Milk Fatty Acid Profiling as a Tool for Estimating Methane Emissions in Conventionally Fed Dairy Cows
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Intake and Diet Composition
2.3. Milk Yield and Composition
2.4. Methane Measurement
2.5. Fatty Acid Analysis
2.6. Statistical Analysis
2.6.1. Variable Selection for Regression Analysis
2.6.2. Penalized Regression Models
3. Results
3.1. Intake, Performance, and Milk Composition
3.2. Milk FA Correlations with CH4 Emission Metrics
3.2.1. Positive Correlations
3.2.2. Negative Correlations
3.3. Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADF | Acid detergent fiber |
| AIC | Akaike information criterion |
| aNDFom/NDF | Ash-free neutral detergent fiber organic matter |
| BCFA | Branched-chain fatty acid |
| BCS | Body condition score |
| BHBA | Beta-hydroxybutyrate |
| CCC | Concordance correlation coefficient |
| CH4 | Methane |
| CO2 | Carbon dioxide |
| DIM | Days in milk |
| DM | Dry matter |
| DMI | Dry matter intake |
| ECM | Energy-corrected milk |
| FA | Fatty acid |
| FAME | Fatty acid methyl ester |
| FID | Flame-ionization detector |
| H2 | Dihydrogen |
| MUFA | Monounsaturated fatty acid |
| MSE | Mean square error |
| NEG | Net energy for growth |
| NEL | Net energy for lactation |
| NEM | Net energy for maintenance |
| NFC | Non-fiber carbohydrate |
| OBCFA | Odd- and branched-chain fatty acid |
| OCFA | Odd-chain fatty acid |
| PUFA | Polyunsaturated fatty acid |
| RFID | Radio-frequency identification |
| RMSE | Root mean square error |
| RMSPE | Root mean square prediction error |
| RV | Relative variance |
| SD | Standard deviation |
| SFA | Saturated fatty acid |
| SMCFA | Short- and medium-chain fatty acid |
| TMR | total mixed ration |
| VFA | Volatile fatty acid |
| VLCFA | Very-long-chain fatty acid |
References
- EPA. Overview of Greenhouse Gases. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 4 December 2024).
- Youngmark, E.C.; Kraft, J. Milk fatty acids as potential biomarkers of enteric methane emissions in dairy cattle: A review. Animals 2025, 15, 2212. [Google Scholar] [CrossRef]
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.F.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Tamminga, S.; Dewhurst, R.J.; van Vuuren, A.; De Brabander, D.; Demeyer, D. Milk odd- and branched-chain fatty acids in relation to the rumen fermentation pattern. J. Dairy Sci. 2006, 89, 3954–3964. [Google Scholar] [CrossRef]
- Engelke, S.W.; Das, G.; Derno, M.; Tuchscherer, A.; Wimmers, K.; Rychlik, M.; Kienberger, H.; Berg, W.; Kuhla, B.; Metges, C.C. Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed. J. Dairy Sci. 2019, 102, 1788–1802. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Campeneere, S.D.; Baets, B.D.; Fievez, V. The potential of milk fatty acids as biomarkers for methane emissions in dairy cows: A quantitative multi-study survey of literature data. J. Agric. Sci. 2016, 154, 515–531. [Google Scholar] [CrossRef]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef]
- Mohammed, R.; McGinn, S.M.; Beauchemin, K.A. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J. Dairy Sci. 2011, 94, 6057–6068. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Kraft, J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front. Nutr. 2024, 11, 1386257. [Google Scholar] [CrossRef]
- Angulo, J.; Hiller, B.; Olivera, M.; Mahecha, L.; Dannenberger, D.; Nuernberg, G.; Losand, B.; Nuernberg, K. Dietary fatty acid intervention of lactating cows simultaneously affects lipid profiles of meat and milk. J. Sci. Food Agric. 2012, 92, 2968–2974. [Google Scholar] [CrossRef]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Ferlay, A.; Kebreab, E.; Martin, C.; Moate, P.J.; Benchaar, C.; Lund, P.; Eugène, M. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: Approach by meta-analysis. J. Dairy Sci. 2019, 102, 10616–10631. [Google Scholar] [CrossRef] [PubMed]
- van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, J. Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk. Animal 2017, 11, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Toral, P.G.; Hervás, G.; Frutos, P. Invited review: Research on ruminal biohydrogenation—Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J. Dairy Sci. 2024, 107, 10115–10140. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Bainbridge, M.L.; Lock, A.L.; Kraft, J. Lipid-encapsulated echium oil (Echium plantagineum) increases the content of stearidonic acid in plasma lipid fractions and milk fat of dairy cows. J. Agric. Food Chem. 2015, 63, 4827–4835. [Google Scholar] [CrossRef]
- Unger, A.L.; Bourne, D.E.; Walsh, H.; Kraft, J. Fatty acid content of retail cow’s milk in the Northeastern United States-What’s in it for the consumer? J. Agric. Food Chem. 2020, 68, 4268–4276. [Google Scholar] [CrossRef]
- Wolff, R.L.; Bayard, C.C.; Fabien, R.J. Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18:1 acids. Application to the study of seasonal variations in french butters. J. Am. Oil Chem. Soc. 1995, 72, 1471–1483. [Google Scholar] [CrossRef]
- Bainbridge, M.L.; Cersosimo, L.M.; Wright, A.-D.G.; Kraft, J. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol. Ecol. 2016, 92, fiw059. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Hervás, G.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Examination of the Persistency of Milk Fatty Acid Composition Responses to Fish Oil and Sunflower Oil in the Diet of Dairy Cows. J. Dairy Sci. 2006, 89, 714–732. [Google Scholar] [CrossRef] [PubMed]
- Herawati, N.; Sutrisno, A.; Nusyirwan, N.; Misgiyati, M. The performance of ridge regression, LASSO, and elastic-net in controlling multicollinearity: A simulation and application. J. Mod. Appl. Stat. Methods 2024, 23, 1–13. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Kupczynski, R.; Pacyga, K.; Lewandowska, K.; Bednarski, M.; Szumny, A. Milk odd- and branched-chain fatty acids as biomarkers of rumen fermentation. Animals 2024, 14, 1706. [Google Scholar] [CrossRef]
- Rico, D.E.; Chouinard, P.Y.; Hassanat, F.; Benchaar, C.; Gervais, R. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal 2016, 10, 203–211. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Crompton, L.A.; Hendriks, W.H.; Reynolds, C.K.; Dijkstra, J. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J. Dairy Sci. 2014, 97, 7115–7132. [Google Scholar] [CrossRef]
- Bayat, A.R.; Kairenius, P.; Stefanski, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Marseglia, A.; Caligiani, A.; Comino, L.; Righi, F.; Quarantelli, A.; Palla, G. Cyclopropyl and omega-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food Chem. 2013, 140, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Yoshizawa, K. The physiological and pathological properties of Mead acid, an endogenous multifunctional n-9 polyunsaturated fatty acid. Lipids Health Dis. 2023, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Cleland, K.A.; James, M.J.; Neumann, M.A.; Gibson, R.A.; Cleland, L.G. Differences in fatty acid composition of immature and mature articular cartilage in humans and sheep. Lipids 1995, 30, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Szabó, A. Review of eukaryote cellular membrane lipid composition, with special attention to the fatty acids. Int. J. Mol. Sci. 2023, 24, 15693. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Lisuzzo, A.; Tessari, R.; Spissu, N.; Moscati, L.; Morgante, M.; Gianesella, M.; Badon, T.; Mazzotta, E.; Berlanda, M.; et al. Milk fatty acids composition changes according to β-hydroxybutyrate concentrations in ewes during early lactation. Animals 2021, 11, 1371. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef]
- de Souza, J.; Leskinen, H.; Lock, A.L.; Shingfield, K.J.; Huhtanen, P. Between-cow variation in milk fatty acids associated with methane production. PLoS ONE 2020, 15, e0235357. [Google Scholar] [CrossRef]

| Ingredient, % DM | High-Yield TMR | Low-Yield TMR | Primiparous TMR |
|---|---|---|---|
| Corn silage | 49.44 | 34.51 | 47.74 |
| Haylage | 10.85 | 27.80 | 9.91 |
| High-grain mix | 39.70 | - | 42.34 |
| Fine corn meal | 7.23 | - | 7.72 |
| Canola meal | 4.82 | - | 5.14 |
| Gluten feed | 2.25 | - | 2.40 |
| Soybean meal | 6.11 | - | 6.51 |
| Calcium salt fat | 0.82 | - | 0.88 |
| Cane molasses | 1.10 | - | 1.17 |
| Calcium carbonate | 1.25 | - | 1.33 |
| C16 fat | 1.27 | - | 1.35 |
| SQ_810 1 | 0.75 | - | 0.80 |
| Salt | 0.37 | - | 0.39 |
| Magnesium oxide | 0.29 | - | 0.31 |
| Mineral/vitamin premix | 0.11 | - | 0.11 |
| XPC yeast culture 2 | 0.05 | - | 0.05 |
| Smartamine 3 | 0.05 | - | 0.05 |
| Urea | 0.40 | - | 0.43 |
| Bakery feed | 3.54 | - | 3.77 |
| Intergral A+ 4 | 0.05 | - | 0.05 |
| Steam flaked corn | 1.61 | - | 1.71 |
| Distiller grains | 1.21 | - | 1.29 |
| Dry MHA 5 | 0.09 | - | 0.10 |
| PGI amino enhancer | 0.73 | - | 0.78 |
| Amino max PGI | 5.63 | - | 6.00 |
| Low-grain mix | - | 37.69 | - |
| Fine corn meal | - | 15.11 | - |
| Soybean meal | - | 5.88 | - |
| Canola meal | - | 6.71 | - |
| Calcium carbonate | - | 1.25 | - |
| Cane molasses | - | 0.87 | - |
| C16 fat | - | 0.88 | - |
| SQ_810 1 | - | 0.45 | - |
| Salt | - | 0.41 | - |
| Magnesium oxide | - | 0.28 | - |
| Mineral/vitamin premix | - | 0.11 | - |
| Liquid Metasmart 3 | - | 0.07 | - |
| XPC yeast culture 2 | - | 0.05 | - |
| Amino max PGI | - | 5.46 | - |
| Urea | - | 0.17 | - |
| Item | High-Yield TMR | Low-Yield TMR | Primiparous TMR |
|---|---|---|---|
| DM, % | 39.15 | 41.15 | 43.05 |
| CP, % DM | 15.78 | 16.10 | 16.45 |
| Soluble protein, % CP | 39.25 | 43.00 | 36.50 |
| ADF, % DM | 21.08 | 25.60 | 20.60 |
| aNDFom, % DM | 33.40 | 36.45 | 32.60 |
| Lignin, % DM | 3.40 | 4.50 | 3.50 |
| Crude fiber, % DM | 13.00 | 15.40 | 11.25 |
| NFC, % DM | 39.45 | 35.60 | 38.75 |
| Starch, % DM | 25.70 | 22.55 | 26.65 |
| Ether extract, % DM | 5.66 | 4.90 | 5.62 |
| Simple sugar, % DM | 4.48 | 4.80 | 4.80 |
| Calcium, % DM | 0.66 | 0.76 | 0.83 |
| Phosphorus, % DM | 0.38 | 0.35 | 0.40 |
| Magnesium, % DM | 0.33 | 0.32 | 0.35 |
| Potassium, % DM | 1.00 | 1.16 | 1.02 |
| Sodium, % DM | 0.35 | 0.25 | 0.36 |
| Iron, mg/kg | 271 | 267 | 252 |
| Zinc, mg/kg | 51.5 | 44.5 | 54.0 |
| Copper, mg/kg | 12.0 | 11.0 | 12.5 |
| Manganese, mg/kg | 47.0 | 42.0 | 41.5 |
| Molybdenum, mg/kg | 1.10 | 1.25 | 1.30 |
| NEL, Mcal/kg | 1.78 | 1.65 | 1.76 |
| NEM, Mcal/kg | 1.82 | 1.65 | 1.80 |
| NEG, Mcal/kg | 1.19 | 1.04 | 1.18 |
| Variable | Mean | Median | Minimum | Maximum | SD | SEM |
|---|---|---|---|---|---|---|
| Body weight, kg 1 | 793 | 805 | 670 | 957 | 75.43 | 11.93 |
| Body condition score 1 | 3.28 | 3.25 | 2.50 | 3.88 | 0.27 | 0.04 |
| Dry matter intake, kg/d | 25.8 | 26.3 | 20.3 | 30.4 | 2.20 | 0.35 |
| Neutral detergent fiber, kg/d (% of DM) | 8.34 | 8.61 | 6.26 | 9.82 | 0.83 | 0.13 |
| Starch, kg/d (% of DM) | 6.31 | 6.28 | 5.14 | 7.90 | 0.55 | 0.09 |
| Ether extract, kg/d (% of DM) | 1.37 | 1.36 | 1.09 | 1.63 | 0.13 | 0.02 |
| Days in milk | 190 | 186 | 28 | 317 | 91.2 | 14.42 |
| Milk yield, kg/d | 40.6 | 38.7 | 27.1 | 60.1 | 8.35 | 1.32 |
| Energy-corrected milk 2, kg/d | 41.3 | 38.4 | 28.1 | 62.3 | 8.50 | 1.34 |
| Feed efficiency 3 | 1.61 | 1.56 | 1.05 | 2.63 | 0.35 | 0.06 |
| Fat, % | 4.25 | 4.34 | 2.92 | 5.47 | 0.53 | 0.08 |
| Fat yield, kg/d | 1.72 | 1.60 | 1.07 | 2.75 | 0.41 | 0.06 |
| Protein, % | 3.25 | 3.26 | 2.64 | 3.85 | 0.28 | 0.04 |
| Protein yield, kg/d | 1.31 | 1.25 | 0.89 | 1.78 | 0.22 | 0.04 |
| CH4 output, g/d | 366.1 | 357.8 | 238.2 | 515.9 | 72.29 | 11.43 |
| CH4 yield, g/kg DMI | 14.1 | 13.7 | 10.1 | 19.2 | 2.26 | 0.36 |
| CH4 intensity, g/kg ECM | 9.40 | 9.44 | 3.83 | 18.33 | 3.28 | 0.52 |
| Fatty Acid | Mean | Median | Minimum | Maximum | SD | SEM |
|---|---|---|---|---|---|---|
| 4:0 | 3.34 | 4.12 | 2.70 | 3.28 | 0.31 | 0.05 |
| 5:0 | 0.04 | 0.07 | 0.02 | 0.04 | 0.01 | 0.00 |
| 6:0 | 2.09 | 2.51 | 1.56 | 2.06 | 0.21 | 0.03 |
| 7:0 | 0.03 | 0.07 | 0.02 | 0.03 | 0.01 | 0.00 |
| 8:0 | 1.11 | 1.35 | 0.81 | 1.10 | 0.14 | 0.02 |
| 9:0 | 0.04 | 0.08 | 0.02 | 0.03 | 0.01 | 0.00 |
| 10:0 | 2.34 | 2.96 | 1.44 | 2.37 | 0.37 | 0.06 |
| 11:0 | 0.12 | 0.17 | 0.06 | 0.11 | 0.03 | 0.00 |
| 11-cyclohexyl-11:0 | 0.14 | 0.22 | 0.08 | 0.13 | 0.03 | 0.01 |
| 12:0 | 2.75 | 3.41 | 1.58 | 2.80 | 0.46 | 0.07 |
| 13:0-iso | 0.02 | 0.04 | 0.01 | 0.02 | 0.01 | 0.00 |
| 13:0-anteiso | 0.07 | 0.09 | 0.03 | 0.07 | 0.02 | 0.00 |
| 13:0 | 0.17 | 0.26 | 0.10 | 0.17 | 0.04 | 0.01 |
| 14:0-iso | 0.07 | 0.13 | 0.04 | 0.07 | 0.02 | 0.00 |
| 14:0 | 9.96 | 11.95 | 6.62 | 10.31 | 1.20 | 0.19 |
| 14:1 t9 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 |
| 14:1 c9 | 0.89 | 1.30 | 0.48 | 0.89 | 0.20 | 0.03 |
| 15:0-iso | 0.19 | 0.27 | 0.13 | 0.19 | 0.03 | 0.01 |
| 15:0-anteiso | 0.38 | 0.50 | 0.26 | 0.38 | 0.06 | 0.01 |
| 15:0 | 1.00 | 1.37 | 0.65 | 0.97 | 0.17 | 0.03 |
| 16:0-iso | 0.18 | 0.30 | 0.11 | 0.17 | 0.06 | 0.01 |
| 16:0 | 36.07 | 42.18 | 30.28 | 35.93 | 2.43 | 0.38 |
| 16:1 t9 | 0.04 | 0.05 | 0.01 | 0.04 | 0.01 | 0.00 |
| 16:1 c7 | 0.03 | 0.06 | 0.02 | 0.03 | 0.01 | 0.00 |
| 16:1 c8 | 0.18 | 0.24 | 0.13 | 0.17 | 0.03 | 0.00 |
| 16:1 c9 | 1.68 | 2.54 | 1.10 | 1.61 | 0.31 | 0.05 |
| 16:1 c10/t13 | 0.01 | 0.03 | 0.00 | 0.01 | 0.00 | 0.00 |
| 17:0-iso | 0.28 | 0.34 | 0.21 | 0.29 | 0.03 | 0.00 |
| 17:0-anteiso | 0.36 | 0.46 | 0.28 | 0.36 | 0.04 | 0.01 |
| 17:0 | 0.53 | 0.61 | 0.42 | 0.53 | 0.05 | 0.01 |
| 17:1 c7 | 0.03 | 0.04 | 0.01 | 0.03 | 0.01 | 0.00 |
| 17:1 c9 | 0.18 | 0.38 | 0.11 | 0.16 | 0.06 | 0.01 |
| 18:0-iso/17:1 t10 | 0.04 | 0.08 | 0.01 | 0.04 | 0.01 | 0.00 |
| 18:0 | 8.95 | 11.99 | 6.58 | 8.82 | 1.27 | 0.20 |
| 18:1 t4 | 0.02 | 0.03 | 0.01 | 0.02 | 0.01 | 0.00 |
| 18:1 t5 | 0.02 | 0.04 | 0.01 | 0.02 | 0.01 | 0.00 |
| 18:1 t6-t8 | 0.26 | 0.36 | 0.17 | 0.27 | 0.05 | 0.01 |
| 18:1 t9 | 0.24 | 0.31 | 0.17 | 0.24 | 0.03 | 0.01 |
| 18:1 t10 | 0.41 | 0.81 | 0.23 | 0.41 | 0.12 | 0.02 |
| 18:1 t11 | 0.74 | 1.19 | 0.47 | 0.73 | 0.13 | 0.02 |
| 18:1 t12 | 0.32 | 0.45 | 0.22 | 0.31 | 0.06 | 0.01 |
| 18:1 t15 | 0.16 | 0.23 | 0.10 | 0.16 | 0.03 | 0.00 |
| 18:1 c6-c8/t13/t14 | 0.73 | 0.90 | 0.46 | 0.74 | 0.11 | 0.02 |
| 18:1 c9 | 18.73 | 27.52 | 14.69 | 17.94 | 3.06 | 0.48 |
| 18:1 c11 | 0.66 | 1.04 | 0.43 | 0.61 | 0.15 | 0.02 |
| 18:1 c12 | 0.29 | 0.44 | 0.18 | 0.27 | 0.06 | 0.01 |
| 18:1 c13 | 0.07 | 0.14 | 0.04 | 0.06 | 0.03 | 0.00 |
| 18:1 c14/t16 | 0.24 | 0.31 | 0.19 | 0.24 | 0.03 | 0.00 |
| 18:1 c15/19:0 | 0.13 | 0.15 | 0.10 | 0.13 | 0.01 | 0.00 |
| 18:1 c16 | 0.06 | 0.08 | 0.03 | 0.06 | 0.01 | 0.00 |
| 18:2 t10,t14 | 0.03 | 0.05 | 0.00 | 0.03 | 0.01 | 0.00 |
| 18:2 c5,t13/t8,ct12 | 0.19 | 0.29 | 0.12 | 0.18 | 0.04 | 0.01 |
| 18:2 c9,t11 | 0.38 | 0.53 | 0.25 | 0.38 | 0.07 | 0.01 |
| 18:2 c9,t14 | 0.09 | 0.13 | 0.05 | 0.09 | 0.02 | 0.00 |
| 18:2 c12,t16 | 0.04 | 0.06 | 0.01 | 0.04 | 0.01 | 0.00 |
| 18:2 c9,c12 | 1.87 | 2.38 | 1.26 | 1.89 | 0.24 | 0.04 |
| 18:3 c6,c9,c12 | 0.03 | 0.05 | 0.02 | 0.03 | 0.01 | 0.00 |
| 18:3 c9,c12,c15 | 0.26 | 0.40 | 0.18 | 0.25 | 0.06 | 0.01 |
| 20:0 | 0.11 | 0.14 | 0.09 | 0.11 | 0.01 | 0.00 |
| 20:1 c9 | 0.09 | 0.12 | 0.07 | 0.09 | 0.01 | 0.00 |
| 20:1 11c | 0.04 | 0.06 | 0.02 | 0.03 | 0.01 | 0.00 |
| 20:2 c11,c14 | 0.02 | 0.04 | 0.01 | 0.02 | 0.01 | 0.00 |
| 20:3 c5,c8,c11 | 0.12 | 0.19 | 0.05 | 0.11 | 0.03 | 0.01 |
| 20:4 c5,c8,c11,c14 | 0.12 | 0.17 | 0.08 | 0.12 | 0.02 | 0.00 |
| 20:5 c5,c8,c11,c14,c17 | 0.03 | 0.05 | 0.02 | 0.03 | 0.01 | 0.00 |
| 22:0 | 0.03 | 0.07 | 0.02 | 0.03 | 0.01 | 0.00 |
| 22:4 c7,c10,c13,c16 | 0.03 | 0.06 | 0.00 | 0.02 | 0.01 | 0.00 |
| 22:5 c7,c10,c13,c16,c19 | 0.05 | 0.08 | 0.03 | 0.05 | 0.01 | 0.00 |
| 23:0 | 0.02 | 0.04 | 0.00 | 0.02 | 0.01 | 0.00 |
| 24:0 | 0.02 | 0.04 | 0.00 | 0.02 | 0.01 | 0.00 |
| ∑ SFAs | 69.96 | 76.11 | 60.28 | 70.67 | 3.55 | 0.56 |
| ∑ SMCFAs 1 | 21.58 | 25.79 | 15.35 | 21.83 | 2.26 | 0.36 |
| ∑ OBCFAs | 3.90 | 4.59 | 3.23 | 3.88 | 0.36 | 0.06 |
| ∑ OCFAs 2 | 2.15 | 2.75 | 1.69 | 2.10 | 0.26 | 0.04 |
| ∑ BCFAs | 1.75 | 2.30 | 1.35 | 1.68 | 0.24 | 0.04 |
| ∑ iso-BCFAs | 0.80 | 1.07 | 0.64 | 0.77 | 0.12 | 0.02 |
| ∑ anteiso-BCFAs | 0.89 | 1.14 | 0.68 | 0.87 | 0.11 | 0.02 |
| ∑ MUFAs | 26.25 | 35.74 | 20.92 | 25.31 | 3.41 | 0.54 |
| ∑ trans-MUFAs | 20.90 | 29.77 | 16.50 | 19.99 | 3.12 | 0.49 |
| ∑ cis-MUFAs | 20.90 | 29.87 | 16.57 | 19.95 | 3.17 | 0.50 |
| ∑ 18:1 isomers | 23.06 | 32.12 | 18.09 | 22.05 | 3.25 | 0.51 |
| ∑ PUFAs | 3.25 | 4.06 | 2.39 | 3.28 | 0.34 | 0.05 |
| ∑ 18:2 isomers | 2.59 | 3.40 | 1.74 | 2.62 | 0.33 | 0.05 |
| ∑ 18:3 isomers | 0.29 | 0.43 | 0.20 | 0.28 | 0.06 | 0.01 |
| ∑ VLCFAs 3 | 0.67 | 0.89 | 0.47 | 0.67 | 0.09 | 0.01 |
| Variable | CH4 Output, g/d | CH4 Yield, g/kg DMI | CH4 Intensity, g/kg ECM | |||
|---|---|---|---|---|---|---|
| r | p-Value | r | p-Value | r | p-Value | |
| Days in milk | 0.62 | <0.001 | 0.64 | <0.001 | 0.70 | <0.001 |
| Dry matter intake, kg/d | 0.62 | <0.001 | 0.26 | 0.11 | 0.33 | 0.04 |
| Energy-corrected milk 1, kg/d | −0.46 | <0.01 | −0.64 | <0.001 | −0.81 | <0.001 |
| aNDFom, kg/d (% of DM) | 0.67 | <0.001 | 0.32 | 0.04 | 0.42 | 0.01 |
| Starch, kg/d (% of DM) | 0.42 | 0.01 | 0.08 | 0.64 | 0.14 | 0.38 |
| Milk yield, kg/d | −0.55 | <0.001 | −0.72 | <0.001 | −0.84 | <0.001 |
| Feed efficiency 2 | −0.72 | <0.001 | −0.72 | <0.001 | −0.93 | <0.001 |
| 4:0 | −0.02 | 0.93 | −0.11 | 0.50 | −0.06 | 0.69 |
| 5:0 | −0.24 | 0.13 | −0.36 | 0.02 | −0.42 | 0.01 |
| 6:0 | 0.40 | 0.01 | 0.27 | 0.09 | 0.23 | 0.15 |
| 7:0 | −0.01 | 0.98 | −0.15 | 0.36 | −0.19 | 0.23 |
| 8:0 | 0.48 | <0.01 | 0.37 | 0.02 | 0.32 | 0.04 |
| 9:0 | 0.05 | 0.74 | −0.08 | 0.64 | −0.15 | 0.35 |
| 10:0 | 0.48 | <0.01 | 0.36 | 0.02 | 0.31 | 0.05 |
| 11:0 | 0.35 | 0.03 | 0.33 | 0.04 | 0.30 | 0.06 |
| 11-cyclohexyl-11:0 | 0.72 | <0.001 | 0.61 | <0.001 | 0.68 | <0.001 |
| 12:0 | 0.48 | <0.01 | 0.40 | 0.01 | 0.35 | 0.03 |
| 13:0-iso | 0.66 | <0.001 | 0.59 | <0.001 | 0.65 | <0.001 |
| 13:0-anteiso | 0.53 | <0.001 | 0.59 | <0.001 | 0.51 | <0.01 |
| 13:0 | 0.34 | 0.03 | 0.25 | 0.12 | 0.19 | 0.25 |
| 14:0-iso | 0.73 | <0.001 | 0.64 | <0.001 | 0.75 | <0.001 |
| 14:0 | 0.51 | <0.01 | 0.40 | 0.01 | 0.46 | <0.01 |
| 14:1 t9 | 0.41 | <0.01 | 0.41 | 0.01 | 0.38 | 0.02 |
| 14:1 c9 | 0.29 | 0.07 | 0.47 | 0.00 | 0.41 | 0.01 |
| 15:0-iso | 0.66 | <0.001 | 0.62 | <0.001 | 0.73 | <0.001 |
| 15:0-anteiso | 0.55 | <0.001 | 0.58 | <0.001 | 0.63 | <0.001 |
| 15:0 | 0.32 | 0.05 | 0.21 | 0.19 | 0.16 | 0.32 |
| 16:0-iso | 0.69 | <0.001 | 0.63 | <0.001 | 0.71 | <0.001 |
| 16:0 | 0.29 | 0.06 | 0.27 | 0.09 | 0.19 | 0.25 |
| 16:1 t9 | −0.35 | 0.03 | −0.26 | 0.11 | −0.24 | 0.14 |
| 16:1 c7 | −0.18 | 0.26 | −0.23 | 0.14 | −0.18 | 0.26 |
| 16:1 c8 | −0.62 | <0.001 | −0.56 | <0.001 | −0.50 | <0.01 |
| 16:1 c9 | −0.34 | 0.03 | −0.21 | 0.20 | −0.29 | 0.07 |
| 16:1 c10/t13 | 0.23 | 0.15 | 0.03 | 0.88 | 0.03 | 0.85 |
| 17:0-iso | 0.08 | 0.62 | 0.15 | 0.35 | 0.22 | 0.17 |
| 17:0-anteiso | 0.20 | 0.21 | 0.23 | 0.15 | 0.30 | 0.06 |
| 17:0 | 0.07 | 0.66 | 0.08 | 0.62 | 0.04 | 0.82 |
| 17:1 c7 | 0.42 | 0.01 | 0.45 | <0.01 | 0.43 | 0.01 |
| 17:1 c9 | −0.54 | <0.001 | −0.41 | 0.01 | −0.47 | <0.01 |
| 18:0-iso/17:1 t10 | −0.32 | 0.04 | −0.20 | 0.22 | −0.15 | 0.36 |
| 18:0 | −0.25 | 0.12 | −0.23 | 0.16 | −0.21 | 0.20 |
| 18:1 t4 | −0.04 | 0.83 | −0.17 | 0.28 | −0.11 | 0.51 |
| 18:1 t5 | −0.11 | 0.50 | −0.24 | 0.13 | −0.27 | 0.09 |
| 18:1 t6-t8 | −0.22 | 0.16 | −0.29 | 0.07 | −0.29 | 0.07 |
| 18:1 t9 | −0.18 | 0.28 | −0.28 | 0.08 | −0.27 | 0.09 |
| 18:1 t10 | −0.38 | 0.02 | −0.44 | 0.00 | −0.44 | <0.01 |
| 18:1 t11 | −0.14 | 0.37 | −0.21 | 0.19 | −0.20 | 0.22 |
| 18:1 t12 | −0.11 | 0.50 | −0.22 | 0.18 | −0.20 | 0.21 |
| 18:1 t15 | 0.09 | 0.59 | −0.05 | 0.76 | −0.07 | 0.67 |
| 18:1 c6-c8/t13/t14 | 0.16 | 0.32 | 0.02 | 0.88 | 0.04 | 0.79 |
| 18:1 c9 | −0.42 | 0.01 | −0.29 | 0.07 | −0.24 | 0.14 |
| 18:1 c11 | −0.77 | <0.001 | −0.66 | <0.001 | −0.67 | <0.001 |
| 18:1 c12 | 0.05 | 0.76 | −0.13 | 0.42 | −0.13 | 0.42 |
| 18:1 c13 | −0.54 | <0.001 | −0.46 | 0.00 | −0.40 | 0.01 |
| 18:1 c14/t16 | 0.05 | 0.77 | −0.06 | 0.69 | 0.06 | 0.70 |
| 18:1 c15/19:0 | −0.03 | 0.86 | −0.11 | 0.51 | −0.01 | 0.96 |
| 18:1 c16 | −0.25 | 0.12 | −0.26 | 0.11 | −0.22 | 0.17 |
| 18:2 t10,t14 | 0.28 | 0.08 | 0.27 | 0.10 | 0.30 | 0.06 |
| 18:2 c5,t13/t8,ct12 | −0.05 | 0.77 | −0.08 | 0.62 | −0.03 | 0.85 |
| 18:2 c9,t11 | −0.25 | 0.12 | −0.19 | 0.25 | −0.17 | 0.29 |
| 18:2 c9,t14 | −0.06 | 0.73 | −0.03 | 0.86 | 0.01 | 0.94 |
| 18:2 c12,t16 | −0.12 | 0.45 | −0.19 | 0.24 | −0.14 | 0.38 |
| 18:2 c9,c12 | 0.05 | 0.78 | 0.06 | 0.72 | 0.17 | 0.30 |
| 18:3 c6,c9,c12 | 0.05 | 0.75 | −0.04 | 0.79 | 0.04 | 0.79 |
| 18:3 c9,c12,c15 | 0.28 | 0.08 | 0.26 | 0.10 | 0.38 | 0.02 |
| 20:0 | 0.26 | 0.10 | 0.19 | 0.24 | 0.28 | 0.08 |
| 20:1 c9 | 0.41 | 0.01 | 0.48 | <0.01 | 0.56 | <0.001 |
| 20:1 11c | −0.41 | 0.01 | −0.37 | 0.02 | −0.29 | 0.07 |
| 20:2 c11,c14 | 0.45 | <0.01 | 0.42 | 0.01 | 0.62 | <0.001 |
| 20:3 c5,c8,c11 | 0.68 | <0.001 | 0.58 | <0.001 | 0.65 | <0.001 |
| 20:4 c5,c8,c11,c14 | 0.53 | <0.001 | 0.52 | 0.00 | 0.55 | <0.001 |
| 20:5 c5,c8,c11,c14,c17 | 0.19 | 0.24 | 0.11 | 0.51 | 0.20 | 0.23 |
| 22:0 | 0.52 | <0.01 | 0.47 | <0.01 | 0.58 | <0.001 |
| 22:4 c7,c10,c13,c16 | 0.59 | <0.001 | 0.55 | <0.001 | 0.64 | <0.001 |
| 22:5 c7,c10,c13,c16,c19 | 0.31 | 0.05 | 0.37 | 0.02 | 0.48 | <0.01 |
| 23:0 | 0.46 | <0.01 | 0.45 | <0.01 | 0.53 | <0.001 |
| 24:0 | 0.60 | <0.001 | 0.51 | <0.01 | 0.62 | <0.001 |
| ∑ SFAs | 0.47 | <0.01 | 0.35 | 0.03 | 0.31 | 0.05 |
| ∑ SMCFAs 3 | 0.58 | <0.001 | 0.44 | <0.01 | 0.45 | <0.01 |
| ∑ OBCFAs | 0.56 | <0.001 | 0.50 | <0.01 | 0.47 | <0.01 |
| ∑ OCFAs 4 | 0.19 | 0.23 | 0.11 | 0.50 | 0.06 | 0.72 |
| ∑ BCFAs | 0.63 | <0.001 | 0.62 | <0.001 | 0.72 | <0.001 |
| ∑ iso-BCFAs | 0.62 | <0.001 | 0.60 | <0.001 | 0.72 | <0.001 |
| ∑ anteiso-BCFAs | 0.56 | <0.001 | 0.57 | <0.001 | 0.64 | <0.001 |
| ∑ MUFAs | −0.51 | <0.01 | −0.36 | 0.02 | −0.33 | 0.04 |
| ∑ 18:1 isomers | −0.48 | <0.01 | −0.38 | 0.02 | −0.33 | 0.04 |
| ∑ trans-isomers | −0.47 | <0.01 | −0.36 | 0.02 | −0.30 | 0.06 |
| ∑ cis-isomers | −0.46 | <0.01 | −0.35 | 0.03 | −0.30 | 0.06 |
| ∑ PUFAs | 0.07 | 0.66 | 0.02 | 0.90 | 0.10 | 0.52 |
| ∑ 18:2 isomers | −0.15 | 0.37 | −0.19 | 0.25 | −0.13 | 0.42 |
| ∑ 18:3 isomers | 0.27 | 0.09 | 0.23 | 0.16 | 0.36 | 0.02 |
| ∑ VLCFAs 5 | 0.69 | <0.001 | 0.65 | <0.001 | 0.79 | <0.001 |
| Response Variable | Model | Regression Type | Lambda | R2 | CCC | MSE | RMSE | RMSPE |
|---|---|---|---|---|---|---|---|---|
| CH4 output, g/d | 1 | Ridge | 4.77 | 0.83 | 0.90 | 861.1 | 29.3 | 0.08 |
| LASSO | 0.06 | 0.85 | 0.92 | 755.7 | 27.5 | 0.08 | ||
| Elastic net | 0.43 | 0.85 | 0.92 | 760.4 | 27.6 | 0.08 | ||
| 2 | Ridge | 21.8 | 0.81 | 0.89 | 952.9 | 30.9 | 0.09 | |
| LASSO | 0.32 | 0.83 | 0.90 | 888.0 | 29.8 | 0.08 | ||
| Elastic net | 4.16 | 0.82 | 0.90 | 895.3 | 29.9 | 0.08 | ||
| 3 | Ridge | 9.44 | 0.81 | 0.89 | 991.8 | 31.5 | 0.09 | |
| LASSO | 0.10 | 0.82 | 0.90 | 933.6 | 30.6 | 0.09 | ||
| Elastic net | 7.27 | 0.79 | 0.87 | 1067.8 | 32.7 | 0.09 | ||
| CH4 yield, g/kg DMI | 1 | Ridge | 0.16 | 0.76 | 0.86 | 1.20 | 1.10 | 0.08 |
| LASSO | 0.02 | 0.78 | 0.87 | 1.12 | 1.06 | 0.08 | ||
| Elastic net | 0.00 | 0.78 | 0.87 | 1.11 | 1.05 | 0.08 | ||
| 2 | Ridge | 0.45 | 0.71 | 0.82 | 1.44 | 1.20 | 0.09 | |
| Lasso | 0.01 | 0.72 | 0.83 | 1.41 | 1.19 | 0.09 | ||
| Elastic net | 0.12 | 0.72 | 0.83 | 1.42 | 1.19 | 0.09 | ||
| 3 | Ridge | 0.96 | 0.71 | 0.82 | 1.44 | 1.20 | 0.09 | |
| LASSO | 0.10 | 0.72 | 0.83 | 1.39 | 1.18 | 0.09 | ||
| Elastic net | 0.26 | 0.72 | 0.82 | 1.41 | 1.19 | 0.09 | ||
| CH4 intensity, g/kg ECM | 1 | Ridge | 0.29 | 0.87 | 0.93 | 1.38 | 1.18 | 0.14 |
| LASSO | 0.03 | 0.87 | 0.93 | 1.32 | 1.15 | 0.15 | ||
| Elastic net | 0.17 | 0.87 | 0.93 | 1.41 | 1.19 | 0.14 | ||
| 2 | Ridge | 0.64 | 0.80 | 0.90 | 2.08 | 1.40 | 0.15 | |
| LASSO | 0.02 | 0.82 | 0.91 | 1.91 | 1.38 | 0.14 | ||
| Elastic net | 0.02 | 0.82 | 0.91 | 1.91 | 1.38 | 0.14 | ||
| 3 | Ridge | 0.71 | 0.80 | 0.88 | 2.10 | 1.45 | 0.16 | |
| LASSO | 0.05 | 0.82 | 0.90 | 1.90 | 1.38 | 0.15 | ||
| Elastic net | 0.02 | 0.82 | 0.90 | 1.87 | 1.37 | 0.15 |
| Response Variable | Model | Predictor | Ridge Coefficient (±SD) 1 | RV | LASSO Coefficient (±SD) 1 | RV | Elastic Net Coefficient (±SD) 1 | RV | Direction |
|---|---|---|---|---|---|---|---|---|---|
| CH4 output, g/d | 1 | FA and intake variables 2 | |||||||
| 13:0-anteiso | 1245.4 ± 344.9 | 0.28 | 1663.9 ± 463.6 | 0.28 | 1579.8 ± 452.7 | 0.29 | + | ||
| 14:0 | −5.8 ± 4.9 | 0.84 | −12.8 ± 6.7 | 0.52 | −11.4 ± 6.8 | 0.59 | - | ||
| ∑ iso-BCFAs | 267.7 ± 57.8 | 0.22 | 395.6 ± 95.7 | 0.24 | 374.1 ± 80.5 | 0.22 | + | ||
| Milk yield | −2.0 ± 0.7 | 0.37 | −1.2 ± 0.9 | 0.81 | −1.3 ± 0.9 | 0.70 | - | ||
| NDF intake | 47.6 ± 8.1 | 0.17 | 58.8 ± 11.1 | 0.19 | 56.9 ± 11.0 | 0.19 | + | ||
| Categorical variables 3 | |||||||||
| High-yield diet (vs. Primiparous) | −16.8 ± 13.0 | 0.77 | −39.9 ± 18.8 | 0.47 | −35.4 ± 19.8 | 0.56 | - | ||
| Low-yield diet (vs. Primiparous) | −51.2 ± 17.1 | 0.33 | −97.0 ± 26.4 | 0.27 | −89.0 ± 26.2 | 0.29 | - | ||
| 2 | FA and intake variables 2 | ||||||||
| 13:0-anteiso | 666.5 ± 305.6 | 0.46 | 665.3 ± 396.9 | 0.60 | 646.6 ± 361.9 | 0.56 | + | ||
| 16:0-iso | 231.0 ± 88.7 | 0.38 | 304.6 ± 263.8 | 0.87 | 274.9 ± 194.8 | 0.71 | + | ||
| 11-cyclohexyl-11:0 | 467.6 ± 189.5 | 0.41 | 484.7 ± 408 | 0.84 | 484.6 ± 336.4 | 0.69 | + | ||
| ∑ VLCFAs | 147.9 ± 55.2 | 0.37 | 130.4 ± 95.7 | 0.73 | 133.9 ± 85.8 | 0.64 | + | ||
| Milk yield | −1.5 ± 0.6 | 0.44 | −1.6 ± 1.3 | 0.80 | −1.6 ± 1.0 | 0.63 | - | ||
| NDF intake | 31.0 ± 7.7 | 0.25 | 41.6 ± 12.6 | 0.30 | 39.0 ± 11.9 | 0.31 | + | ||
| Categorical variables 3 | |||||||||
| High-yield diet (vs. Primiparous) | −3.2 ± 10.5 | 3.30 | −18.7 ± 21.5 | 1.15 | −12.8 ± 19.2 | 1.50 | - | ||
| Low-yield diet (vs. Primiparous) | −25.6 ± 12.9 | 0.51 | −53.9 ± 25.1 | 0.47 | −44.7 ± 22.3 | 0.50 | - | ||
| 3 | FA and intake variables 2 | ||||||||
| 11-cyclohexyl-11:0 | 759.2 ± 202.5 | 0.27 | 866.0 ± 307.7 | 0.36 | 682.2 ± 220.6 | 0.32 | + | ||
| 20:4 c5,c8,c11,c14 | 679.4 ± 309.3 | 0.46 | 605.6 ± 410.8 | 0.68 | 621.4 ± 349.8 | 0.56 | + | ||
| Milk yield | −2.3 ± 0.7 | 0.32 | −2.5 ± 1.2 | 0.47 | −2.1 ± 0.8 | 0.38 | - | ||
| NDF intake | 37.3 ± 7.3 | 0.20 | 46.9 ± 11.0 | 0.23 | 34.4 ± 9.6 | 0.28 | + | ||
| Categorical variables 3 | |||||||||
| High-yield diet (vs. Primiparous) | −5.6 ± 10.8 | 1.93 | −18.8 ± 21.7 | 1.16 | Dropped | N/A | - | ||
| Low-yield diet (vs. Primiparous) | −13.6 ± 16.1 | 1.18 | −37.2 ± 28.3 | 0.76 | Dropped | N/A | - | ||
| CH4 yield, g/kg DMI | 1 | FA and intake variables 2 | |||||||
| 13:0-anteiso | 41.05 ± 11.1 | 0.27 | 47.2 ± 14.3 | 0.30 | 50.2 ± 14.0 | 0.28 | + | ||
| 15:0-iso | 29.9 ± 8.8 | 0.29 | 38.3 ± 11.8 | 0.31 | 41.2 ± 11.4 | 0.28 | + | ||
| 16:0-iso | 17.6 ± 5.8 | 0.33 | 21.2 ± 7.6 | 0.36 | 22.5 ± 6.8 | 0.30 | + | ||
| 20:3 c5,c8,c11 | 14.6 ± 6.1 | 0.44 | 13.1 ± 7.2 | 0.55 | 12.9 ± 7.8 | 0.60 | + | ||
| ∑ SMCFAs | −0.3 ± 0.1 | 0.38 | −0.3 ± 0.1 | 0.32 | −0.4 ± 0.1 | 0.30 | - | ||
| Categorical variables 3 | |||||||||
| High-yield diet (vs. Primiparous) | −0.4 ± 0.5 | 1.18 | −0.4 ± 0.5 | 1.41 | −0.4 ± 0.7 | 1.61 | - | ||
| Low-yield diet (vs. Primiparous) | −1.5 ± 0.8 | 0.51 | −2.2 ± 0.9 | 0.42 | −2.6 ± 0.9 | 0.35 | - | ||
| 2 | FA and intake variables 2 | ||||||||
| 13:0-anteiso | 21.0 ± 9.8 | 0.47 | 18.5 ± 14.2 | 0.77 | 17.7 ± 11.6 | 0.66 | + | ||
| 11-cyclohexyl-11:0 | 24.4 ± 5.3 | 0.22 | 28.2 ± 6.7 | 0.24 | 26.9 ± 6.7 | 0.25 | + | ||
| 20:4 c5,c8,c11,c14 | 21.4 ± 9.7 | 0.45 | 22.5 ± 13.1 | 0.58 | 20.8 ± 12.6 | 0.61 | + | ||
| Milk yield | −0.1 ± 0.02 | 0.24 | −0.1 ± 0.03 | 0.36 | −0.1 ± 0.03 | 0.32 | + | ||
| 3 | FA and intake variables 2 | ||||||||
| 15:0-iso | 9.8 ± 4.1 | 0.42 | 5.3 ± 9.1 | 1.73 | 7.4 ± 7.5 | 1.02 | + | ||
| 18:1 c11 | −2.0 ± 0.9 | 0.43 | −1.3 ± 1.5 | 1.23 | −1.3 ± 1.4 | 1.05 | - | ||
| 11-cyclohexyl-11:0 | 15.5 ± 4.1 | 0.26 | 22.5 ± 9.7 | 0.43 | 19.7 ± 7.5 | 0.38 | + | ||
| 20:4 c5,c8,c11,c14 | 14.8 ± 7.5 | 0.51 | 16.6 ± 11.9 | 0.71 | 14.4 ± 11.8 | 0.82 | + | ||
| Milk yield | −0.1 ± 0.02 | 0.25 | −0.1 ± 0.03 | 0.45 | −0.1 ± 0.03 | 0.41 | - | ||
| Categorical variables 3 | |||||||||
| Mid-Lactation (vs. Early) | 0.6 ± 0.3 | 0.46 | 0.5 ± 0.5 | 0.86 | 0.5 ± 0.4 | 0.81 | + | ||
| Late Lactation (vs. Early) | −0.1 ± 0.2 | 2.26 | Dropped | N/A | Dropped | N/A | - | ||
| CH4 intensity, g/kg ECM | 1 | FA and intake variables 2 | |||||||
| 15:0-iso | 19.2 ± 8.2 | 0.43 | 24.1 ± 14.6 | 0.60 | 16.3 ± 10.1 | 0.62 | + | ||
| 16:0-iso | 15.8 ± 4.8 | 0.30 | 16.5 ± 6.3 | 0.38 | 13.1 ± 5.4 | 0.41 | + | ||
| ∑ VLCFAs | 3.4 ± 2.7 | 0.81 | Dropped | N/A | 1.8 ± 2.8 | 1.57 | + | ||
| Categorical variables 3 | |||||||||
| Feed efficiency | −4.5 ± 0.9 | 0.19 | −5.5 ± 1.2 | 0.21 | −5.2 ± 1.0 | 0.20 | - | ||
| High-yield diet (vs. Primiparous) | −0.2 ± 0.4 | 1.83 | −0.03 ± 0.4 | 13.03 | Dropped | N/A | - | ||
| Low-yield diet (vs. Primiparous) | −0.6 ± 0.6 | 1.10 | −0.8 ± 0.9 | 1.09 | Dropped | N/A | - | ||
| 2 | FA and intake variables 2 | ||||||||
| 16:0-iso | 26.6 ± 6.1 | 0.23 | 29.0 ± 6.7 | 0.23 | 29.0 ± 6.5 | 0.22 | + | ||
| ∑ SMCFAs | −0.2 ± 0.1 | 0.55 | −0.4 ± 0.1 | 0.38 | −0.4 ± 0.2 | 0.43 | - | ||
| ∑ VLCFAs | 15.5 ± 3.0 | 0.20 | 15.7 ± 3.9 | 0.25 | 15.7 ± 3.8 | 0.24 | + | ||
| Categorical variables 3 | |||||||||
| Mid-lactation (vs. Early) | 2.0 ± 0.54 | 0.27 | 2.6 ± 0.8 | 0.32 | 2.6 ± 0.8 | 0.29 | + | ||
| Late lactation (vs. Early) | 1.7 ± 0.5 | 0.30 | 2.3 ± 0.7 | 0.30 | 2.3 ± 0.7 | 0.31 | + | ||
| 3 | FA and intake variables 2 | ||||||||
| 15:0-iso | 25.6 ± 8.0 | 0.31 | 35.6 ± 17.3 | 0.49 | 35.8 ± 17.5 | 0.49 | + | ||
| 16:0-iso | 16.3 ± 3.9 | 0.24 | 21.6 ± 9.0 | 0.42 | 21.4 ± 7.9 | 0.37 | + | ||
| 11-cyclohexyl-11:0 | 13.7 ± 7.0 | 0.51 | 1.8 ± 14.5 | 8.02 | 2.3 ± 12.2 | 5.32 | + | ||
| 20:1 c9 | 35.0 ± 23.6 | 0.67 | 25.5 ± 36.3 | 1.43 | 25.5 ± 39.7 | 1.56 | + | ||
| 20:3 c5,c8,c11 | 25.4 ± 5.7 | 0.23 | 33.7 ± 9.0 | 0.27 | 33.8 ± 8.5 | 0.25 | + | ||
| ∑ SMCFAs | −0.2 ± 0.1 | 0.47 | −0.4 ± 0.2 | 0.40 | −0.4 ± 0.2 | 0.4 | - | ||
| Days in milk | 0.004 ± 0.003 | 0.75 | 0.01 ± 0.01 | 1.00 | 0.01 ± 0.01 | 1.00 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youngmark, E.C.; Kraft, J. Milk Fatty Acid Profiling as a Tool for Estimating Methane Emissions in Conventionally Fed Dairy Cows. Lipidology 2025, 2, 24. https://doi.org/10.3390/lipidology2040024
Youngmark EC, Kraft J. Milk Fatty Acid Profiling as a Tool for Estimating Methane Emissions in Conventionally Fed Dairy Cows. Lipidology. 2025; 2(4):24. https://doi.org/10.3390/lipidology2040024
Chicago/Turabian StyleYoungmark, Emily C., and Jana Kraft. 2025. "Milk Fatty Acid Profiling as a Tool for Estimating Methane Emissions in Conventionally Fed Dairy Cows" Lipidology 2, no. 4: 24. https://doi.org/10.3390/lipidology2040024
APA StyleYoungmark, E. C., & Kraft, J. (2025). Milk Fatty Acid Profiling as a Tool for Estimating Methane Emissions in Conventionally Fed Dairy Cows. Lipidology, 2(4), 24. https://doi.org/10.3390/lipidology2040024

