ATP Citrate Lyase in Lipid Metabolism: Comparative Insights Across Eukaryotes with Emphasis on Yarrowia lipolytica
Abstract
1. Introduction
2. Comparative Overview of ATP-Citrate Lyase in Mammals, Plants, and Fungi
2.1. ATP-Citrate Lyase in Mammals
2.2. ATP-Citrate Lyase in Plants
2.3. ATP-Citrate Lyase in Filamentous Fungi
3. ATP: Citrate Lyase in Yeasts
3.1. Regulation by Growth Conditions
3.2. Molecular and Biochemical Characterization
3.3. Yarrowia lipolytica ACL
3.3.1. Modular Organization and Functional Domains of Y. lipolytica ACL
3.3.2. Regulation of ACL in Y. lipolytica
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| ACL | ATP-citrate lyase |
| ICDH | Isocitrate dehydrogenase |
| ChREBP | Carbohydrate-Responsive Element-Binding Protein |
| CS | Citrate synthase |
| ER | Endoplasmic reticulum |
| LDL | Low-density lipoprotein |
| LXR | Liver X receptor |
| PPAR | Peroxisome proliferator-activated receptor |
| SREB | Sterol regulatory element-binding protein |
| TAG | Triacylglycerol |
| VLDL | Very low-density lipoprotein |
References
- Boulton, C.; Ratledge, C. Correlation of lipid accumulation in yeasts with possession of ATP: Citrate lyase. J. Gen. Microbiol. 1981, 127, 169–176. [Google Scholar] [CrossRef]
- Boulton, C.; Ratledge, C. ATP:Citrate lyase-The regulatory enzyme for lipid biosynthesis in Lipomyces starkeyi? J. Gen. Microbiol. 1981, 127, 423–426. [Google Scholar]
- Boulton, C.; Ratledge, C. Partial purification and some properties of ATP:citrate lyase from the oleaginous yeast Lipomyces starkeyi. J. Gen. Microbiol. 1983, 129, 2863–2869. [Google Scholar]
- Evans, C.; Ratledge, C. Possible regulation roles of ATP: Citrate lyase, malic enzyme, and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14. Can. J. Microbiol. 1985, 31, 1000–1004. [Google Scholar] [CrossRef]
- Shashi, K.; Bachhawat, A.K.; Joseph, R. ATP: Citrate lyase of Rhodotorula gracilis: Purification and properties. BBA-Gen. Subj. 1990, 1033, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Beigneux, A.P.; Kosinski, C.; Gavino, B.; Horton, J.D.; Skarnes, W.C.; Young, S.G. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem. 2004, 279, 9557–9564. [Google Scholar] [CrossRef]
- Reķēna, A.; Pals, K.; Gavrilović, S.; Lahtvee, P.-J. The role of ATP citrate lyase, phosphoketolase, and malic enzyme in oleaginous Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 2025, 109, 77. [Google Scholar] [CrossRef]
- Chávez-Cabrera, C.; Marsch, R.; Bartolo-Aguilar, Y.; Flores-Bustamante, Z.R.; Hidalgo-Lara, M.E.; Martínez-Cárdenas, A.; Cancino-Díaz, J.C.; Sánchez, S.; Flores-Cotera, L.B. Molecular cloning and characterization of the ATP citrate lyase from carotenogenic yeast Phaffia rhodozyma. FEMS Yeast Res. 2015, 15, fov054. [Google Scholar] [CrossRef]
- Nowrousian, M.; Kück, U.; Loser, K.; Weltring, K.-M. The fungal acl1 and acl2 genes encode two polypeptides with homology to the N-and C-terminal parts of the animal ATP citrate lyase polypeptide. Curr. Genet. 2000, 37, 189–193. [Google Scholar] [CrossRef]
- Hynes, M.J.; Murray, S.L. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot. Cell 2010, 9, 1039–1048. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Geng, H.; Liu, H. Physiological characterization of ATP-citrate lyase in Aspergillus niger. J. Ind. Microbiol. Biotechnol. 2014, 41, 721–731. [Google Scholar] [CrossRef]
- Dulermo, T.; Lazar, Z.; Dulermo, R.; Rakicka, M.; Haddouche, R.; Nicaud, J.-M. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim. Biophys. Acta 2015, 1851, 1107–1117. [Google Scholar] [CrossRef]
- Nowrousian, M.; Masloff, S.; Pöggeler, S.; Kück, U. Cell differentiation during sexual development of the fungus Sordaria macrospora requires ATP-citrate lyase activity. Mol. Cell. Biol. 1999, 19, 450–460. [Google Scholar] [CrossRef]
- Jezierska, S.; Claus, S.; Van Bogaert, I.N.A. Identification and importance of mitochondrial citrate carriers and ATP citrate lyase for glycolipid production in Starmerella bombicola. Appl. Microbiol. Biotechnol. 2020, 104, 6235–6248. [Google Scholar] [CrossRef]
- Hamid, A.A.; Mokhtar, N.F.; Taha, E.M.; Omar, O.; Yusoff, W.M.W. The role of ATP citrate lyase, malic enzyme and fatty acid synthase in the regulation of lipid accumulation in Cunninghamella sp. 2A1. Ann. Microbiol. 2011, 61, 463–468. [Google Scholar] [CrossRef]
- Fatland, B.L.; Ke, J.; Anderson, M.D.; Mentzen, W.I.; Cui, L.W.; Allred, C.C.; Johnston, J.L.; Nikolau, B.J.; Wurtele, E.S. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 2002, 130, 740–756. [Google Scholar] [CrossRef] [PubMed]
- Fatland, B.L.; Nikolau, B.J.; Wurtele, E.S. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 2005, 17, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-M.; Shi, C.-Y.; Liu, X.; Jin, L.-F.; Liu, Y.-Z.; Peng, S.-A. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization. Mol. Genet. Genom. 2015, 290, 29–38. [Google Scholar] [CrossRef]
- Liu, F.; Ma, Z.; Cai, S.; Dai, L.; Gao, J.; Zhou, B. ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to Verticillium wilt. BMC Plant Biol. 2022, 22, 443. [Google Scholar] [CrossRef]
- Anche, V.; Fakas, S. ATP-citrate lyase regulates lipid biosynthesis in Yarrowia lipolytica. J. Biol. Chem. 2023, 299, 349. [Google Scholar] [CrossRef]
- Jackson, K.; Fakas, S.; Odunsi, A. Role of ATP-citrate lyase subunits in Yarrowia lipolytica. J. Biol. Chem. 2025, 301, 109431. [Google Scholar] [CrossRef]
- Odunsi, A.; Fakas, S. Functional Characterization of ATP-citrate lyase mutants in Yarrowia lipolytica. J. Biol. Chem. 2025, 301, 109435. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; CB, T. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 1994, 22, 1076–1080. [Google Scholar] [CrossRef]
- Pearce, N.J.; Yates, J.W.; Berkhout, T.A.; Jackson, B.; Tew, D.; Boyd, H.; Camilleri, P.; Sweeny, P.; Gribble, A.D.; Shaw, A. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Biochem. J. 1998, 334, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Infantino, V.; Iacobazzi, V.; Palmieri, F.; Menga, A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem. Biophys. Res. Commun. 1992, 440, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.E.; Hatzivassiliou, G.; Zhao, F.; Andreadis, C.; Thompson, C.B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005, 24, 6314–6322. [Google Scholar] [CrossRef] [PubMed]
- Korobkina, E.D.; Calejman, C.M.; Haley, J.A.; Kelly, M.E.; Li, H.; Gaughan, M.; Chen, Q.; Pepper, H.L.; Ahmad, H.; Boucher, A.; et al. Brown fat ATP-citrate lyase links carbohydrate availability to thermogenesis and guards against metabolic stress. Nat. Metabol. 2024, 6, 2187–2202. [Google Scholar] [CrossRef]
- Fernandez, S.; Viola, J.M.; Torres, A.; Wallace, M.; Trefely, S.; Zhao, S.; Affronti, H.C.; Gengatharan, J.M.; Guertin, D.A.; Snyder, N.W.; et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 2019, 27, 2772–2784.e6. [Google Scholar] [CrossRef]
- Pinkosky, S.L.; Newton, R.S.; Day, E.A.; Ford, R.J.; Lhotak, S.; Austin, R.C.; Birch, C.M.; Smith, B.K.; Filippov, S.; Groot, P.H.E.; et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Comm. 2016, 7, 13457. [Google Scholar] [CrossRef]
- Ference, B.A.; Ray, K.K.; Catapano, A.L.; Ference, T.B.; Burgess, S.; Neff, D.R.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; Di Angelantonio, E. Mendelian randomization study of ACLY and cardiovascular disease. N. Engl. J. Med. 2019, 380, 1033–1042. [Google Scholar]
- Wang, Q.; Jiang, L.; Wang, J.; Li, S.; Yu, Y.; You, J.; Zeng, R.; Gao, X.; Rui, L.; Li, W. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 2009, 49, 1166–1175. [Google Scholar] [CrossRef]
- Chu, K.Y.; Lin, Y.; Hendel, A.; Kulpa, J.E.; Brownsey, R.W.; Johnson, J.D. ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J. Biol. Chem. 2010, 285, 32606–32615. [Google Scholar] [CrossRef]
- Morrow, M.R.; Batchuluun, B.; Wu, J.; Ahmadi, E.; Leroux, J.M.; Mohammadi-Shemirani, P.; Desjardins, E.M.; Wang, Z.; Tsakiridis, E.E.; Lavoie, D.C. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab. 2022, 34, 919–936.e8. [Google Scholar] [CrossRef]
- Zhong, R.; Cui, D.; Richardson, E.A.; Phillips, D.R.; Azadi, P.; Lu, G.; Ye, Z.-H. Cytosolic acetyl-CoA generated by ATP-citrate lyase is essential for acetylation of cell wall polysaccharides. Plant Cell Physiol. 2020, 61, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.; Yang, J.; Li, X.; Li, H.; Huang, G.; Chen, T.; Lu, M. Rapid degradation of ACLA, a subunit of ATP citrate lyase, via autophagy and 26S proteasome pathways to promote pepper growth-to-tolerance transition under heat stress. Plant J. 2025, 122, e70212. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.P.; Hamid, A.A.; Midgley, M.; Ratledge, C. Widespread occurrence of ATP:citrate lyase and carnitine acetyltransferase in filamentous fungi. World J. Microbiol. Biotechnol. 1998, 14, 145–147. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 1992, 27, 15–20. [Google Scholar] [CrossRef]
- Tang, X.; Chen, H.; Chen, Y.Q.; Chen, W.; Garre, V.; Song, Y.; Ratledge, C. Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: An explanation for the high oleaginicity of strain wj11. PLoS ONE 2015, 10, e0128396. [Google Scholar] [CrossRef]
- Pfitzner, A.; Kubicek, C.; Röhr, M. Presence and regulation of ATP: Citrate lyase from the citric acid producing fungus Aspergillus niger. Arch. Microbiol. 1987, 147, 88–91. [Google Scholar] [CrossRef]
- Botham, P.; Ratledge, C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. J. Gen. Microbiol. 1979, 114, 361–375. [Google Scholar] [CrossRef]
- Boulton, C.; Ratledge, C. Cryptococcus terricolus, an oleaginous yeast re-appraised. Appl. Microbiol. Biotechnol. 1984, 20, 72–73. [Google Scholar] [CrossRef]
- Boulton, C.; Ratledge, C. Use of transition studies in continuous cultures of Lipomyces starkeyi, an oleaginous yeast, to investigate the physiology of lipid accumulation. J. Gen. Microbiol. 1983, 129, 2871–2876. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Singh, N.; Medina, A.; Usón, I.; Fraser, M.E. Identification of the active site residues in ATP-citrate lyase’s carboxy-terminal portion. Protein Sci. 2019, 28, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Williams, H.J.; Boyer, J.G.; Graham, T.L.; Zhao, H.; Lehr, R.; Qi, H.; Schwartz, B.; Raushel, F.M.; Meek, T.D. On the catalytic mechanism of human ATP citrate lyase. Biochemistry 2012, 51, 5198–5211. [Google Scholar] [CrossRef]
- Verstraete, K.; Verschueren, K.H.G.; Dansercoer, A.; Savvides, S.N. Acetyl-CoA is produced by the citrate synthase homology module of ATP-citrate lyase. Nat. Struct. Mol. Biol. 2021, 28, 636–638. [Google Scholar] [CrossRef]
- Verschueren, K.H.G.; Blanchet, C.; Felix, J.; Dansercoer, A.; De Vos, D.; Bloch, Y.; Van Beeumen, J.; Svergun, D.; Gutsche, I.; Savvides, S.N.; et al. Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 2019, 568, 571–575. [Google Scholar] [CrossRef]
- Wei, X.; Schultz, K.; Pepper, H.L.; Megill, E.; Vogt, A.; Snyder, N.W.; Marmorstein, R. Allosteric role of the citrate synthase homology domain of ATP citrate lyase. Nat. Commun. 2023, 14, 2247. [Google Scholar] [CrossRef]
- Bellou, S.; Makri, A.; Triantaphyllidou, I.-E.; Papanikolaou, S.; Aggelis, G. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 2014, 160, 807–817. [Google Scholar] [CrossRef]
- Bellou, S.; Triantaphyllidou, I.E.; Mizerakis, P.; Aggelis, G. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J. Biotechnol. 2016, 234, 116–126. [Google Scholar] [CrossRef]
- Yuzbasheva, E.Y.; Yuzbashev, T.V.; Vinogradova, E.B.; Kosikhina, I.M.; Taratynova, M.O.; Dementev, D.A.; Solovyev, A.I.; Egorova, D.A.; Sineoky, S.P. Inactivation of Yarrowia lipolytica YlACL2 gene coding subunit of ATP Citrate Lyase using CRISPR/Cas9 System. Appl. Biochem. Microbiol. 2020, 56, 885–892. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus. J. Biotechnol. 2014, 192 Pt A, 78–84. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakas, S.; Odunsi, A. ATP Citrate Lyase in Lipid Metabolism: Comparative Insights Across Eukaryotes with Emphasis on Yarrowia lipolytica. Lipidology 2025, 2, 20. https://doi.org/10.3390/lipidology2040020
Fakas S, Odunsi A. ATP Citrate Lyase in Lipid Metabolism: Comparative Insights Across Eukaryotes with Emphasis on Yarrowia lipolytica. Lipidology. 2025; 2(4):20. https://doi.org/10.3390/lipidology2040020
Chicago/Turabian StyleFakas, Stylianos, and Ayodeji Odunsi. 2025. "ATP Citrate Lyase in Lipid Metabolism: Comparative Insights Across Eukaryotes with Emphasis on Yarrowia lipolytica" Lipidology 2, no. 4: 20. https://doi.org/10.3390/lipidology2040020
APA StyleFakas, S., & Odunsi, A. (2025). ATP Citrate Lyase in Lipid Metabolism: Comparative Insights Across Eukaryotes with Emphasis on Yarrowia lipolytica. Lipidology, 2(4), 20. https://doi.org/10.3390/lipidology2040020

