Ouma, P.O.; Snow, R.W.; Tatem, A.J.; Meara, J.G.; Alegana, V.A. Geospatial Mapping of Access to Timely Essential Surgery in Sub-Saharan Africa. BMJ Glob. Health 2018, 3, e000875. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Haider, S.A.; Ashfaq, A.; Khan, S.; Shariff, A.H. Geospatial Mapping of Patients Presenting for Emergency Laparotomy to a Private Sector Tertiary Care Hospital in Pakistan. J. Pak. Med. Assoc. 2019, 69 (Suppl. 1), S37–S40. [Google Scholar]
- Cairo, S.B.; Pu, Q.; Malemo Kalisya, L.; Fadhili Bake, J.; Zaidi, R.; Poenaru, D.; Rothstein, D.H. Geospatial Mapping of Pediatric Surgical Capacity in North Kivu, Democratic Republic of Congo. World J. Surg. 2020, 44, 3620–3628. [Google Scholar] [CrossRef]
- Campos, L.N.; Bryce-Alberti, M.; Hill, S.K.; Del Valle, D.D.; Zaigham, M.; Rábago, A.R.; Dey, T.; Juran, S.; Uribe-Leitz, T. Geospatial Mapping of Surgical Systems for Earthquake Emergency Planning in Guerrero, Mexico: An Ecological Study. Lancet Reg. Health Am. 2023, 26, 100586. [Google Scholar] [CrossRef]
- Raykar, N.P.; Bowder, A.N.; Liu, C.; Vega, M.; Kim, J.H.; Boye, G.; Greenberg, S.L.; Riesel, J.N.; Gillies, R.D.; Meara, J.G.; et al. Geospatial Mapping to Estimate Timely Access to Surgical Care in Nine Low-Income and Middle-Income Countries. Lancet 2015, 385 (Suppl. 2), S16. [Google Scholar] [CrossRef]
- Khan, L.; Aldarsouni, F.; Alowaisi, J.; Fallatah, A.A.; Alsofayan, Y.M.; Alhajaj, F.; Alsubaie, N. Investigating the Burden of Traumatic Injuries and Access to Trauma Centers in Rural Riyadh. J. Surg. Res. 2024, 304, 252–258. [Google Scholar] [CrossRef]
- Hoh, S.M.; Wahab, M.Y.A.; Hisham, A.N.; Guest, G.D.; Watters, D.A.K. Mapping Timely Access to Emergency and Essential Surgical Services: The Malaysian Experience. ANZ J. Surg. 2022, 92, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.; Ampomah, O.; Ankrah, L.; Darko, K.; Bertozzi-Villa, A. Quantifying Inequitable Access to Rapid Burn and Reconstructive Care through Geospatial Mapping. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3069. [Google Scholar] [CrossRef]
- Buda, A.M.; Truche, P.; Izquierdo, E.; Izquierdo, S.; Asturias, S.; Stankey, M.; Park, K.B.; Peck, G.; Juran, S.; Evans, F.M. Use of Geospatial Analysis for Priority Setting in Surgical System Investment in Guatemala. Lancet Reg. Health Am. 2022, 7, 100145. [Google Scholar] [CrossRef]
- Mugisha, N.; Uwishema, O.; Noureddine, R.; Ghanem, L.; Manoel, A.Z.; Shariff, S. Utilization of Mobile Surgical Units to Address Surgical Needs in Remote African Communities: A Narrative Review. BMC Surg. 2024, 24, 304. [Google Scholar] [CrossRef]
- Cheng, L.; Cheng, H.; Parker, G. Global Surgery and Mercy Ships. J. Oral. Biol. Craniofac. Res. 2022, 12, 121–153. [Google Scholar] [CrossRef] [PubMed]
- Rodas, E.; Vicuña, A.; Merrell, R.C. Intermittent and Mobile Surgical Services: Logistics and Outcomes. World J. Surg. 2005, 29, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- GlobalSurg Collaborative. Laparoscopy in Management of Appendicitis in High-, Middle-, and Low-Income Countries: A Multicenter, Prospective, Cohort Study. Surg. Endosc. 2018, 32, 3450–3466. [Google Scholar] [CrossRef]
- Li, M.M.; George, J. A Systematic Review of Low-Cost Laparoscopic Simulators. Surg. Endosc. 2017, 31, 38–48. [Google Scholar] [CrossRef]
- Geissler, M.E.; Bereuter, J.-P.; Geissler, R.B.; Kowalewski, K.-F.; Egen, L.; Haney, C.; Schmidt, S.; Fries, A.; Buck, N.; Weiß, J.; et al. Comparison of Laparoscopic Performance Using Low-Cost Laparoscopy Simulators Versus State-of-the-Art Simulators: A Multi-Center Prospective, Randomized Crossover Trial. Surg. Endosc. 2025, 39, 2016–2025. [Google Scholar] [CrossRef]
- Price, R.; Sergelen, O.; Unursaikhan, C. Improving Surgical Care in Mongolia: A Model for Sustainable Development. World J. Surg. 2013, 37, 1492–1499. [Google Scholar] [CrossRef]
- Gnanaraj, J.; Rhodes, M. Laparoscopic Surgery in Middle- and Low-Income Countries: Gasless Lift Laparoscopic Surgery. Surg. Endosc. 2016, 30, 2151–2154. [Google Scholar] [CrossRef]
- Gnanaraj, J.; Rhodes, M. Single-Incision Lift Laparoscopic Appendicectomy: A Less Expensive Technique Easy to Learn. Trop. Dr. 2015, 45, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, P.; Escalona, G.; Milano, E. Mobile Laparoscopy: Use of the Smartphone as a Tool in the Operating Room. Gastroenterol. Hepatol. Open Access 2019, 10, 272–277. [Google Scholar] [CrossRef]
- Chatzipapas, I.; Kathopoulis, N.; Protopapas, A.; Loutradis, D. Using a Mobile Smartphone to Perform Laparoscopy. J. Minim. Invasive Gynecol. 2018, 25, 912–915. [Google Scholar] [CrossRef]
- Liu, H.; Akiki, S.; Barrowman, N.J.; Bromwich, M. Mobile Endoscopy Vs Video Tower. Otolaryngol.–Head Neck Surg. 2016, 155, 575–580. [Google Scholar] [CrossRef]
- Bolton, W.S.; Aruparayil, N.; Quyn, A.; Scott, J.; Wood, A.; Bundu, I.; Gnanaraj, J.; Brown, J.M.; Jayne, D.G. Disseminating Technology in Global Surgery. Br. J. Surg. 2019, 106, e34–e43. [Google Scholar] [CrossRef] [PubMed]
- Federspiel, F.; Mukhopadhyay, S.; Milsom, P.J.; Scott, J.W.; Riesel, J.N.; Meara, J.G. Global Surgical, Obstetric, and Anesthetic Task Shifting: A Systematic Literature Review. Surgery 2018, 164, 553–558. [Google Scholar] [CrossRef]
- World Health Organization, Pepfar and Unaids. Task Shifting: Rational Redistribution of Tasks Among Health Workforce Teams: Global Recommendations and Guidelines; World Health Organization: Geneva, Switzerland, 2007.
- Wilhelm, T.J.; Dzimbiri, K.; Sembereka, V.; Gumeni, M.; Bach, O.; Mothes, H. Task-Shifting of Orthopaedic Surgery to Non-Physician Clinicians in Malawi: Effective and Safe? Trop. Dr. 2017, 47, 294–299. [Google Scholar] [CrossRef]
- Beard, J.H.; Oresanya, L.B.; Akoko, L.; Mwanga, A.; Mkony, C.A.; Dicker, R.A. Surgical Task-Shifting in a Low-Resource Setting: Outcomes after Major Surgery Performed by Nonphysician Clinicians in Tanzania. World J. Surg. 2014, 38, 1398–1404. [Google Scholar] [CrossRef]
- Ford, N.; Chu, K.; Mills, E.J. Safety of Task-Shifting for Male Medical Circumcision: A Systematic Review and Meta-Analysis. Aids 2012, 26, 559–566. [Google Scholar] [CrossRef]
- Wilson, A.; Lissauer, D.; Thangaratinam, S.; Khan, K.S.; MacArthur, C.; Coomarasamy, A. A Comparison of Clinical Officers with Medical Doctors on Outcomes of Caesarean Section in the Developing World: Meta-Analysis of Controlled Studies. BMJ 2011, 342, d2600. [Google Scholar] [CrossRef]
- Gessessew, A.; Barnabas, G.A.; Prata, N.; Weidert, K. Task Shifting and Sharing in Tigray, Ethiopia, to Achieve Comprehensive Emergency Obstetric Care. Int. J. Gynecol. Obstet. 2011, 113, 28–31. [Google Scholar] [CrossRef] [PubMed]
- McCord, C.; Mbaruku, G.; Pereira, C.; Nzabuhakwa, C.; Bergstrom, S. The Quality of Emergency Obstetrical Surgery by Assistant Medical Officers in Tanzanian District Hospitals. Health Aff. 2009, 28, w876–w885. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, J.; Cheelo, M.; Bijlmakers, L.; Kachimba, J.; Pittalis, C.; Brugha, R. The Contribution of Non-Physician Clinicians to the Provision of Surgery in Rural Zambia—A Randomised Controlled Trial. Hum. Resour. Health 2019, 17, 60. [Google Scholar] [CrossRef]
- Hunter, O.F.; Perry, F.; Salehi, M.; Bandurski, H.; Hubbard, A.; Ball, C.G.; Morad Hameed, S. Science Fiction or Clinical Reality: A Review of the Applications of Artificial Intelligence Along the Continuum of Trauma Care. World J. Emerg. Surg. 2023, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Adirim, T.; Madsen, C. Artificial Intelligence in the U.S. Military Health System: Forging a New Frontier for Clinical Care and Efficiency. Mil. Med. 2025, 190, 199–202. [Google Scholar] [CrossRef]
- Rakhilin, N.; Morris, H.D.; Pham, D.L.; Hood, M.N.; Ho, V.B. Opportunities for Artificial Intelligence in Operational Medicine: Lessons from the United States Military. Bioengineering 2025, 12, 519. [Google Scholar] [CrossRef]
- Command UAF. Army Futures Command Concept for Medical 2028; United States Army: Arlington County, VA, USA, 2022. [Google Scholar]
- Molineaux, M.; Weber, R.O.; Floyd, M.W.; Menager, D.; Larue, O.; Addison, U.; Kulhanek, R.; Reifsnyder, N.; Rauch, C.; Mainali, M. Aligning to Human Decision-Makers in Military Medical Triage. In Proceedings of the International Conference on Case-Based Reasoning, Merida, Mexico, 1–4 July 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 371–387. [Google Scholar]
- Nemeth, C.; Amos-Binks, A.; Burris, C.; Keeney, N.; Pinevich, Y.; Pickering, B.W.; Rule, G.; Laufersweiler, D.; Herasevich, V.; Sun, M.G. Decision Support for Tactical Combat Casualty Care Using Machine Learning to Detect Shock. Mil. Med. 2021, 186, 273–280. [Google Scholar] [CrossRef]
- Sommer, A.; Mark, N.; Kohlberg, G.D.; Gerasi, R.; Avraham, L.W.; Fan-Marko, R.; Eisenkraft, A.; Nachman, D. Hemopneumothorax Detection through the Process of Artificial Evolution—A Feasibility Study. Mil. Med. Res. 2021, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Frock, A.; Nagaraja, S.; Wallqvist, A.; Reifman, J. Ai Algorithm for Personalized Resource Allocation and Treatment of Hemorrhage Casualties. Front. Physiol. 2024, 15, 1327948. [Google Scholar] [CrossRef] [PubMed]
- Stallings, J.D.; Laxminarayan, S.; Yu, C.; Kapela, A.; Frock, A.; Cap, A.P.; Reisner, A.T.; Reifman, J. Appraise-Hri: An Artificial Intelligence Algorithm for Triage of Hemorrhage Casualties. Shock 2023, 60, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.; Neuschwander, A.; Fave, G.; Abback, P.S.; Esnault, P.; Geeraerts, T.; Harrois, A.; Hanouz, J.L.; Kipnis, E.; Leone, M.; et al. Clinical Decision Support for Severe Trauma Patients: Machine Learning Based Definition of a Bundle of Care for Hemorrhagic Shock and Traumatic Brain Injury. J. Trauma Acute Care Surg. 2022, 92, 135–143. [Google Scholar] [CrossRef]
- Bolourani, S.; Thompson, D.; Siskind, S.; Kalyon, B.D.; Patel, V.M.; Mussa, F.F. Cleaning up the Mess: Can Machine Learning Be Used to Predict Lower Extremity Amputation after Trauma-Associated Arterial Injury? J. Am. Coll. Surg. 2021, 232, 102–113.e4. [Google Scholar] [CrossRef] [PubMed]
- Perkins, Z.B.; Yet, B.; Sharrock, A.; Rickard, R.; Marsh, W.; Rasmussen, T.E.; Tai, N.R.M. Predicting the Outcome of Limb Revascularization in Patients with Lower-Extremity Arterial Trauma: Development and External Validation of a Supervised Machine-Learning Algorithm to Support Surgical Decisions. Ann. Surg. 2020, 272, 564–572. [Google Scholar] [CrossRef]
- Knudson, M.M. Comment on “Predicting the Outcome of Limb Revascularization in Patients with Lower Extremity Arterial Trauma: Development and External Validation of a Supervised Machine-Learning Algorithm to Support Surgical Decisions”. Ann. Surg. 2020, 272, 573. [Google Scholar] [CrossRef]
- Biswas, S.; Turan, H.; Elsawah, S.; Richmond, M.; Cao, T. The Future of Military Medical Evacuation: Literature Analysis Focused on the Potential Adoption of Emerging Technologies and Advanced Decision-Analysis Techniques. J. Def. Model. Simul. 2023, 22, 279–308. [Google Scholar] [CrossRef]
- Bihorac, A.; Ozrazgat-Baslanti, T.; Ebadi, A.; Motaei, A.; Madkour, M.; Pardalos, P.M.; Lipori, G.; Hogan, W.R.; Efron, P.A.; Moore, F.; et al. Mysurgeryrisk: Development and Validation of a Machine-Learning Risk Algorithm for Major Complications and Death after Surgery. Ann. Surg. 2019, 269, 652–662. [Google Scholar] [CrossRef]
- Poon, E.G.; Lemak, C.H.; Rojas, J.C.; Guptill, J.; Classen, D. Adoption of Artificial Intelligence in Healthcare: Survey of Health System Priorities, Successes, and Challenges. J. Am. Med. Inform. Assoc. 2025, 32, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Ullrich, L.; Goldsmith, Z. Applications of Artificial Intelligence in Military Medicine. In Artificial Intelligence in Medicine and Surgery: An Exploration of Current Trends, Potential Opportunities, and Evolving Threats; IntechOpen: London, UK, 2024; Volume 2, p. 119. [Google Scholar]
- Bozzay, J.D.; Elster, E.A.; Gurney, J.M. Sustaining Military Surgeons and the Joint Trauma System: Current Efforts, Unique Challenges, and Proposed Strategies in an Era of Global Uncertainty. Ann. Surg. Open 2024, 5, e395. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.R.; Bozzay, J.D.; Brown, S.R. Case Volume and Readiness to Deploy: Clinical Opportunities for Active-Duty Surgeons Outside of Military Hospitals. J. Am. Coll. Surg. 2023, 237, 221–228. [Google Scholar] [CrossRef]
- Naumann, D.N.; Rennie, A.M.; Lomas, B.M.; Short, T.S.G.; Tunstall, C.; Burns, J.; Chauhan, R.; Bowley, D.M.; Stansfield, T. The Shader Model: Forward Surgical Teams Managing High-Intensity, Low-Frequency Military Surgery Incidents. BMJ Mil. Health 2025. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.K.; Remick, K.N.; Mathias, M.; Trinh, Q.D.; Cooper, Z.; Elster, E.A.; Weissman, J.S. Analysis of Surgical Volume in Military Medical Treatment Facilities and Clinical Combat Readiness of Us Military Surgeons. JAMA Surg. 2022, 157, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.; Reamy, B. Leading Graduate Medical Education in the Face of Uncertainty. Mil. Med. 2024, 189, 177–179. [Google Scholar] [CrossRef]
Unit Name | Forward Surgical Team (FST) | Special Operations Surgical Team (SOST) | Mobile Surgery Truck (Cinterandes Foundation) [37] | Medecins Sans Frontiers, Mobile Unit Surgical Trailer (MUST) [38] | Mobile Surgical Unit (MSU), “Te Waka Hauora” by Mobile Health (New Zealand) [39,40] |
---|---|---|---|---|---|
Unit type | Military, conventional | Military, special operations | Civilian | Civilian/NGO | Civilian, private company funded by Ministry of Health |
Setting | Conflict zone; typically 3–5 km behind frontline military units | High-threat and austere environments; embedded with special operations combat units | Rural Ecuador | Disaster and conflict zones, including Mosul, Iraq in 2017 | Rural New Zealand |
Personnel | 20 total, including 3–4 surgeons (general/trauma, orthopedics), 2 nurse anesthetists, 3–5 surgical, critical care or general RNs, and 3 STs | 6 total: surgeon (general/trauma), EM physician, nurse anesthetist or anesthesiologist, critical care RN, RT, and ST | Core team includes a surgeon, anesthetist, OR technician, medical coordinator, driver, general coordinator, and receptionist | Includes multiple surgeons and logisticians; exact staff not specified | Surgeon, anesthetist, anesthesia technician, unit driver, one permeant nurse, and four local nurses |
Surgical capabilities or typical cases | 2 OR tables, up to 30 trauma/damage control patients | 1 OR table, 2–10 trauma/damage control patients | 7641 cases over 20 years; 60% abdominal or endoscopic cases | 1 OR table, reported capability of 10 surgeries per day, and 100 surgeries total without major resupply | 1 OR table; endoscopy and ambulatory cases (general, gynecological, orthopedic, and dental surgery); over 34,000 surgeries performed |
Setup and logistical requirements | Requires setup of 3 interconnected tents (resuscitation, OR, recovery); power from generator or vehicle-based; dependent on host/logistics unit | Highly mobile and rapidly deployable; equipment carried in backpacks; surgery can be performed in aircraft, vehicles, shipping containers, and buildings | Surgery is performed in a mobile surgery truck, and tents are used for postoperative care | Requires 40 m2 of flat surface to set up five trailers (operating theatre, recovery room, intensive care unit, sterilization room, storeroom) and multiple adjacent tents; three portable power generators; reliable nearby water supply is a priority | Heavy truck and trailer that expands upon setup to form operating room, waiting area, and recovery; schedule and procedures planned, with MSU traveling on a rotating schedule |
Perioperative support | Typical recovery tent with capacity for 6 patients; can hold for 6 h prior to evacuation | Limited holding capability; ideally supported by rapid evacuation | Tent complex near surgical unit | Multiple adjacent tent structures for surgical evaluation and triage; autoclave and water treatment systems included | Robust patient preoperative and postoperative education; follow-up phone call on postoperative day one; primary care and local hospital support |
Follow-up care | Evacuation to Role 3 or higher-level facility | Evacuation to Role 3 or higher-level facility | Local healthcare providers and telemedicine for follow-up with surgical team | Not specified | Close partnership with local hospitals |
Strengths | Multiple surgeons allow for concurrent cases; robust damage control capacity; proximity to front lines | High mobility, autonomy, minimal footprint; able to reach otherwise inaccessible or denied areas | Highly mobile, coordinated with local health resources; low cost | Ability to rapidly deploy to a location within 16 days and, once there, set up within hours; strong focus on maintaining surgical sterility | Wide variety of surgical services available; also provides education for local healthcare staff; long history of continued operations and accreditation from regular quality reviews |
Limitations | Less mobile due to size, tent-based infrastructure, and logistical support needs | Limited surgical capacity (single surgeon); fatigue risk in prolonged missions; minimal holding and postoperative care capability | Limited resources, space, and postoperative care after the unit leaves | Requires significant logistical support, and limited space in single OR | Restricted to ASA I and II patients with BMI < 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wayne, C.D.; Jacobs, T.H.; Alexander, K.; Dumbauld, Z.; Narayanan, S.; Rokayak, O.; Moore, F.O. On the Move: A Review of Mobile and Military Surgery. Emerg. Care Med. 2025, 2, 40. https://doi.org/10.3390/ecm2030040
Wayne CD, Jacobs TH, Alexander K, Dumbauld Z, Narayanan S, Rokayak O, Moore FO. On the Move: A Review of Mobile and Military Surgery. Emergency Care and Medicine. 2025; 2(3):40. https://doi.org/10.3390/ecm2030040
Chicago/Turabian StyleWayne, Colton D., Taylor H. Jacobs, Kyle Alexander, Zachary Dumbauld, Siddharth Narayanan, Omar Rokayak, and Forrest O. Moore. 2025. "On the Move: A Review of Mobile and Military Surgery" Emergency Care and Medicine 2, no. 3: 40. https://doi.org/10.3390/ecm2030040
APA StyleWayne, C. D., Jacobs, T. H., Alexander, K., Dumbauld, Z., Narayanan, S., Rokayak, O., & Moore, F. O. (2025). On the Move: A Review of Mobile and Military Surgery. Emergency Care and Medicine, 2(3), 40. https://doi.org/10.3390/ecm2030040